INFORME DEL EJERCICIO DE COMPARACIÓN INTERLABORATORIO
(EILA 2020)

ENSAYOS DE HORMIGÓN

A nivel de central de fabricación:

CENTRAL 07-09

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

ENSAY	OS DE HORMIGÓN1
INTRO	DUCCION 3
1.	OBJETIVOS DEL EILA203
2.	NORMATIVA DE APLICACIÓN4
3.	HORMIGON: TIPO Y FABRICACIÓN DE LAS PROBETAS5
4.	LABORATORIOS DE ENSAYO PARTICIPANTES EN EL EILA20 HORMIGONES8
5.	ANÁLISIS DE LOS RESULTADOS APORTADOS9
ENSAY	O DE RESISTENCIA A COMPRESIÓN A 28 DÍAS, según norma UNE-EN 12390-3:2003 12
Α.	ESTUDIO PRELIMINAR RESULTADOS RESISTENCIA A COMPRESIÓN A 28 DÍAS: PROBETAS CÚBICAS 15
i.	Resultados aportados de las tres determinaciones por código y Central.
ii.	Gráficas de las determinaciones individuales de los laboratorios con la media de la Central (con todo
el	grupo de valores, antes de descartar)15
b.	ESTUDIO PRELIMINAR RESULTADOS RESISTENCIA A COMPRESIÓN A 28 DÍAS: PROBETAS CILÍNDRICAS
	16
i.	Resultados aportados de las tres determinaciones por código y Central.
ii.	Gráficas de las determinaciones individuales de los laboratorios con la media de la Central (con todo
el	grupo de valores, antes de descartar)16
	O DETERMINACIÓN DE LA PROFUNDIDAD DE PENETRACIÓN DE AGUA BAJO PRESIÓN, según UNE-EN 12390-8:2001
A.	ESTUDIO PRELIMINAR RESULTADOS PROFUNDIDAD DE PENETRACIÓN DE AGUA: PROBETAS
	IDRICAS
i.	Resultados aportados de las tres determinaciones por código y Central21
ii.	Gráficas de las determinaciones individuales de los laboratorios con la media de la Central (con todo
el	grupo de valores, antes de descartar)22
iii	. Calibraciones de los Equipos23
ANÁLI	SIS ESTADÍSTICO Y ZSCORE DE RESULTADOS CENTRAL 07-09:24
6.	VERIFICACIÓN DE LAS MEDIDAS DE LOS MOLDES Y LAS PROBETAS FABRICADAS25
7.	EVALUACIÓN GLOBAL DE LOS LABORATORIOS PARA LOS ENSAYOS DE HORMIGÓN27
8.	AGRADECIMIENTOS29

Comité de infraestructuras para la Calidad de la Edificación

Subcomisión Administrativa para la Calidad de la Edificación

INTRODUCCION

1. OBJETIVOS DEL EILA20

Los ejercicios de intercomparación entre laboratorios tienen su origen y fundamento en la norma UNE-EN ISO/IEC 17025:2017, que en el apartado 5.9 "Aseguramiento de la calidad de los resultados de ensayo y de calibración" establece que, entre otros, los laboratorios deben participar en comparaciones interlaboratorios o programas de ensayos de aptitud.

Según define la Guía sobre la participación en programas de intercomparación G-ENAC-14, "las intercomparaciones consisten en la organización, el desarrollo y la evaluación de ensayos del mismo ítem o ítems similares por varios laboratorios, de acuerdo con condiciones preestablecidas."

Éstas incluyen diferentes objetivos:

- Evaluación del desempeño de los laboratorios para ensayos.
- Identificación de problemas en los laboratorios e inicio de actividades correctivas.
- Establecimiento de eficacia y comparabilidad de ensayos.
- Identificación de diferencias entre laboratorios.
- Caracterización de métodos.
- Educación de los laboratorios participantes, basándose en los resultados de su participación.

Sobre estos objetivos, en la Jornada de inicio del EILA20 se han realizado, con la colaboración del Instituto Eduardo Torroja, la ponencia de carácter formativo y con video, sobre la ejecución del ensayo de Profundidad de penetración de agua.

Comité de infraestructuras para la Calidad de la Edificación

Subcomisión Administrativa para la Calidad de la Edificación

2. NORMATIVA DE APLICACIÓN.

El tratamiento estadístico de los resultados obtenidos por los laboratorios se analiza siguiendo las siguientes normas:

- **UNE 82009-2:1999** "Exactitud (veracidad y precisión) de resultados y métodos de medición. Parte 2: Método básico para la determinación de la repetibilidad y la reproducibilidad de un método de medición normalizado".
- UNE-EN ISO/IEC 17043:2010 "Evaluación de la conformidad. Requisitos generales para los ensayos de aptitud", tomando como valor de referencia del ensayo los valores medios no aberrantes obtenidos.

Además, se consideran dos documentos de ayuda elaborados por la Entidad Nacional de Acreditación **ENAC** para la realización de los ejercicios de intercomparación:

- NT-03 "Política de ENAC sobre Intercomparaciones".
- **G-ENAC-14** "Guía sobre la participación en programas de intercomparación.".

Asimismo, conforme al "Plan de ensayos interlaboratorios a nivel estatal (EILA-20) de ensayos de hormigón", cada ensayo será evaluado con el cumplimiento de las Normas UNE que se indican a continuación:

- o Fabricación de probetas, según UNE-EN 12390-2:2001. Ensayos de hormigón endurecido. Parte 2: Fabricación y curado de probetas para ensayos de resistencia, tanto en probetas cilíndricas como cúbicas.
- Resistencia a compresión del hormigón a 28 días, según UNE-EN 12390-3:2003. Ensayos de hormigón endurecido. Parte 3: Determinación de la resistencia a compresión de probetas a 28 días tanto en cilíndricas como cúbicas y no se aplicará el factor de conversión de la tabla 86.3.2 de la Instrucción EHE-08.
- Determinación de la profundidad de penetración de agua bajo presión, según la norma vigente UNE-EN 12390-8:2009 y UNE-EN 12390-8:2009 1ª Modificación, con indicaciones del Anejo 22 y el tratamiento previo de las probetas según el Apartado 86.3.3 de la EHE-08.

Comité de infraestructuras para la Calidad de la Edificación

3. HORMIGON: TIPO Y FABRICACIÓN DE LAS PROBETAS.

El tipo de hormigón que se establece por Protocolo es un HA-30/B/20/IIa+Qb.

La elección del suministrador de hormigón por parte de la asociación colaboradora ANEFHOP, ha sido preferentemente de plantas con hormigón que disponga de distintivo de calidad oficialmente reconocido, al objeto de garantizar los requisitos de homogeneidad establecidos en la EHE en vigor. Y cuando no tenía distintivo o cuando la amasadora era móvil, en ejercicios anteriores se obligaba, por Protocolo, a realizar los ensayos de homogeneidad conforme a la siguiente Tabla 71.2.4 de la EHE-08, o a presentar los resultados de autocontrol realizados por la propia central, conforme establece el Anejo 19, apartado 4, de la EHE 08. En este ejercicio, para hormigones sin distintivo han sido los Coordinadores autonómicos los que han elegido un laboratorio de entre los participantes para realizar, en todos los casos, los ensayos de homogeneidad el día de la toma.

Tabla 71.2.4. De la EHE-08. Comprobación de la homogeneidad del hormigón. Deben obtenerse resultados satisfactorios en los dos ensayos del grupo A y en al menos dos de los cuatro del grupo B

	Ensayos	(*)				
	Consistencia (UNE-EN 12350-2:2006)					
	• Si el asiento medio es igual o inferior a 9 cm	3 cm				
Grupo A	• Si el asiento medio es superior a 9 cm	4 cm				
	Resistencia a 7 días a compresión (% respecto a la media)	7,5 %				
	Densidad del hormigón (kg/m³; UNE-EN 12350-6:2006)	16 kg/m ³				
<i>a</i>	Contenido de aire (% respecto al volumen de hormigón UNE-EN 12350-7:2001)					
Grupo B	Contenido de árido grueso (% respecto al peso de la muestra tomada ; UNE 7295:1976)	6 %				
	Módulo granulométrico del árido (UNE 7295:1976)	0,5				

Diferencia máxima tolerada entre los resultados de los ensayos de dos muestras tomadas de la descarga del hormigón (1/4 y 3/4 de la descarga).

En su caso, estas actuaciones han quedado reflejados en la correspondiente Acta de Toma de muestras y de Incidencias suscrita por los coordinadores autonómicos presentes en la toma del hormigón, así como en las *Hojas de suministro de carg*a entregadas el mismo día de celebración.

Comité de infraestructuras para la Calidad de la Edificación

SACE Subcomisión Administrativa para la Calidad de la Edificación

Se insiste siempre en nuestros ejercicios de la importancia que tiene el cumplimiento de las condiciones particulares en la fabricación de las probetas. Evitar el exceso de desencofrante, tener especial cuidado durante el proceso de llenado, la compactación de cada capa en la probeta (25 golpes) y en la distribución del picado con barra, de manera uniforme por la sección transversal de cada capa (cada capa ocupará aproximadamente un tercio de la altura del molde en caso de probeta cilíndrica y la mitad de la altura en las cúbicas); así como, golpear lateralmente los moldes una vez rellenos de hormigón, con una maza de goma hasta que no aparezcan burbujas de aire y, en su caso, eliminar así las depresiones dejadas por la barra de compactar.

Las probetas se han protegido con arpilleras u otros sistemas sobre su cara superior para evitar la deshidratación de la masa del hormigón y se han usado bolsas de plástico, cerradas con bridas u otros sistemas, para el sellado de las bolsas.

Por las circunstancias sanitarias, sobrevenidas por el COVID-19, y la declaración del estado de alarma ha producido que las fechas de celebración no se cumplieran entre mayo y junio, como en un principio, se pretendía, y ese retraso ha afectado a todos los plazos siguientes, incluido la entrega de este documento. La fabricación de las probetas en el EILA20 se ha concentrado en su mayoría en el mes de julio, pero incluso en octubre ha habido tomas. En todo caso, se han recogido las probetas, una vez fabricadas y mantenidas en el molde, al menos tras 16 horas y nunca más de 3 días en la central, de conformidad con la EHE-08 en su artículo 86.3.2

Los datos obtenidos se han agrupado por central de hormigón (para asegurar características lo más similar posible) y fabricado de una sola vez (misma amasada o unidad de producción) para poder garantizar la homogeneidad de la muestra a ensayar, y dar validez al análisis estadístico del ejercicio de intercomparación.

Comité de infraestructuras para la Calidad de la Edificación

3.1. ENSAYOS DE HOMOGENEIDAD.

El ensayo de consistencia del hormigón fresco por el método del asentamiento del cono de Abrams, en este ejercicio ha formado parte de los ensayos de homogeneidad realizados. No entra por tanto en el análisis estadístico del EILA20.

Cuando el coordinador autonómico ha aportado los resultados de estos ensayos, se reflejan más abajo.

Podemos decir que aplicando los límites de consistencia definidos en la tabla 86.5.2.1 del Artículo 31.5 de la EHE-08, se observa que la consistencia del hormigón fabricado ha sido mayoritariamente blanda.

Tabla 86.5.2.1 de la EHE-08. Consistencia definida por su tipo

TIPO DE CONSISTENCIA		TOLERANCIA EN INTERVALO RESULTANTE
Seca	0	0 – 2 cm
Plástica	±1	2 – 6 cm
<u>Blanda</u>	<u>±1</u>	<u>5 – 10 cm</u>
Fluida	±2	8 – 17 cm
Líquida	±2	14 – 22 cm

CICE Comité de infraestructuras para la Calidad de la Edificación

4. LABORATORIOS DE ENSAYO PARTICIPANTES EN EL EILA20 HORMIGONES

En este ejercicio de hormigones, han participado un total 17 Comunidades Autónomas, 19 centrales de fabricación de hormigón y 187 laboratorios de ensayo. En la siguiente tabla se muestra el número exacto de laboratorios por Comunidad Autónoma.

Tabla 4.1. Laboratorios declarados participantes, por Comunidad Autónoma.

Comunidad Autónoma	Nº de Laboratorios Participantes
Andalucía	24
Aragón	06
Asturias	06
Cantabria	05
Castilla- La Mancha	08
Castilla- León	10
Cataluña	14
Comunidad de Madrid	21
Comunidad de Valencia	17
Extremadura	04
Galicia	09
Islas Baleares	10
Islas Canarias	20
La Rioja	04
Murcia	13
Navarra	08
País Vasco	08

En la realización de los ensayos hay laboratorios que no tienen declaración responsable, pero son laboratorios certificadores o de centrales, cuyos resultados se han estudiado junto con el resto de los laboratorios. En la siguiente tabla se indica el número de estos laboratorios de central y la Comunidad Autónoma en la que participan.

Tabla 4.2. Laboratorios participantes sin declaración responsable

Comunidad Autónoma	Nº de Laboratorios	Comunidad Autónoma	Nº de Laboratorios
Asturias	02	Valencia	02
Cataluña	01	Navarra	01
Castilla y León	01	Murcia	02
Islas Baleares	01	Madrid	02
Cantabria	02	País Vasco	01

Comité de infraestructuras para la Calidad de la Edificación

Calidad de la Edificación

5. ANÁLISIS DE LOS RESULTADOS APORTADOS

5.1. ESTUDIO PRELIMINAR

El primer paso es un Estudio preliminar (pre-estadístico) de todos los datos aportados por los laboratorios participantes, volcados de las fichas de resultados, y elaboradas ex profeso para cada ensayo.

En este punto, se marcan aquellos VALORES SOSPECHOSOS que puedan explicarse como un "error técnico humano" y se filtran los VALORES CON DESVIACIONES que, en general, son por la incorrecta ejecución del procedimiento de ensayo de la norma o del protocolo.

Primero, se investiga si el resultado se ha debido a un error de transcripción, o por no fijarse en la expresión de las unidades que se estaba pidiendo o por situar el valor en la celda equivocada. Si es así, el resultado se considera sospechoso, se reemplaza por el valor correcto en el análisis estadístico, y se deja señalado en observaciones del mismo.

Seguidamente, en caso de existir, se aplicará de forma generalizada la fórmula de verificación del criterio de validación que la propia norma de ensayo establece. Si no cumple la validación, el resultado será **DESCARTADO DEL ANÁLISIS ESTADÍSTICO y** se sombreará en rojo (sea el caso, por ejemplo, del recorrido relativo según la EHE08 para el ensayo de resistencia a compresión). Otros datos, como la diferencia de pesos será señalada si se evidencian diferencias con el promedio del resto de laboratorios que han participado en la misma central y, o bien, no aporta el valor de la incertidumbre del ensayo. Serán distinguidos como valores con desviaciones en el procedimiento de ensayo pero no serán descartados en este ejercicio. Dentro de cada ensayo, en el siguiente título de este informe, se indican aquellos datos que se han estudiado y en caso de ser desviaciones excluyentes, si está justificado o no ser descartado en el análisis estadístico.

5.2. ANÁLISIS ESTADÍSTICO.

Una vez que los datos se han revisado, se realiza el Análisis estadístico, donde no pasan aquellas mediciones cuyos datos sean los "descartados con desviaciones excluyentes" y se han corregido los "sospechosos". De este análisis conocemos:

El número mínimo de laboratorios participantes que se aceptan en el EILA-HORMIGONES debe ser p≥3.Bien es cierto que en la norma UNE 82009-1:1999 en su Artículo 6.3.4 se recoge que, estas estimaciones de las desviaciones de repetibilidad y de reproducibilidad podrían diferir de forma sustancial de sus valores verdaderos si sólo toman parte del contraste un pequeño número de laboratorios (p=5). Lo recomendable es un valor de p entre 8 y 15.

Comité de infraestructuras para la Calidad de la Edificación

El número mínimo de réplicas en el interior de cada laboratorio para la misma muestra debe ser n≥2. Tal y como recoge el artículo 86.3 de la EHE-08, donde dice que: "A los efectos de esta Instrucción, cualquier característica medible de una amasada, vendrá expresada por el valor medio de un número de determinaciones, igual o superior a dos."

ENSAYOS	CENTRAL 07-09		
Resistencia a compresión 28 días: cubicas	p=10	n=3	
Resistencia a compresión 28 días: cilíndricas	p= 11	n=3	
Profundidad de penetración de agua	p=4	n=3	

Si los datos cumplen con estos valores mínimos para "p" y "n", se realiza el Análisis estadístico en base a las normas UNE 82009-2 y 82009-6 (equivalentes a las normas ISO 5725-2 e ISO 5725-6, respectivamente), referentes al Método básico de la repetibilidad y reproducibilidad de un método de medición normalizado. Esto significa que se realizan las siguientes aproximaciones:

- **Técnica gráfica de consistencia**, utilizando dos estadísticos determinados: interlaboratorios (h) e intralaboratorios (k) de Mandel.
- **Ensayos de detección de resultados numéricos aberrantes**: ensayos de variabilidad que se aplican solo en aquellos resultados donde el ensayo Mandel haya conducido a la sospecha:
 - Ensayo de Cochran (C): verifica el mayor valor de un conjunto de desviaciones típicas, siendo ello un test unilateral de valores aberrantes y
 - **Ensayo de Grubbs** (G): verifica la desviación estándar de todas las medias, eliminando de todo el rango de distribución de valores la/s media/s más alta/s y más baja/s, según si es el Simple Grubbs o el Doble Grubbs.

El valor será rechazado y dejará de ser analizado cuando sea aberrante/ anómalo tanto en las técnicas gráficas de consistencia como en los ensavos de detección de resultados numéricos. Para identificar si los resultados son anómalos y/o aberrantes, estos métodos comparan el valor estadístico resultante de h, k, C y G obtenido en el Análisis estadístico de los resultados aportados por los laboratorios, con los indicadores estadísticos y valores críticos recogidos en las Tablas 4, 5, 6 y 7 de las normas antes citadas para una (p) y una (n) conocidas, respectivamente.

5.3. VALOR ASIGNADO

Una vez descartados los resultados rechazados en el análisis estadístico (anómalos y aberrantes), el valor asignado se obtiene del promedio de los datos no descartados ni anómalos ni aberrantes.

Comité de infraestructuras para la Calidad de la Edificación

Subcomisión Administrativa para la Calidad de la Edificación

5.4. DATOS DE PRECISIÓN

Una vez descartados los valores rechazados, se determina la repetibilidad y reproducibilidad del ensayo por central, para conocer las dispersiones de los resultados, en base al promedio de las varianzas o también conocido como METODO ANOVA (siglas de analisys of varience) recogido en la norma ISO 17025. Para ello, se parte de la desviación típica de repetibilidad Y r (%), a partir de las determinaciones individuales del laboratorio, y se calcula el límite de repetibilidad. Y la desviación típica intralaboratorios Y L (%), a partir de la diferencia entre el valor medio del laboratorio con la media de todo el grupo de distribución de la central, descartados los valores anómalos/aberrantes, expresadas como un porcentaje de la media de las resistencias o profundidades, según el ensayo, de las tres probetas.

Por tanto, la repetibilidad de los resultados significa que las mediciones sucesivas para un mismo ensayo y muestra, se efectúan en las mismas condiciones dentro de un periodo de tiempo corto: mismo laborante, mismo laboratorio (condiciones ambientales) y mismo equipo de medición utilizado. Sin embargo, la reproducibilidad de los ensayos es, teniendo en cuenta que las mediciones son para un mismo ensayo y muestra dentro de un periodo de tiempo corto, cambiando alguna de las condiciones de medición: el laborante, el laboratorio (las condiciones de uso (p.ej. procedimientos)) y/o el equipo de medición. En resumen, la primera hace referencia a la variabilidad entre medidas en el mismo laboratorio y la segunda debida al cambio de laboratorio.

- Si r(%) > R(%), las posibles causas pueden ser entre otras: el instrumento necesita mantenimiento, el equipo requiere ser calibrado, el montaje o la ubicación donde se efectúan las mediciones necesita ser mejorado o existe una variabilidad excesiva entre las dos medidas hechas en un mismo laboratorio.
- Si R (%) > r (%), las posibles causas pueden ser entre otras: el operador necesita más formación y/o mejor entrenamiento en cómo utilizar y cómo leer el instrumento, o no se han mantenido las condiciones de reproducibilidad (ambientales y/o de montaje del equipo).
- Si **R=r**, debe considerarse generalmente indicador de una varianza interlaboratorios pequeña (o de valores negativos), o incluso nula. Es el caso en que la varianza se estima cero, los errores sistemáticos de todos los laboratorios serían iguales- necesariamente nulos- y todos los resultados de ensayo serían intercambiables. Por esta última circunstancia, podría estimarse como si todos los ensayos hubieran sido realizados por un único laboratorio en condiciones de repetibilidad. (Fuente de "NUEVAS ESPECIFICACIONES DE HORMIGON Y SU RESISTENCIA" de JUAN CARLOS LOPEZ AGÜI)

Comité de infraestructuras para la Calidad de la Edificación

ENSAYO DE RESISTENCIA A COMPRESIÓN A 28 DÍAS, según norma UNE-EN 12390-3:2003.

El ensayo de "Resistencia a compresión a 28 días" ha sido realizado según la norma de ensayo UNE-EN 12390-3:2003, aun cuando actualmente la vigente es la UNE-EN 12390-3:2009. Se ha seguido dicha norma porque es la que mayoritariamente utilizan los laboratorios por estar recogida en la EHE-08 para el control de recepción del hormigón.

De conformidad con el Protocolo particular, el tipo de hormigón que debía utilizarse era HA-30/B/20/IIa+Qb aunque no todos los suministradores han utilizado cemento sulforresistente en la composición al no tener el hormigón un destino estructural. Los laboratorios participantes han fabricado probetas cilíndricas de 15x30 cm y probetas cúbicas de 15 cm de arista. Este año se pedía no aplicar el factor de conversión del apartado 86.3.2 de la EHE-08, y que se detalla a continuación:

Tabla 86.3. 2. a. Coeficiente de conversión: $\lambda_{cil, cub15}$.

$$f_c = \lambda_{cil,cub15} * f_{c,cúbica}$$

	,
Resistencia probeta cúbica (fc; N/mm²)	$\lambda_{cil,cub15}$
fc < 60	0,90
$60 \le fc < 80$	0,95
fc ≥ 80	1,00

Sobre este aspecto, de los 186 participantes que han presentado resultados con probetas cilíndricas, 154 han fabricado también probetas cúbicas, y el coeficiente para **fc** probeta cúbica < 60 N/mm² es el siguiente:

Central	A/C	Contenido cemento (kg/m³)	Resistencia media cubicas (N/mm²)	CONVERSION	Resistencia media cilindricas (N/mm²)
C01	0,47	360,00	46,8	0,889	41,5
C02	0,43	351,00	53,2	0,994	52,9
C03 + C12	0,40	362,00	46,7	0,978	45,7
C04	0,45	350,00	40,8	0,956	39,0
C05	0,50	350,00	55,9	0,932	52,1
C06	0,47	355,00	42,9	0,872	37,4
C07 + C09	0,42	350,00	57,7	0,969	55,9
C08	0,48	355,00	35,2	0,943	33,2
C10	0,47	351,00	33,0	0,923	30,5
C11	0,36	350,00	43,6	0,853	37,2
C13	0,49	356,00	49,8	0,907	45,2
C14	0,45	350,00	50,2	0,919	46,1
C15	0,45	380,00	42,2	0,957	40,4
C16	0,45/0,5	355 / 370	40,8	0,943	38,5
C17	0,45	350,00	41,4	0,853	35,3
C18	0,50	350,00	43,3	0,938	40,6
C19	0,50	350,00	48,3	0,935	45,2
		Factor prom	nedio	0,927	

Comité de infraestructuras para la Calidad de la Edificación

MODO DE CONSERVACIÓN Y TRATAMIENTO PREVIO A LA ROTURA en este ejercicio a nivel nacional:

- el método de conservación predominante es el de cámara húmeda (o curado, como se recoge en la Ficha de resultados) con un 84%, como ya sucedía en anteriores ejercicios.
- en cuanto al tratamiento previo a la rotura:
 - o en probetas cubicas: el 61% **no recibe ningún tratamiento previo**, y un 31%, pule.
 - o en probetas cilíndricas: como sucedía en ejercicios EILA anteriores, se reparte por igual entre el pulido y refrentado; siendo en el EILA20, un 49,7% y 48,7%, respectivamente. El resto no lo indica.

ESTUDIO PRELIMINAR (ANÁLISIS PRE-ESTADÍSTICO)

VALORES NO DESCARTADOS ("SOSPECHOSOS")

EXPRESIÓN DE LOS RESULTADOS. El resultado de las tres determinaciones de la resistencia a compresión a 28 días se expresará en N/mm2, conforme la Norma UNE EN 12390-3:2003. Sin embargo, su grado de redondeo al 0,5 N/mm2 más cercano, como ya se aclaraba en el Protocolo de hormigón, afecta en el análisis estadístico (Aptdo. 7.3.3.4. de la norma estadística UNE 82009-2:1999) y aumenta el grado de imprecisión de las mediciones obtenidas. Por ello, el grado de redondeo que se aplica en este Ejercicio EILA20 es el recogido en la Norma UNE EN 12390-3:2009 vigente, con una aproximación de 0,1 N/mm². Por tanto, el resultado sospechoso en este ensayo es aquel que no se expresa conforme lo expuesto anteriormente. Detectado, se reemplaza por el valor correcto en el análisis estadístico, y se deja señalado en observaciones del mismo.

VALORES NO DESCARTADOS CON DESVIACIONES AL PROTOCOLO-NORMA O RESPECTO DEL GRUPO:

- DIFERENCIAS DE PESOS: Se han analizado los diferentes datos de los pesos de las probetas, a medida que iban tratándose con agua en el curado. Se han sombreado en "amarillo" aquellos que no han aportado el dato o su resultado parece una transcripción errónea. Sin embargo, cuando la probeta ha perdido peso tras el curado o balsa, se ha sombreado en "morado" por considerar que hay evidencias de una posible No Conformidad y se recomienda que el laboratorio observe los registros y estado de su cámara húmeda.
- CALCULO DE LA INCERTIDUMBRE DEL ENSAYO: En la actualización de la norma UNE EN ISO 17025:2017, desde enero de 2021 en vigor, se recuerda que los laboratorios deben evaluar la incertidumbre de medición e identificar su contribución en sus resultados de ensayo (apartado 7.6

Comité de infraestructuras para la Calidad de la Edificación

que no lo han aportado en la ficha.

de la citada norma). Pudiendo haber sido el 100%, de los 187 laboratorios en este ensayo, han presentado el dato 79,14%, menos que en el EILA 19 (85,30%). Se han sombreado en "amarillo" los

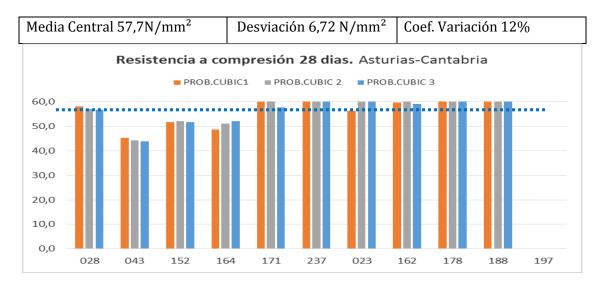
VALORES DESCARTADOS (SD en la Tabla 7): DESVIACIONES EXCLUYENTES.

RECORRIDO RELATIVO. Es en el mismo apartado del capítulo XVI de la EHE-08, Art. 86.3.2., donde se dice que para considerar aceptables los valores de resistencia obtenidos a 28 días, el recorrido relativo de un grupo de tres probetas no podrá exceder del 20% del valor obtenido mediante la diferencia entre el mayor resultado y el menor, dividido por el valor medio de las tres tomadas de la misma amasada. Los que no lo calculan correctamente se sombrean en amarillo y son corregidos; y, aquellos que superan este límite, da lugar a una No conformidad en la ejecución del ensayo, y son descartados del Análisis estadístico. Se han sombreado en "rosa".

CICE Comité de infraestructuras para la Calidad de la Edificación

SACE Subcomisión Administrativa para la Calidad de la Edificación

ESTUDIO PRELIMINAR RESULTADOS RESISTENCIA A COMPRESIÓN A 28 DÍAS: PROBETAS CÚBICAS


i. Resultados aportados de las tres determinaciones por código y Central. HA-30/B/20/IIa+Qb

RE	SISTENCIA	A COMPR	RESION (N	Incertidumbre		Diferencia de peso al		
LAB	X ₁	X ₂	X ₃	Xm	RECORRIDO CALC. ≤20%	Laboratorio	Tratam. previo	salir de cámara o balsa
C07-	C09	A/C	0,42	57,7				
028	58,1	57,3	56,8	57,4	2,30%	-		Aumenta, salvo en probeta 3
043	45,4	44,3	43,9	44,5	3,37%	0,53		Aumenta
152	51,8	52,2	51,8	51,9	0,77%	-		No varia
164	48,7	51,2	52,1	50,7	6,71%	-	Pulido	Aumenta
171	60,2	62,7	57,8	60,2	8,14%	0,83		Aumenta
237	65,5	65,8	62,6	64,6	4,95%	-		No varia
023	56,3	60,5	61,8	59,6	9,16%	0,316		Aumenta
162	59,8	60,8	59,1	59,9	2,72%	0,47	-	Aumenta
178	62,3	62,2	62,1	62,2	0,32%	1,3		Pierde
188	67,3	64,6	65,7	65,9	4,18%	-		Aumenta
197								-

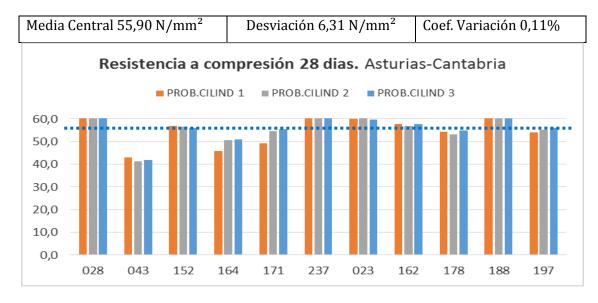
Dato destacado por su posible influencia en el resultado (p.ej: Que pierda peso al salir de 28 días de curado)

Valores no aportados solicitados en el Protocolo (NS/NC). Se recuerda que con la entrada en vigor de la UNE EN ISO 17025:2017, el valor de incertidumbre es obligatorio

ii. Gráficas de las determinaciones individuales de los laboratorios con la media de la Central (con todo el grupo de valores, antes de descartar)

CICE Comité de infraestructuras para la Calidad de la Edificación

b. ESTUDIO PRELIMINAR RESULTADOS RESISTENCIA A COMPRESIÓN A 28 DÍAS: PROBETAS CILÍNDRICAS


i. Resultados aportados de las tres determinaciones por código y Central. HA-30/B/20/IIa+Qb

RESIS	TENCIA A CO	MPRESI	ON (N/	/mm2) C	ILINDRICAS	Incertidumbre	Tratam.		CAMARA	
LAB	X ₁	X ₂	X ₃	Xm	RECORRIDO CALC.≤20%	Laboratorio		PROBETA 01	PROBETA 02	PROBETA 03
C07-C09			55,9							
028	61,3	63,6	60,6	61,8	4,77%	_	Pulido	15,00	10,00	0,00
043	42,9	41,2	41,8	42,0	4,12%	0,62	Pulido	40,00	47,00	47,00
152	57,0	56,5	56,0	56,5	1,77%	-	Refrentado	0,00	0,05	0,00
164	46,0	50,6	50,9	49,2	10,05%	-	Refrentado	9,00	4,00	-28,00
171	49,2	54,7	55,5	53,1	11,94%	0,91	Refrentado	50,00	50,00	60,00
237	61,6	62,7	61,5	61,9	1,94%	-	Refrentado	100,04	0,04	0,04
023	59,9	62,7	59,7	60,8	5,05%	0,707	Refrentado	24,00	24,00	30,00
162	57,7	56,8	57,6	57,4	1,57%	0,55	Pulido	39,00	33,00	45,00
178	54,3	53,3	55,0	54,2	3,14%	1,3	Refrentado	-53,00	-64,00	-46,00
188	62,7	61,7	64,6	63,0	4,60%	1,73	Refrentado	24,70	25,00	47,40
197	54,0	55,2	56,2	55,1	3,94%	1,33	Refrentado	40,00	41,00	41,00

Valores no aportados solicitados en el Protocolo (NS/NC). Se recuerda que con la entrada en vigor de la <u>UNE EN ISO 17025:2017, el valor de incertidumbre es obligatorio</u>

Dato destacado por su posible influencia en el resultado (la probeta pesa menos tras curado).

ii. Gráficas de las determinaciones individuales de los laboratorios con la media de la Central (con todo el grupo de valores, antes de descartar)

Comité de infraestructuras para la Calidad de la Edificación

Subcomisión Administrativa para la Calidad de la Edificación

ENSAYO DETERMINACIÓN DE LA PROFUNDIDAD DE PENETRACIÓN DE AGUA BAJO PRESIÓN, según norma UNE-EN 12390-8:2001.

Las condiciones de ejecución y criterios interpretativos para la aplicación de la normativa del ensayo de profundidad de penetración de agua bajo presión, ha sido realizado según la norma vigente UNE-EN 12390-8:2009 y UNE-EN 12390-8:2009 1ª Modificación, con indicaciones del Anejo 22 y el tratamiento previo de las probetas según el Apartado 86.3.3 de la EHE-08.

El Protocolo del ensayo y el Anexo adjunto se han llevado a cabo de acuerdo con las condiciones de ensayo recogidas en el **próximo Código Estructural**, que sustituirá a la Instrucción EHE-08, y en el que establece que este <u>será uno de los ensayos obligatorios de recepción</u> para determinadas clases de exposición.

Según la norma actualizada UNE-EN 12390-8:2009, se han utilizado tres probetas, y aunque su curado debe ser en balsa, solo un 30% lo hace; el resto es en cámara conforme queda recogido en el protocolo del ejercicio. A diferencia de otros años, no se observa que las profundidades sean menores en aquellas probetas que han estado sumergidas en balsa frente a las que han estado en cámara.

Después debe someter éstas a un período de secado previo de 72 horas en una estufa de tiro forzado a una temperatura de (50 ± 5)°C. Se pedían las pesadas después del curado y después de tres días en estufa, evitando que la fase de término del ensayo no coincidiera en fin de semana. De este modo, durante las 72±2 horas siguientes que estaban en agua bajo presión, se supervisara todos los días las probetas por si hubiera filtraciones o pérdidas de presión con un manómetro manual.

Destacar que de los 106 laboratorios que señalaron su participación, 96 han presentado resultados, lo mismo que sucedió en el EILA19.

ESTUDIO PRELIMINAR (ANÁLISIS PRE-ESTADÍSTICO)

VALORES NO DESCARTADOS ("SOSPECHOSOS")

EXPRESIÓN DE LOS RESULTADOS. De conformidad con el *Protocolo de los ensayos de hormigón*, los laboratorios participantes han aportado el valor de tres determinaciones que, corresponden a cada una de las probetas ensayadas y, la documentación gráfica de la ejecución de este ensayo. De estas tres determinaciones, expresadas en milímetros (mm), se ha obtenido una media, que se ha redondeado al milímetro más próximo, según se establece en el Apartado 6 de la norma UNE-EN

Comité de infraestructuras para la Calidad de la Edificación

12390-8:2001. Este redondeo no se ha aplicado en los resultados aportados por los laboratorios en este ejercicio. Para el análisis estadístico, ayuda el dato más preciso y por tanto, con decimales.

El resultado sospechoso en este ensayo es aquel cuyo frente de agua dice superar las dimensiones de la propia probeta y/o se evidencia un error de transcripción del resultado. Detectado, se reemplaza por el valor correcto en el análisis estadístico, y se deja señalado en observaciones del mismo.

VALORES NO DESCARTADOS CON DESVIACIONES AL PROTOCOLO-NORMA O RESPECTO DEL GRUPO:

- DIFERENCIA DE PESOS: tras el curado, tras estufa o tras estar en el equipo de presión. Se han sombreado en "amarillo" los que no han aportado el dato o su resultado evidencia algún error de trascripción o expresión de sus unidades. Sin embargo, cuando la probeta ha perdido peso tras el curado o balsa, se ha sombreado en "morado" por considerar que hay evidencias de una posible No Conformidad y se recomienda que el laboratorio observe los registros y la estanqueidad de su cámara húmeda o condiciones ambientales en balsa.
- CEPILLADO EN LA CARA NO FRATASADA DE LA PROBETA CON LA QUE SE DEBE HACER ESTE ENSAYO: La cara no fratasada, la que queda dentro de la base del molde en su fabricación, debe ser cepillada vigorosamente con un cepillo de púas metálica, previo a su curado. Si no ha sido suficiente, la superficie no está preparada correctamente para el ensayo. Para próximos EILAs para poder comprobar que está bien desbastada, se pedirá foto de esta cara que es la que queda en contacto con el anillo de estanqueidad (junta tórica) para el ensayo de penetración.
- UTILIZACIÓN DE ESTUFA DE TIRO FORZADO: Conforme se recoge en Protocolo, si la estufa no es de tiro forzado, conseguimos el efecto contrario, no secamos la probeta, sino que esta se condensa dentro del equipo durante los 3 días que debe permanecer en ella y sale con más humedad.
- **DIRECCIÓN DE APLICACIÓN DEL AGUA A PRESIÓN**: con relación a la dirección de hormigonado, lo recomendable es que aquella debe ser 180º con respecto a esta.
- TIEMPO DE EXPOSICION Y LA PRESIÓN DEL AGUA: (500±50) kPa durante 72±2 horas.

Comité de infraestructuras para la Calidad de la Edificación

CONDICIÓN DE IMPERMEABILIDAD: Para el tipo de hormigón fabricado, HA-30/B/20/IIA + Qb, la prescripción de la EHE-08 considera que el hormigón es suficientemente impermeable al agua si los resultados del ensayo de penetración de agua <u>cumplen simultáneamente que</u>:

Tabla del artículo 37.3.3 de la EHE-08. Condición de impermeabilidad

Clase de	Especificaciones para	Especificaciones para las profundidades media		
exposición ambiental	las profundidades máxima			
Oh (hawaiséa an masa)	Z _m ≤ 50 mm	T _m ≤ 30 mm		
Qb (hormigón en masa)	Z ₃ ≤65 mm	$T_3 \le 40 \text{ mm}$		

El ensayo de este ejercicio no valora tanto el dato numérico sino la posición en la que éste queda por encima o por debajo del límite recogido en la citada Tabla del artículo 37.3.3 de la EHE-08, por considerar que el carácter de este ensayo es más cualitativo (PASA o NO PASA) que cuantitativo. Los resultados no siguen una distribución normal, por lo que analizar estadísticamente estos resultados mediante un análisis de la varianza puede llevar a error, pues puede hacer entender que una evaluación no satisfactoria hace referencia a un mal ensayo y en este caso, debe considerarse de la misma importancia ejecutar bien todos los puntos recogidos más arriba como la evaluación obtenida por el análisis estadístico y zscore.

Lo que sí evidencia una posible <u>No Conformidad en el ensayo</u> de un laboratorio es que sus resultados indiquen que el hormigón es o no impermeable en base a la citada Tabla, relacionada arriba, y el resto del grupo señale lo contrario. En este caso, quedarán sombreados en "rosa". Aquellos cuyo resultado se observe que tiene una desviación destacada, por encima o por debajo con respecto al promedio obtenido para la central, se sombrearan en "amarillo".

- DOCUMENTACIÓN FOTOGRÁFICA DE LAS PROBETAS TRAS EL ENSAYO: Tienen mucha importancia en este ensayo, y hay un 28,9% (27,7% en el EILA19) que no las ha aportado, aun siendo solicitadas en el protocolo particular del ejercicio. De ellas, se extraen posibles evidencias en el procedimiento de ejecución del ensayo, como pueden ser:
 - o el agua alcanza los laterales de la probeta y sube de manera notable por los bordes (quizás un mal sellado entre la probeta y el equipo o, quizás mal contacto con el anillo de estanqueidad (junta tórica)), llegando en algunos casos a manifestarse como un frente casi horizontal;
 - una distribución del agua asimétrica (quizás una mala compactación en el momento de la fabricación de la probeta que deja poros o coqueras puntuales) o

Comité de infraestructuras para la Calidad de la Edificación

Subcomisión Administrativa para la Calidad de la Edificación

- que el agua no sube por falta de un cepillado previo en la base que va a recibir el agua y/o por no haber estado en estufa de tiro forzado previamente o el hormigón es impermeable.
- FALTA DE SIMETRÍA EN EL FRENTE DE AGUA: tras observar las fotos, puede ser indicativo de mala ejecución del ensayo (mala compactación de la probeta durante su fabricación, presencia de poros o coqueras puntuales por no aplicar la barra, desbastado irregular, o falta de un buen sellado por no ponerlo o estar en mal estado la junta tórica (o sellado impermeable con caucho u otro material similar).

El frente de agua obtenido tras el ensayo, a veces es imperceptible y a veces, se ve más grande de lo dibujado. (Cuando es más pequeño, entendemos que se estaba ya produciendo el secado)

- CÁLCULO DE LA PROFUNDIDAD MEDIA: tras observar las fotos, podrían indicar que para el cálculo del área de la profundidad media, se ha dividido por el ancho del frente de agua y no por el diámetro de la probeta.
- CALCULO DE LA INCERTIDUMBRE DEL ENSAYO: En la actualización de la norma UNE EN ISO 17025:2017, desde enero de 2021 en vigor, se recuerda que los laboratorios deben evaluar la incertidumbre de medición e identificar su contribución en sus resultados de ensayo (apartado 7.6 de la citada norma). Pudiendo haber sido el 100%, de los 97 laboratorios, han presentado el dato 50,5%, similar al EILA 19 (55,31%).

VALORES DESCARTADOS (SD en la Tabla 7): DESVIACIONES EXCLUYENTES.

PRESENCIA DE FILTRACIONES DURANTE EL ENSAYO: si durante la ejecución del ensayo, ha habido filtraciones en las tres probetas de ensayo, se descarta del análisis estadístico. A nivel nacional, decir que solo ocurre en un laboratorio. En la presente central ningún laboratorio indica que ha tenido filtraciones.

CICE Comité de infraestructuras para la Calidad de la Edificación

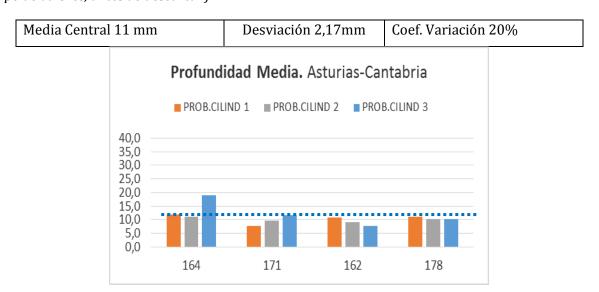
a. ESTUDIO PRELIMINAR RESULTADOS PROFUNDIDAD DE PENETRACIÓN DE AGUA: PROBETAS CILÍNDRICAS

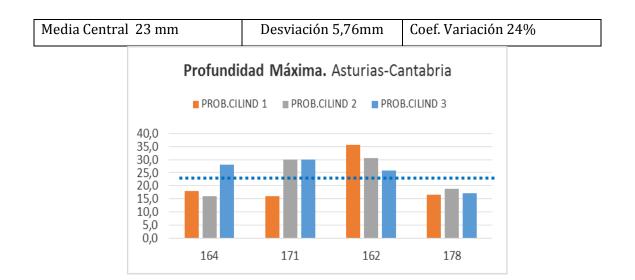
i. Resultados aportados de las tres determinaciones por código y Central. HA-30/B/20/IIA+QB

		OAD MEDIA PE 10 mm (ver A		N (mm) ≤			OFUNDIDA ACION (m Anejo	m) ≤ 65m		
LAB	T ₁	T ₂	T ₃	T _{me < 30}	CONSERVACION	Z ₁	Z ₂	Z ₃	Z _{me <} 50 mm	INCERTID
C07-C09				11		A/C	0,42		23	
164	12,00	11,00	19,00	14,00	Balsa	18,00	16,00	28,00	20,70	-
171	7,71	9,80	11,61	9,71	Curado	16,00	30,00	30,00	25,33	1
162	10,70	9,10	7,70	9,20	Curado	35,70	30,60	25,80	30,70	0,55
178	11,03	10,30	10,30	10,50	Balsa	16,50	18,70	17,20	17,50	1,8

Valores que tienen una desviación destacada, por encima o por debajo, del promedio obtenido en la central o entre sus propias probetas.

Valor con posibles evidencias de No Conformidad por no cumplir Protocolo o norma (p. ej. tras estufa o cámara o filtrado)


		AD PROBETA		DIFERENC	CIA PESO A ESTUFA	L SALIR DE		ENTO PESO TRADO AG		INFORMACIÓN
LAB	P04 (g/cm3)	P05 (g/cm3)	P06 (g/cm3)	P04 (g)	P05 (g)	P06 (g)	P04 (g)	P05 (g)	P06 (g)	FOTOGRÁFICA
C07-	C09									
164	2,36	2,36	2,36	-80,0	-120,0	-80,0	0,00	20,00	0,00	S (graficas). Los frentes alcanzan laterales de las probetas. Parecen filtraciones por un hormigón poco compactado. Se confirma en resistencia al ser el menor valor del grupo. También son frentes anómalos, quizás presencia coqueras o poros puntuales.
171	2,42	2,42	2,42	-90,0	-100,0	-90,0	20,00	10,00	10,00	S. Son frentes anómalos, quizás presencia coqueras o poros puntuales.
162	2,40	2,38	2,38	-79,0	-83,0	-82,0	12,00	14,00	10,00	S, pero no se ven las manchas
178	2,34	2,33	2,35	-24,0	-87,0	-142,0	-79,00	-21,00	35,00	N


CICE Comité de infraestructuras para la Calidad de la Edificación

SACE Subcomisión Administrativa para la Calidad de la Edificación

ii. Gráficas de las determinaciones individuales de los laboratorios con la media de la Central (con todo el grupo de valores, antes de descartar)

Comité de infraestructuras para la Calidad de la Edificación

iii. Calibraciones de los Equipos

Con la entrada en vigor, desde 01 enero de 2021, de la norma UNE EN ISO IEC 17025:2017, se incluye este nuevo punto en el informe EILA de hormigón sobre el equipamiento del laboratorio, incluidos pero sin limitarse a: instrumentos de medición, software, patrones de medición, materiales de referencia, datos de referencia, reactivos, consumibles o aparatos auxiliares. (Apartado 6.4.1). Desde el Plan EILA se pretende que los laboratorios se vayan familiarizando con los términos más destacados de esta nueva versión, y asuman la obligatoriedad de evaluar la incertidumbre de medición de los resultados (Apartado 7.6 de la citada norma) de los ensayos que realizan.

Además, ya en el EILA20, vamos a poner la atención (sombreado en "rojo" en la tabla siguiente) en la fecha de calibración de los siguientes equipos, de conformidad con el apartado 6.4.8 de la citada norma UNE EN ISO sobre Equipamiento:

- de las máquinas de ensayo a compresión que superen los dos años reglamentarios que establece la norma UNE EN 12390-4 o no la indiquen o su fabricación "en taller a medida" obligue a que aclare cómo asegura que está calibrada y/o verificada;
- del pie de rey como equipo de medición (ver apartado 6.4.6 de la citada norma UNE EN ISO IEC 17025), considerando que el uso del flexómetro No es técnicamente admisible para un laboratorio de ensayos para el control de calidad de la edificación. Debe ser utilizado un instrumento de medición preciso y exacto, como es el pie de rey calibrado, al menos, cada dos años; y,
- del **termo higrómetro**, que se debiera usar como instrumento de comprobación de las condiciones ambientales de la cámara húmeda (apartado 7.7.1 aseguramiento de la validez de los resultados de la citada UNE EN ISO IEC 17025:2017).

Código Laboratorio	CATEGORIA	TIPO	MARCA	MODELO	Fecha VERIFICACION (dd.mm.aaaa)	Fecha CALIBRACION (dd.mm.aaaa)
043	Pie de rey		RATIO		30.10.2019	
043	Termómetro				30.10.2019	
152	Pie de rey	Digital	STAINLESS	CLD-15	16.04.2020	
	Termo higrómetro	Psicómetro	Fdez. Rapado	Analógico	24.04.2020	
023	Pie de rey	Digital	VWR International	Caliper 8 In	15.06.2020	
	Termo higrómetro	DIGITAL	IIC	ES-81	15.06.2020	
	Pie de rey	SIN REFERENCIA	GARANT	412601/150	02.06.2020	23.05.2011
162	Dispositivo penetración agua	SIN MARCA	-	-	02.06.2020	-
178	Dispositivo penetración agua	0-16 BAR	S/M	0-16 BAR		17.08.2018

Comité de infraestructuras para la Calidad de la Edificación

Subcomisión Administrativa para la Calidad de la Edificación

ANÁLISIS ESTADÍSTICO Y ZSCORE DE RESULTADOS CENTRAL 07-09:

. RESISTENCIA A COMPRESIÓN A 28 DIAS: Probetas cúbicas

. RESISTENCIA A COMPRESIÓN A 28 DIAS: Probetas cilíndricas

. PROFUNDIDAD DE PENETRACIÓN BAJO AGUA: Probetas cilíndricas

Comité de infraestructuras para la Calidad de la Edificación

Subcomisión Administrativa para la Calidad de la Edificación

INFORME DE ENSAYO HORMIGON

RESIST.COMPRESION 28 D.CÚBICAS

Comité de infraestructuras para la Calidad de la Edificación

RESIST.COMPRESION 28 D.CÚBICAS (N/mm²) Introducción

Criterios de análisis establecidos

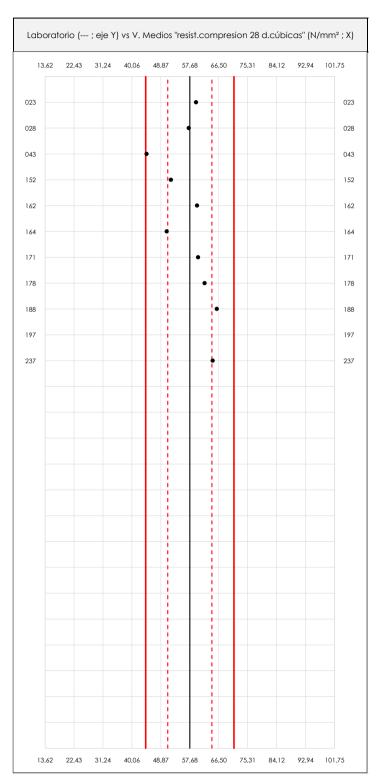
SACE

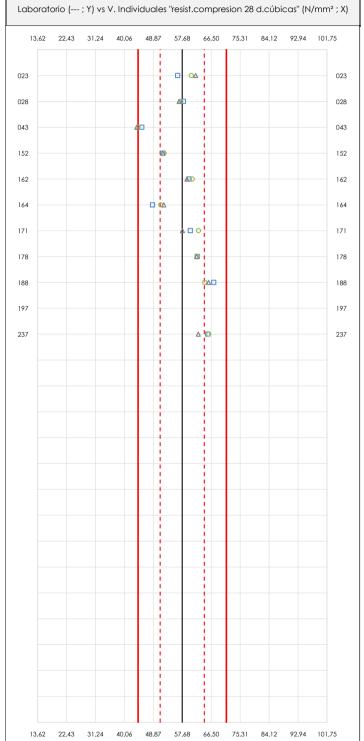
Subcomisión Administrativa para la Calidad de la Edificación

El procedimiento llevado a cabo para analizar los resultados del ensayo "resist.compresion 28 d.cúbicas", está basado en los protocolos EILA20 y las normas UNE 82009-2:1999 y UNE-EN ISO/IEC 17043:2010 y es, para cada laboratorio, el que sigue:

- **01. Análisis A: Estudio pre-estadístico.** Antes de comenzar con los cálculos matemáticos, los datos son minuciosamente analizados para determinar si deben ser incluidos (√) o descartados (X) en función, de si cumplen o no, con unos criterios mínimos previamente establecidos y que pueden afectar a los resultados, tales como:
 - 01. No cumplir con el criterio de validación de la norma de ensayo, en caso de existir éste.
 - 02. No haber realizado el ensayo conforme a la norma de estudio, sin justificar los motivos por los cuales se ha hecho.
 - 03. No haber cumplido con las especificaciones particulares del ensayo descritas en los protocolos (pueden incluir aportar algún dato adicional no especificado en la norma).
 - 04. No haber especificado la fecha de verificación y/o de calibración de los equipos utilizados durante el ensayo (los resultados pueden verse afectados).
 - 05. No haber aportado, como mínimo, el resultado de dos determinaciones puesto que la desviación típica inter-laboratorio se ve afectada notablemente por ello.
 - 06. Expresiones erróneas de los resultados que no pudieran explicarse o no tuvieran sentido.
 - 07. No haber completado total y correctamente las hojas de ensayo, pues es posible que falte información para analizar parámetros importantes o que ayuden a explicar datos incorrectos.
 - 08. Cualquier otra incidencia o desviación de los resultados que afecte al conjunto de los datos analizados.
- **02. Análisis B: Mandel, Cochran y Grubbs.** Los resultados aportados por los laboratorios que hayan superado el paso anterior, se verán sometidos al análisis estadístico compuesto por los métodos de Mandel, Cochran y Grubbs. Los criterios de análisis que se han seguido para considerar los resultados como aptos (✓) o no aptos (X) por éste procedimiento son:
 - 01. Para cada laboratorio se llevan a cabo los cálculos necesarios para determinar los estadísticos "h y k" de Mandel, "C" de Cochran y "G_{Simp} y G_{Dob}" de Grubbs, pudiendo salir un resultado correcto (X sobre fondo blanco), anómalo (X* sobre fondo rosa) o aberrante (X** sobre fondo morado), para todos o cada uno de ellos.
 - 02. Un laboratorio será considerado como apto, si el binomio Mandel-Cochran y el método de Grubbs no demuestran la presencia de resultados anómalos o aberrantes en comparación con los del resto de participantes. En caso contrario, el laboratorio afectado será excluido y por ende no tenido en cuenta para someterlo al análisis Z-Score.
 - 03. Binomio Mandel-Cochran. Si el ensayo de Mandel justifica para algún laboratorio (en cualquiera de sus estadísticos) la presencia de un valor anómalo o aberrante, antes de considerarlo como no apto se analiza el parámetro de Cochran. En caso de que éste último sea correcto, los resultados del laboratorio se considerarán aceptables. En caso contrario, el laboratorio será descartado.
 - ⁰⁴. Método de Grubbs. Si el ensayo de Grubbs Simple demuestra que los resultados de algúno de los laboratorios son aberrantes o anómalos, finaliza el análisis y el laboratorio en cuestión deberá ser excluido. En caso de que éste método no demuestre la existencia de algún valor extraño, se lleva a cabo entonces el ensayo de Grubbs Doble aplicando los mismos criterios que para el método simple.
- 03. Análisis C: Evaluación Z-Score. La totalidad de los laboratorios que hayan superado el "Análisis B" serán estudiados por éste método. En él, se determina si los parámetros Z-Score obtenidos para cada participante son satisfactorios (S), dudosos (D) o insatisfactorios (I), en función de que estén o no dentro de unos límites críticos establecidos.
- 04. Análisis D: Estudio post-estadístico. Una vez superados los tres análisis anteriores, haremos un último barrido de los datos para ver como quedan los resultados de los laboratorios implicados mediante los diagramas "Box-Plot" o de caja y bigotes antes y después de llevar a cabo los descartes.

Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

RESIST.COMPRESION 28 D.CÚBICAS (N/mm²) Análisis A. Estudio pre-estadístico

Apartado A.1. Gráficos de dispersión de valores medios

ANALISIS GRAFICO DE DISPERSION MEDIA E INDIVIDUAL (ANTES DE ANALISIS ESTADISTICO)

Dispersión de las medias aritméticas intra-laboratorios (gráfico izquierda) y de los valores individuales aportados por los participantes (gráfico derecha), respecto de la media aritmética inter-laboratorios (57,68; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (64,40/50,97; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (71,12/44,25; líneas rojas de trazo continuo), todos ellos valores obtenidos antes de efectuar descartes estadísticos."

En el eje Y (adimensional) quedan reflejados los códigos de los laboratorios participantes y en el eje X (las unidades son las mismas que las del ensayo que se está analizando) las medias aritméticas intra-laboratorios (gráfico izquierda) representadas por puntos de color negro "•", o los resultados individuales aportados por los participantes (gráfico derecha): el primero (X₁) se representa con un cuadrado azul "¬", el segundo (X₁) con un círculo verde "O" y el tercero (X₁) con un triángulo grís "Δ".

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

RESIST.COMPRESION 28 D.CÚBICAS (N/mm²) Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

Código	Lab	X _i ₁	X _{i 2}	X _{i 3}	$\overline{X}_{i lab}$	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	¿Pasa A?	Observaciones
C09	023	56,34	60,52	61,80	59,55	59,55	2,853	3,24	√	
C07	028	58,07	57,25	56,75	57,40	57,36	0,666	-0,57	✓	
C07	043	45,40	44,30	43,90	44,50	44,53	0,777	-22,80	✓	
C07	152	51,80	52,20	51,80	51,90	51,93	0,231	-9,97	✓	
C09	162	59,81	60,76	59,13	59,90	59,90	0,819	3,84	✓	
C07	164	48,69	51,17	52,09	50,65	50,65	1,759	-12,20	✓	
C07	171	60,18	62,68	57,78	60,20	60,21	2,450	4,38	√	
C09	178	62,30	62,20	62,10	62,20	62,20	0,100	7,83	✓	
C09	188	67,33	64,58	65,72	65,90	65,88	1,385	14,20	✓	
C09	197				. —				Х	No participa
C07	237	65,50	65,80	62,60	64,60	64,63	1,767	12,05	✓	

NOTAS:

Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma.

- 02 "X_{i j} con j = 1, 2, 3" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i lab}" es la media aritmética intralaboratorio y "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.
 - "S_{L i}" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.
- $^{\rm 04}\,$ El código colorimétrico empleado para las celdas es:

[máximo]

[mínimo]

[no coinciden]

Valores empleados para el análisis estadístico, antes de descartar los laboratorios anómalos y/o aberrantes:

	$\forall X_{i \ 1}$	VX _{i2}	∀X _{i3}	∀X _{i lab}	∀X _{i arit}
M (N/mm²)	57,54	58,15	57,37	57,68	57,68
SD _L ()	7,11	6,88	6,52	6,73	6,72
CV (%)	12,35	11,83	11,37	11,66	11,65

- · "∀X;;" determinaciones individuales de los laboratorios.
- · " $\forall \overline{X}_{i \, lab}$ " medias aportadas por los laboratorios.
- · " $\forall \overline{X}_{i \text{ arit}}$ " medias calculadas.
- \cdot "M" promedio del grupo de valores de la central.
- \cdot "SDL" desviación típica interlaboratorios de la central.
- \cdot "CV" coeficiente de variación de la central.

Cálculo de la media general y de las varianzas de repetibilidad y reproducibilidad, antes de descartar los laboratorios anómalos y/o aberrantes:

	γ _r (%)	r (%)	γ _L (%)	γ _R (%)	R (%)
Calculado	2,689	7,529	11,542	11,851	33,183
Referencia	3,200	9,000		4,700	13,200

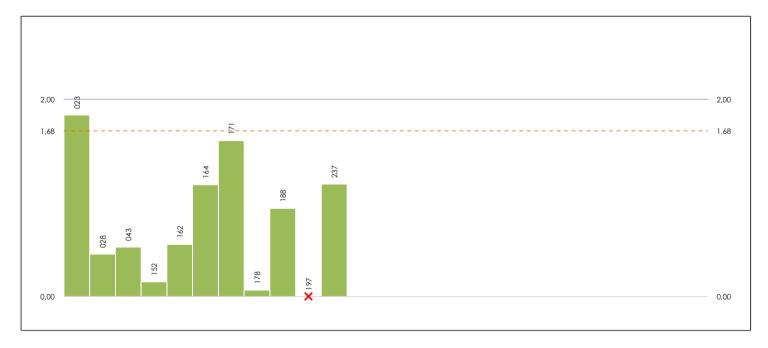
- · " γ_r " varianza de repetibilidad.
- · "r (%)" repetibilidad.
- · " γ_L " varianza interlaboratorios.
- \cdot " γ_R " varianza de reproducibilidad.
- · "R (%)" reproducibilidad.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

RESIST.COMPRESION 28 D.CÚBICAS (N/mm²) Análisis B. Mandel, Cochran y Grubbs


Apartado B.1. Gráfico de consistencia inter-laboratorios "h" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTER-LABORATORIOS

Análisis gráfico de consistencia inter-laboratorios "h" de Mandel. En él se representan las medias aritméticas inter-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

ANALISIS GRAFICO DE CONSISTENCIA INTRA-LABORATORIOS

Análisis gráfico de consistencia intra-laboratorios "k" de Mandel. En él se representan las medias aritméticas intra-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes y el número de ensayos efectuados).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

RESIST.COMPRESION 28 D.CÚBICAS (N/mm²)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

			Хі 3	$\overline{X}_{i lab}$	X _{i arit}	S _{Li}	D _{i arit %}	h _i	k _i	C _i	G _{Sim Inf}	G _{Sim Sup}	ODob Inf	O DOD 20b	¿Pasa B?
023	56,343	60,516	61,800	59,553	59,553	2,853	3,24	0,28	1,84*	0,338					✓
028	58,070	57,250	56,750	57,400	57,357	0,666	-0,57	-0,05	0,43						√
043	45,400	44,300	43,900	44,500	44,533	0,777	-22,80	-1,96*	0,50	0,338	1,958		0,3269		✓
152	51,800	52,200	51,800	51,900	51,933	0,231	-9,97	-0,86	0,15						√
162	59,810	60,760	59,130	59,900	59,900	0,819	3,84	0,33	0,53						✓
164	48,690	51,170	52,090	50,650	50,650	1,759	-12,20	-1,05	1,13				0,3269		✓
171	60,180	62,680	57,780	60,200	60,213	2,450	4,38	0,38	1,58						✓
178	62,300	62,200	62,100	62,200	62,200	0,100	7,83	0,67	0,06						✓
188	67,333	64,578	65,716	65,900	65,876	1,385	14,20	1,22	0,89			1,219		0,6454	✓
197															X
237	65,500	65,800	62,600	64,600	64,633	1,767	12,05	1,03	1,14					0,6454	✓
	043 152 162 164 171 178 188	043	043 45,400 44,300 152 51,800 52,200 162 59,810 60,760 164 48,690 51,170 171 60,180 62,680 178 62,300 62,200 188 67,333 64,578 197	043 45,400 44,300 43,900 152 51,800 52,200 51,800 162 59,810 60,760 59,130 164 48,690 51,170 52,090 171 60,180 62,680 57,780 178 62,300 62,200 62,100 188 67,333 64,578 65,716 197	043 45,400 44,300 43,900 44,500 152 51,800 52,200 51,800 51,900 162 59,810 60,760 59,130 59,900 164 48,690 51,170 52,090 50,650 171 60,180 62,680 57,780 60,200 178 62,300 62,200 62,100 62,200 188 67,333 64,578 65,716 65,900 197 60,200 62,200 62,200 62,200	043 45,400 44,300 43,900 44,500 44,533 152 51,800 52,200 51,800 51,900 51,933 162 59,810 60,760 59,130 59,900 59,900 164 48,690 51,170 52,090 50,650 50,650 171 60,180 62,680 57,780 60,200 60,213 178 62,300 62,200 62,100 62,200 62,200 188 67,333 64,578 65,716 65,900 65,876 197	043 45,400 44,300 43,900 44,500 44,533 0,777 152 51,800 52,200 51,800 51,900 51,933 0,231 162 59,810 60,760 59,130 59,900 59,900 0,819 164 48,690 51,170 52,090 50,650 50,650 1,759 171 60,180 62,680 57,780 60,200 60,213 2,450 178 62,300 62,200 62,100 62,200 62,200 0,100 188 67,333 64,578 65,716 65,900 65,876 1,385 197	043 45,400 44,300 43,900 44,500 44,533 0,777 -22,80 152 51,800 52,200 51,800 51,900 51,933 0,231 -9,97 162 59,810 60,760 59,130 59,900 59,900 0,819 3,84 164 48,690 51,170 52,090 50,650 50,650 1,759 -12,20 171 60,180 62,680 57,780 60,200 60,213 2,450 4,38 178 62,300 62,200 62,100 62,200 62,200 0,100 7,83 188 67,333 64,578 65,716 65,900 65,876 1,385 14,20 197	043 45,400 44,300 43,900 44,500 44,533 0,777 -22,80 -1,96* 152 51,800 52,200 51,800 51,900 51,933 0,231 -9,97 -0,86 162 59,810 60,760 59,130 59,900 59,900 0,819 3,84 0,33 164 48,690 51,170 52,090 50,650 50,650 1,759 -12,20 -1,05 171 60,180 62,680 57,780 60,200 60,213 2,450 4,38 0,38 178 62,300 62,200 62,100 62,200 62,200 0,100 7,83 0,67 188 67,333 64,578 65,716 65,900 65,876 1,385 14,20 1,22 197	043 45,400 44,300 43,900 44,500 44,533 0,777 -22,80 -1,96* 0,50 152 51,800 52,200 51,800 51,900 51,933 0,231 -9,97 -0,86 0,15 162 59,810 60,760 59,130 59,900 59,900 0,819 3,84 0,33 0,53 164 48,690 51,170 52,090 50,650 50,650 1,759 -12,20 -1,05 1,13 171 60,180 62,680 57,780 60,200 60,213 2,450 4,38 0,38 1,58 178 62,300 62,200 62,100 62,200 62,200 0,100 7,83 0,67 0,06 188 67,333 64,578 65,716 65,900 65,876 1,385 14,20 1,22 0,89 197	043 45,400 44,300 43,900 44,500 44,533 0,777 -22,80 -1,96* 0,50 0,338 152 51,800 52,200 51,800 51,900 51,933 0,231 -9,97 -0,86 0,15 162 59,810 60,760 59,130 59,900 59,900 0,819 3,84 0,33 0,53 164 48,690 51,170 52,090 50,650 50,650 1,759 -12,20 -1,05 1,13 171 60,180 62,680 57,780 60,200 60,213 2,450 4,38 0,38 1,58 178 62,300 62,200 62,100 62,200 62,200 0,100 7,83 0,67 0,06 188 67,333 64,578 65,716 65,900 65,876 1,385 14,20 1,22 0,89 197	043 45,400 44,300 43,900 44,500 44,533 0,777 -22,80 -1,96* 0,50 0,338 1,958 152 51,800 52,200 51,800 51,900 51,933 0,231 -9,97 -0,86 0,15 162 59,810 60,760 59,130 59,900 59,900 0,819 3,84 0,33 0,53 164 48,690 51,170 52,090 50,650 50,650 1,759 -12,20 -1,05 1,13 171 60,180 62,680 57,780 60,200 60,213 2,450 4,38 0,38 1,58 178 62,300 62,200 62,100 62,200 62,200 0,100 7,83 0,67 0,06 188 67,333 64,578 65,716 65,900 65,876 1,385 14,20 1,22 0,89 197	043 45,400 44,300 43,900 44,500 44,533 0,777 -22,80 -1,96* 0,50 0,338 1,958 152 51,800 52,200 51,800 51,900 51,933 0,231 -9,97 -0,86 0,15 162 59,810 60,760 59,130 59,900 59,900 0,819 3,84 0,33 0,53 164 48,690 51,170 52,090 50,650 50,650 1,759 -12,20 -1,05 1,13 171 60,180 62,680 57,780 60,200 60,213 2,450 4,38 0,38 1,58 178 62,300 62,200 62,100 62,200 62,200 0,100 7,83 0,67 0,06 188 67,333 64,578 65,716 65,900 65,876 1,385 14,20 1,22 0,89 1,219 197	043 45,400 44,300 43,900 44,500 44,533 0,777 -22,80 -1,96* 0,50 0,338 1,958 0,3269 152 51,800 52,200 51,800 51,900 51,933 0,231 -9,97 -0,86 0,15	043 45,400 44,300 43,900 44,500 44,533 0,777 -22,80 -1,96* 0,50 0,338 1,958 0,3269 152 51,800 52,200 51,800 51,900 51,933 0,231 -9,97 -0,86 0,15 162 59,810 60,760 59,130 59,900 59,900 0,819 3,84 0,33 0,53 164 48,690 51,170 52,090 50,650 50,650 1,759 -12,20 -1,05 1,13 0,3269 171 60,180 62,680 57,780 60,200 60,213 2,450 4,38 0,38 1,58 178 62,300 62,200 62,200 62,200 0,100 7,83 0,67 0,06 188 67,333 64,578 65,716 65,900 65,876 1,385 14,20 1,22 0,89 1,219 0,6454 197

NOTAS:

" X_{ij} con j = 1, 2, 3" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \, lab}$ " es la media aritmética intralaboratorio y " $\overline{X}_{i \, arit}$ " es la media aritmética intralaboratorio calculada sin redondear.

"h, y k;", "C", "G_{Sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.

 $^{\rm 04}$ El código colorimétrico empleado para las celdas es:

[máximo]

[mínimo]

[no coinciden]

[aberrante **]

[anómalo *]

Valores empleados para el análisis estadístico, antes de descartar los laboratorios anómalos y/o aberrantes:

	$\forall X_{i}$ 1	VX _{i2}	∀X _{i 3}	∀X _{i lab}	∀X _{i arit}
M (N/mm²)	57,54	58,15	57,37	57,68	57,68
SD _L ()	7,11	6,88	6,52	6,73	6,72
CV (%)	12,35	11,83	11,37	11,66	11,65

- · "∀X;;" determinaciones individuales de los laboratorios.
- · " $\forall \overline{X}_{i | ab}$ " medias aportadas por los laboratorios.
- · " $\forall \overline{X}_{i \text{ arit}}$ " medias calculadas.
- \cdot "M" promedio del grupo de valores de la central.
- \cdot "SDL" desviación típica interlaboratorios de la central.
- · "CV" coeficiente de variación de la central.

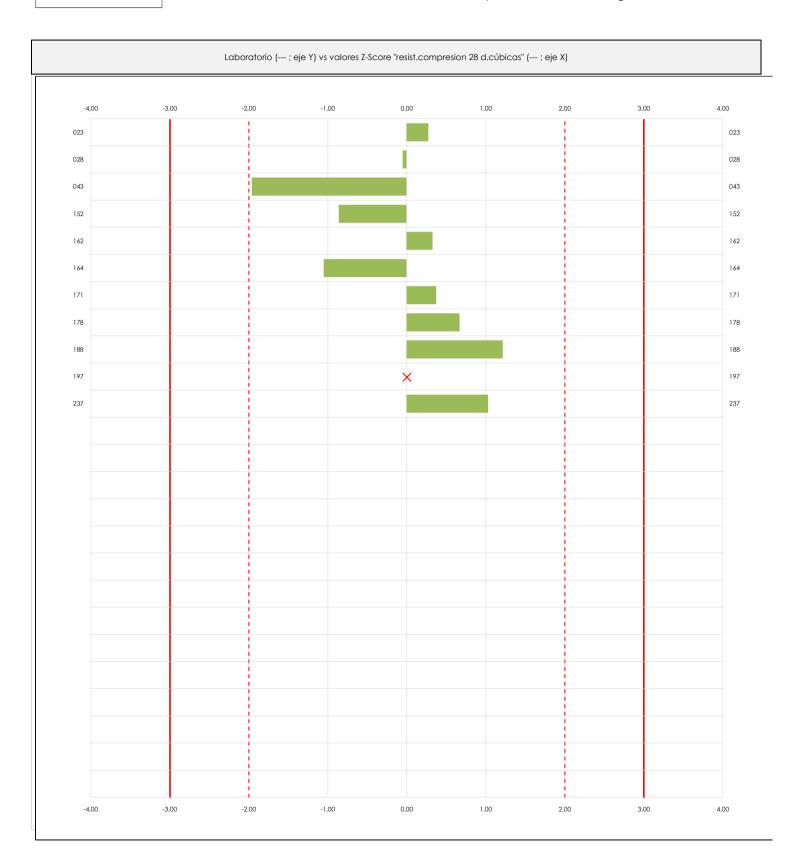
Valores de referencia de Mandel, Cochran y Grubbs según tablas de la norma UNE 82009-2, antes de descartar los laboratorios anómalos y/o aberrantes:

	h	k	С	G _{Sim}	G Dob
1%	2,18	2,00	0,536	2,4820	0,1150
5%	1,80	1,68	0,445	2,2900	0,1864

- · "p" número de laboratorios participantes no descrtados.
- · "n" indica el número de ensayos por laboratorio.
- · "h" y "k" indicadores estadísticos de Mandel.
- · "C" valor crítico de Cochran.
- \cdot "G $_{\text{Sim}}$ " y "G $_{\text{Dob}}$ " valores críticos de Grubbs.

^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit s}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media aritmética interlaboratorios.

CICE
Comité de infraestructuras para la
Calidad de la Edificación


CSIC DO EDUAR DO TOR ROLL TO T

SACE

Subcomisión Administrativa para la Calidad de la Edificación

RESIST.COMPRESION 28 D.CÚBICAS (N/mm²) Análisis C. Evaluación Z-Score

Apartado C.1. Análisis gráfico Altman Z-Score

ANALISIS GRAFICO Z-SCORE

Diagrama Z-Score para los resultados aportados por los laboratorios. Estos se considerarán satisfactorios (S) si el valor absoluto del Z-Score es menor o igual a 2 unidades, dudoso si está comprendido entre 2 y 3 unidades e insatisfactorio si es mayor o igual a 3 unidades.

Los resultados satisfactorios quedan reflejados entre las dos líneas rojas discontinuas, líneas de referencia en la evaluación Z-Score.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

RESIST.COMPRESION 28 D.CÚBICAS (N/mm²)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

Código	Lab	X _i ₁	X _{i 2}	X _{i 3}	$\overline{X}_{i lab}$	X _{i arit}	S _{Li}	D _{i arit %}	¿Pasa A?	¿Pasa B?	Total	Causa	Iteración	Z-Score	Evaluació
C09	023	56,34	60,52	61,80	59,55	59,55	2,853	3,24	✓	✓	√			0,278	S
C07	028	58,07	57,25	56,75	57,40	57,36	0,666	-0,57	✓	✓	✓			-0,049	S
C07	043	45,40	44,30	43,90	44,50	44,53	0,777	-22,80	✓	✓	✓			-1,958	S
C07	152	51,80	52,20	51,80	51,90	51,93	0,231	-9,97	✓	✓	✓			-0,856	S
C09	162	59,81	60,76	59,13	59,90	59,90	0,819	3,84	✓	✓	✓			0,330	S
C07	164	48,69	51,17	52,09	50,65	50,65	1,759	-12,20	✓	✓	✓			-1,047	S
C07	171	60,18	62,68	57,78	60,20	60,21	2,450	4,38	✓	✓	✓			0,376	S
C09	178	62,30	62,20	62,10	62,20	62,20	0,100	7,83	✓	✓	✓			0,672	S
C09	188	67,33	64,58	65,72	65,90	65,88	1,385	14,20	✓	✓	✓			1,219	S
C09	197								X	X	X	SD			
C07	237	65,50	65,80	62,60	64,60	64,63	1,767	12,05	√	✓	✓			1,034	S

NOTAS:

⁰⁴ El código colorimétrico empleado para las celdas es:

[no coinciden]

[dudoso]

[insatisfactorio]

05 Valores de referencia asignados para el cálculo de las varianzas y evaluación Z-Score (excluidos los resultados anómalos y aberrantes del análisis estadístico):

	∀X _{i1}	∀X _{i2}	∀X _{i3}	∀X _{i lab}	∀X _{i arit}
M (N/mm²)	57,54	58,15	57,37	57,68	57,68
SD _L ()	7,11	6,88	6,52	6,73	6,72
CV (%)	12,35	11,83	11,37	11,66	11,65

- · "∀X;;" determinaciones individuales de los laboratorios.
- · " $\forall \overline{X}_{i | ab}$ " medias aportadas por los laboratorios.
- · " $\forall \overline{X}_{i \text{ arit}}$ " medias calculadas.
- \cdot "M" promedio del grupo de valores de la central.
- \cdot "SDL" desviación típica interlaboratorios de la central.
- \cdot "CV" coeficiente de variación de la central.
- Oálculo de la media general y de las varianzas de repetibilidad y reproducibilidad, después de descartar los laboratorios anómalos y/o aberrantes:

	γ _r (%)	r (%)	γ _L (%)	γ _R (%)	R (%)
Calculado	2,689	7,529	11,542	11,851	33,183
Referencia	3,200	9,000		4,700	13,200

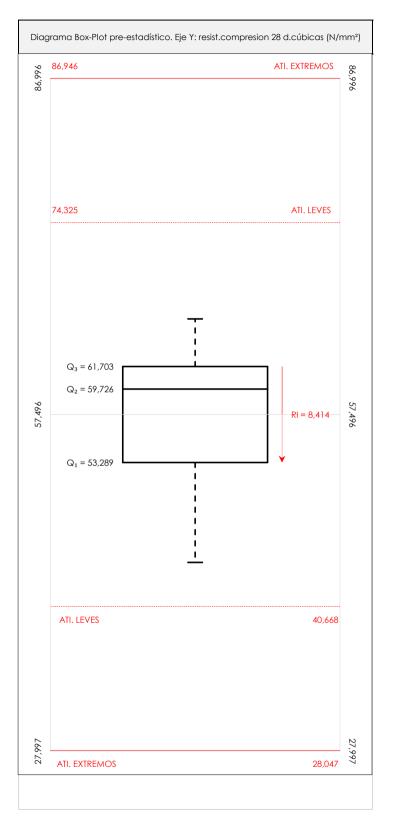
- · " γ_r " varianza de repetibilidad.
- · "r (%)" repetibilidad.
- · " γ_L " varianza interlaboratorios.
- · " γ_R " varianza de reproducibilidad.
- · "R (%)" reproducibilidad.

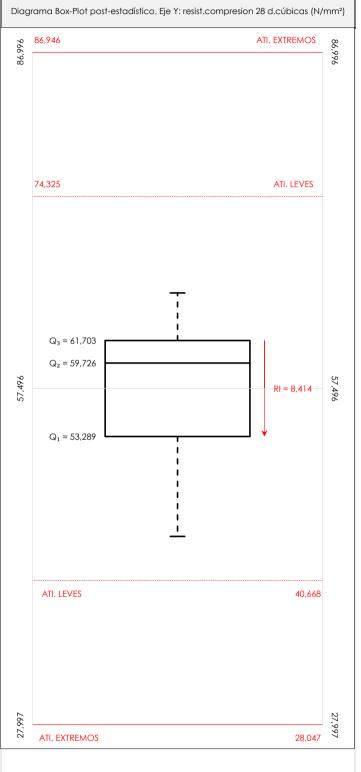
^{01 &}quot;X_{i j} con j = 1, 2, 3" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i lab}" es la media aritmética intralaboratorio y "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_{L i}" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

 $^{^{03}}$ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leq 2] [Dudoso (D) - si 2 < | ZS | \leq 3] [Insatisfactorio (I) - si | ZS | > 3].

Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

RESIST.COMPRESION 28 D.CÚBICAS (N/mm²) Análisis D. Estudios post-estadisticos

Apartado D.3. Diagramas Box-Plot o de Caja y Bigotes

ANALISIS GRAFICO DE CAJA Y BIGOTES (ANTES Y DESPUES DE ANALISIS ESTADISTICO)

Diagramas de caja y bigotes (Box Plot) de las medias aritméticas de los resultados aportados por los laboratorios antes (diagrama de la izquierda. Este incluye valores aberrantes y anómalos) y después (diagrama de la derecha. No incluye los valores descartados a lo largo del estudio) de análisis estadístico.

En ambos se han representado: el primer cuartil (Q1; 25% de los datos), el segundo cuartil o la mediana (Q2; 50% de los datos), el tercer cuartil (Q3; 75% de los datos), el rango intercuartílico (RI; cuartil tres menos cuartil uno) y los límites de valores atípicos leves (f₃ y f₁ para el máximo y mínimo respectivamente; líneas discontinuas de color rojo) y extremos (f₃⁺ y f₁⁺ para el máximo y mínimo respectivamente; líneas continuas de color rojo).

CICE Comité de infraestructuras para la Calidad de la Edificación

SACESubcomisión Administrativa para la

Calidad de la Edificación

RESIST.COMPRESION 28 D.CÚBICAS (N/mm²) Conclusiones

Determinación de la repetibilidad y reproducibilidad

El análisis estadístico ElLA20 para el ensayo "RESIST.COMPRESION 28 D.CÚBICAS", ha contado con la participación de un total de 10 laboratorios, debiendo haber aportado cada uno de ellos, un total de 3 determinaciones individuales además de su valor medio.

Tras analizar los resultados podemos concluir que, para cumplir con los criterios estadísticos establecidos en el informe, un total de 0 laboratorios han sido apartados de la evaluación final: 0 en el Análisis Pre-Estadístico (por no cumplir el criterio de validación y/o el procedimiento de ejecución recogido en la norma de ensayo) y 0 en el Análisis Estadístico (por resultar anómalos o aberrantes en las técnicas gráficas de consistencia de Mandel y en los ensayos de detección de resultados numéricos de Cochran y Grubbs), al cabo de 1 iteraciones.

De cada uno de los análisis (pre-estadístico y estadístico), se obtienen las siguientes tablas:

TIPO DE ANALISIS	PRE-ESTADISTICO				ESTADISTICO					
Variables	X _{i 1}	X _{i 2}	X _{i 3}	$\overline{X}_{i lab}$	$\overline{X}_{i arit}$	X _{i 1}	Xi 2	X _{i 3}	$\overline{X}_{i \ lab}$	$\overline{X}_{i arit}$
Valor Máximo (max ; %)	67,33	65,80	65,72	65,90	65,88	67,33	65,80	65,72	65,90	65,88
Valor Mínimo (min ; %)	45,40	44,30	43,90	44,50	44,53	45,40	44,30	43,90	44,50	44,53
Valor Promedio (M; %)	57,54	58,15	57,37	57,68	57,68	57,54	58,15	57,37	57,68	57,68
Desviación Típica (SDL ;)	7,11	6,88	6,52	6,73	6,72	7,11	6,88	6,52	6,73	6,72
Coef. Variación (CV ;)	0,12	0,12	0,11	0,12	0,12	0,12	0,12	0,11	0,12	0,12
VARIABLES	γ _r (%)	r (%)	γ _L (%)	γ _R (%)	R (%)	γ _r (%)	r (%)	γ _L (%)	γ _R (%)	R (%)
Valor Calculado	2,69	7,53	11,54	11,85	33,18	2,69	7,53	11,54	11,85	33,18
Valor Referencia	3,20	9,00		4,70	13,20	3,20	9,00		4,70	13,20

Asimismo, acompañando a éstas tablas y dependiendo del análisis que se esté llevando a cabo, se introducen los indicadores estadísticos "h y k" de Mandel y los valores críticos "C" de Cochran y "G_{sim} y G_{Dob}" de Grubbs, todos ellos adimensionales, obtenidos de las tablas 4, 5, 6 y 7 de la norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios y del número de ensayos efectuados por cada uno de ellos:

TIPO DE ANALISIS	PRE-ESTADISTICO				ESTADISTICO					
VARIABLES	h	k	С	G_{sim}	G_{Dob}	h	k	С	G_{sim}	G_{Dob}
Nivel de Significación 1%	2,18	2,00	0,536	2,482	0,1150	2,18	2,00	0,536	2,482	0,1150
Nivel de Significación 5%	1,80	1,68	0,445	2,290	0,1864	1,80	1,68	0,445	2,290	0,1864

Con los resultados de los laboratorios, que tras los dos análisis estadísticos son evaluados por Z-Score, se han obtenido: 10 resultados satisfactorios, 0 resultados dudosos y 0 resultados insatisfactorios.

Respecto a los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística recogida en la ISO 17025, sobre las dispersiones de los resultados individuales y su media, en forma de varianzas o desviaciones estándar, también conocida como ANOVA (siglas de analisys of varience).

Sabiendo que una varianza es la suma de cuadrados dividida por un número, que se llama grados de libertad, que depende del número de participantes menos 1, se puede decir que la imprecisión del ensayo se descompone en dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad (variabilidad intralaboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad debida al cambio de laboratorio).

Las condiciones de repetibilidad de este ensayo son: mismo laborante, mismo laboratorio y mismo equipo de medición utilizado dentro de un período de tiempo corto. Por ende, las condiciones de reproducibilidad para la misma muestra y ensayo, cambian en: el laboratorio, el equipo y las condiciones de uso y tiempo.

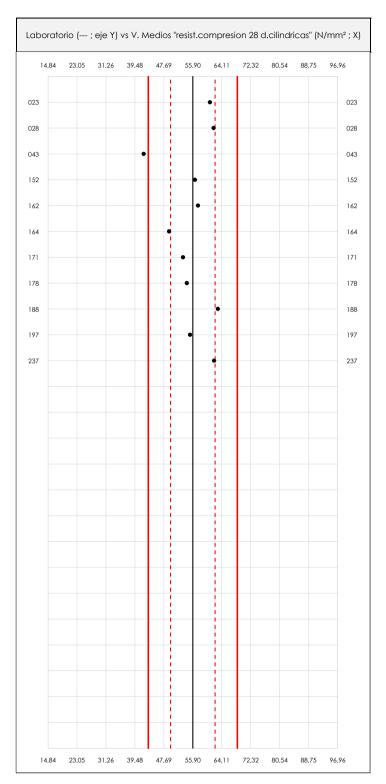
Comité de infraestructuras para la Calidad de la Edificación

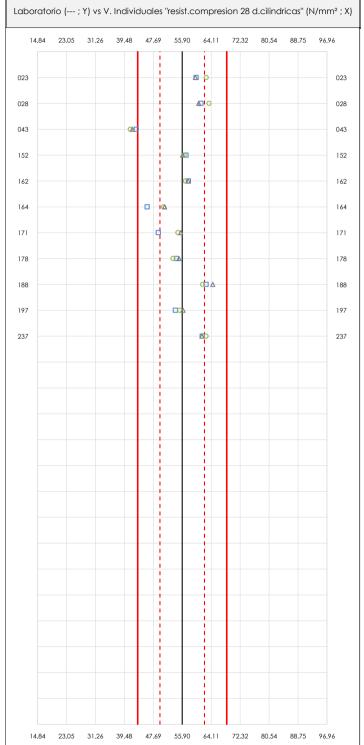
Subcomisión Administrativa para la Calidad de la Edificación

INFORME DE ENSAYO HORMIGON

RESIST.COMPRESION 28 D.CILINDRICAS

Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

RESIST.COMPRESION 28 D.CILINDRICAS (N/mm²) Análisis A. Estudio pre-estadístico

Apartado A.1. Gráficos de dispersión de valores medios

ANALISIS GRAFICO DE DISPERSION MEDIA E INDIVIDUAL (ANTES DE ANALISIS ESTADISTICO)

Dispersión de las medias aritméticas intra-laboratorios (gráfico izquierda) y de los valores individuales aportados por los participantes (gráfico derecha), respecto de la media aritmética inter-laboratorios (55,90; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (62,22/49,59; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (68,53/43,27; líneas rojas de trazo continuo), todos ellos valores obtenidos antes de efectuar descartes estadísticos."

En el eje Y (adimensional) quedan reflejados los códigos de los laboratorios participantes y en el eje X (las unidades son las mismas que las del ensayo que se está analizando) las medias aritméticas intra-laboratorios (gráfico izquierda) representadas por puntos de color negro "•", o los resultados individuales aportados por los participantes (gráfico derecha): el primero (X₁) se representa con un cuadrado azul "¬", el segundo (X₁) con un círculo verde "O" y el tercero (X₁) con un triángulo grís "Δ".

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

RESIST.COMPRESION 28 D.CILINDRICAS (N/mm²) Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

Código	Lab	X _{i 1}	X _{i 2}	X _{i 3}	$\overline{X}_{i lab}$	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	¿Pasa A?	Observaciones
C09	023	59,87	62,73	59,66	60,76	60,76	1,715	8,69	✓	
C07	028	61,26	63,55	60,60	61,80	61,80	1,548	10,56	✓	
C07	043	42,91	41,18	41,77	41,95	41,95	0,879	-24,95	✓	
C07	152	57,00	56,46	56,00	56,50	56,49	0,501	1,05	✓	
C09	162	57,70	56,80	57,60	57,36	57,37	0,493	2,62	✓	
C07	164	45,98	50,63	50,92	49,18	49,18	2,772	-12,03	✓	
C07	171	49,15	54,70	55,49	53,10	53,11	3,455	-4,99	✓	
C09	178	54,30	53,30	55,00	54,20	54,20	0,854	-3,04	✓	
C09	188	62,70	61,70	64,60	63,00	63,00	1,473	12,70	✓	
C09	197	53,99	55,21	56,16	55,12	55,12	1,088	-1,40	✓	
C07	237	61,60	62,70	61,50	61,90	61,93	0,666	10,79	✓	

NOTAS:

Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma.

- 02 "X_{i j} con j = 1, 2, 3" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \, lab}$ " es la media aritmética intralaboratorio y " $\overline{X}_{i \, arit}$ " es la media aritmética intralaboratorio calculada sin redondear.
 - "S_{L i}" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.
- $^{\rm 04}\,$ El código colorimétrico empleado para las celdas es:

[máximo]

[mínimo]

[no coinciden]

Valores empleados para el análisis estadístico, antes de descartar los laboratorios anómalos y/o aberrantes:

	$\forall X_{i \ 1}$	VX _{i2}	∀X _{i3}	∀ X i lab	∀X _{i arit}
M (N/mm²)	55,13	56,27	56,30	55,90	55,90
SD _L ()	6,63	6,62	6,08	6,31	6,31
CV (%)	12,03	11,76	10,80	11,29	11,30

- · " $\forall X_{ii}$ " determinaciones individuales de los laboratorios.
- · " $\forall \overline{X}_{i \, lab}$ " medias aportadas por los laboratorios.
- · " $\forall \overline{X}_{i \text{ arit}}$ " medias calculadas.
- \cdot "M" promedio del grupo de valores de la central.
- \cdot "SDL" desviación típica interlaboratorios de la central.
- \cdot "CV" coeficiente de variación de la central.

Cálculo de la media general y de las varianzas de repetibilidad y reproducibilidad, antes de descartar los laboratorios anómalos y/o aberrantes:

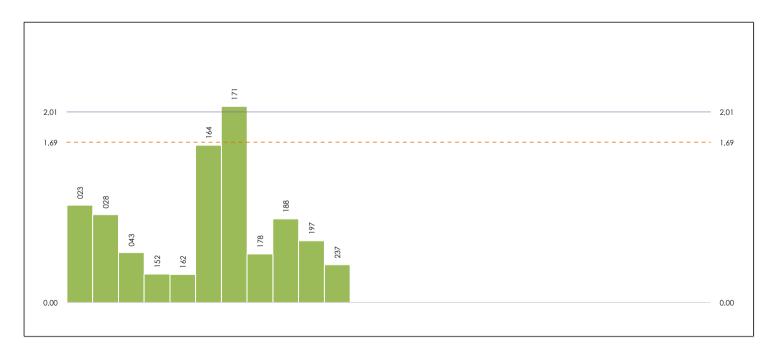
	γ _r (%)	r (%)	γ _L (%)	γ _R (%)	R (%)
Calculado	2,991	8,375	11,163	11,557	32,359
Referencia	2,900	8,000		3,100	11,700

- · " γ_r " varianza de repetibilidad.
- · "r (%)" repetibilidad.
- · " γ_L " varianza interlaboratorios.
- · " γ_R " varianza de reproducibilidad.
- · "R (%)" reproducibilidad.

Comité de infraestructuras para la Calidad de la Edificación

SACE
Subcomisión Administrativa para la
Calidad de la Edificación

RESIST.COMPRESION 28 D.CILINDRICAS (N/mm²) Análisis B. Mandel, Cochran y Grubbs


Apartado B.1. Gráfico de consistencia inter-laboratorios "h" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTER-LABORATORIOS

Análisis gráfico de consistencia inter-laboratorios "h" de Mandel. En él se representan las medias aritméticas inter-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

ANALISIS GRAFICO DE CONSISTENCIA INTRA-LABORATORIOS

Análisis gráfico de consistencia intra-laboratorios "k" de Mandel. En él se representan las medias aritméticas intra-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes y el número de ensayos efectuados).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

RESIST.COMPRESION 28 D.CILINDRICAS (N/mm²)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

Código	Lab	X _{i 1}	X _{i 2}	X _{i 3}	\overline{X}_{ilab}	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	h _i	k _i	Ci	$G_{\text{Sim Inf}}$	G_{SimSup}	$G_{\text{Dob Inf}}$	G_{DobSup}	¿Pasa B?
C09	023	59,873	62,733	59,665	60,757	60,757	1,715	8,69	0,77	1,03						√
C07	028	61,260	63,550	60,600	61,800	61,803	1,548	10,56	0,93	0,93						√
C07	043	42,910	41,180	41,770	41,950	41,953	0,879	-24,95	-2,21*	0,53	0,388	2,209		0,2796		✓
C07	152	57,000	56,460	56,000	56,500	56,487	0,501	1,05	0,09	0,30						✓
C09	162	57,700	56,800	57,600	57,360	57,367	0,493	2,62	0,23	0,30						✓
C07	164	45,980	50,630	50,920	49,180	49,177	2,772	-12,03	-1,06	1,66				0,2796		✓
C07	171	49,150	54,700	55,490	53,100	53,113	3,455	-4,99	-0,44	2,07**	0,388					✓
C09	178	54,300	53,300	55,000	54,200	54,200	0,854	-3,04	-0,27	0,51						✓
C09	188	62,700	61,700	64,600	63,000	63,000	1,473	12,70	1,12	0,88			1,124		0,7343	✓
C09	197	53,990	55,210	56,160	55,120	55,120	1,088	-1,40	-0,12	0,65						✓
C07	237	61,600	62,700	61,500	61,900	61,933	0,666	10,79	0,96	0,40					0,7343	✓

NOTAS:

" X_{ij} con j = 1, 2, 3" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \, lab}$ " es la media aritmética intralaboratorio y " $\overline{X}_{i \, arit}$ " es la media aritmética intralaboratorio calculada sin redondear.

"h, y k;", "C", "G_{Sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.

 $^{\rm 04}$ El código colorimétrico empleado para las celdas es:

[máximo]

[mínimo]

[no coinciden]

[aberrante **]

[anómalo *]

Valores empleados para el análisis estadístico, antes de descartar los laboratorios anómalos y/o aberrantes:

	$\forall X_{i \ 1}$	∀X _{i 2}	∀X _{i3}	∀ X i lab	∀X _{i arit}
M (N/mm²)	55,13	56,27	56,30	55,90	55,90
SD _L ()	6,63	6,62	6,08	6,31	6,31
CV (%)	12,03	11,76	10,80	11,29	11,30

- · "∀X;;" determinaciones individuales de los laboratorios.
- · " $\forall \overline{X}_{i \, lab}$ " medias aportadas por los laboratorios.
- · " $\forall \overline{X}_{i \text{ arit}}$ " medias calculadas.
- \cdot "M" promedio del grupo de valores de la central.
- \cdot "SDL" desviación típica interlaboratorios de la central.
- · "CV" coeficiente de variación de la central.

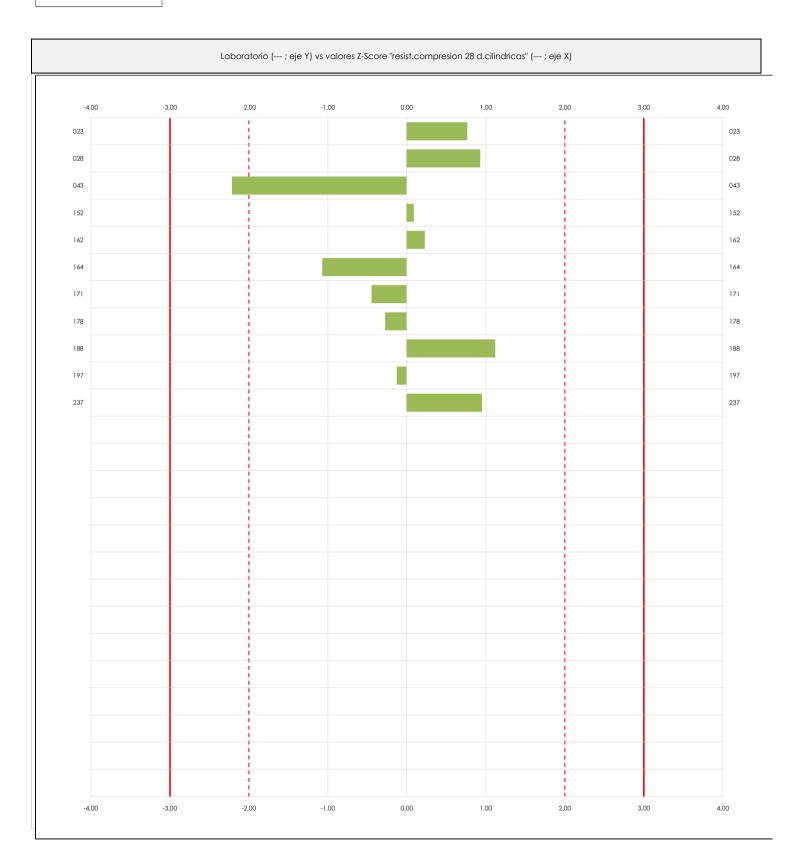
Valores de referencia de Mandel, Cochran y Grubbs según tablas de la norma UNE 82009-2, antes de descartar los laboratorios anómalos y/o aberrantes:

	h	k	С	G _{Sim}	G _{Dob}
1%	2,22	2,01	0,504	2,5640	0,1448
5%	1,82	1,69	0,417	2,3550	0,2213

- · "p" número de laboratorios participantes no descrtados.
- · "n" indica el número de ensayos por laboratorio.
- · "h" y "k" indicadores estadísticos de Mandel.
- · "C" valor crítico de Cochran.
- \cdot "G $_{\text{Sim}}$ " y "G $_{\text{Dob}}$ " valores críticos de Grubbs.

oz "S_L" es la desviación típica intralaboratorios y "D_{i arit s}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media aritmética interlaboratorios.

Comité de infraestructuras para la Calidad de la Edificación



RESIST.COMPRESION 28 D.CILINDRICAS (N/mm²)

Análisis C. Evaluación Z-Score

Apartado C.1. Análisis gráfico Altman Z-Score

ANALISIS GRAFICO Z-SCORE

Diagrama Z-Score para los resultados aportados por los laboratorios. Estos se considerarán satisfactorios (S) si el valor absoluto del Z-Score es menor o igual a 2 unidades, dudoso si está comprendido entre 2 y 3 unidades e insatisfactorio si es mayor o igual a 3 unidades.

Los resultados satisfactorios quedan reflejados entre las dos líneas rojas discontinuas, líneas de referencia en la evaluación Z-Score.

Comité de infraestructuras para la Calidad de la Edificación

Subcomisión Administrativa para la Calidad de la Edificación

SACE

RESIST.COMPRESION 28 D.CILINDRICAS (N/mm²)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

C09 023 59,87 62,73 59,66 60,76 60,76 1,715 8,69 V V 0 0,769 S C07 028 61,26 63,55 60,60 61,80 61,80 1,548 10,56 V V 0 0,935 S C07 043 42,91 41,18 41,77 41,95 41,95 0,879 -24,95 V V 0 2,209 D C07 152 57,00 56,46 56,00 56,50 56,49 0,501 1,05 V V 0 0,093 S C09 162 57,70 56,80 57,60 57,36 57,37 0,493 2,62 V V 0 0,232 S C07 164 45,98 50,63 50,92 49,18 49,18 2,772 -12,03 V V 0 -1,065 S C07 171 49,15 54,70 55,49 53,10 53,11 3,455 -4,99 V V 0 -0,441 S C09 178 54,30 53,30 55,00 54,20 54,20 0,854 -3,04 V V 0 -0,269 S C09 188 62,70 61,70 64,60 63,00 63,00 1,473 12,70 V V 0 -0,124 S C07 237 61,60 62,70 61,50 61,90 61,90 61,93 0,666 10,79 V V 0,955 S	Código	Lab	X _i ₁	X _{i 2}	X _{i 3}	$\overline{X}_{i lab}$	X _{i arit}	S _{Li}	D _{i arit %}	¿Pasa A?	¿Pasa B?	Total	Causa	Iteración	Z-Score	Evaluació
CO7 028 61.26 63.55 60.60 61.80 61.80 1.548 10.56 ✓ ✓ ✓ 0.935 S CO7 043 42.91 41.18 41.77 41.95 41.95 0.879 -24.95 ✓ ✓ ✓ -2.209 D CO7 152 57.00 56.46 56.00 56.50 56.49 0.501 1.05 ✓ ✓ ✓ 0.093 S CO9 162 57.70 56.80 57.60 57.36 57.37 0.493 2.62 ✓ ✓ ✓ 0.232 S CO7 164 45.98 50.63 50.92 49.18 49.18 2.772 -12.03 ✓ ✓ ✓ -1.065 S CO7 171 49.15 54.70 55.49 53.10 53.11 3.455 -4.99 ✓ ✓ ✓ -0.441 S CO9 178 54.30 53.30 55.00<	C09	023	59.87	62.73	59.66	60.76	60.76	1.715	8.69		√				0.769	S
CO7 043 42,91 41,18 41,77 41,95 41,95 0,879 -24,95 V V V -2,209 D CO7 152 57,00 56,46 56,00 56,50 56,49 0,501 1,05 V V V 0,093 S CO9 162 57,70 56,80 57,60 57,36 57,37 0,493 2,62 V V V 0,232 S CO7 164 45,98 50,63 50,92 49,18 49,18 2,772 -12,03 V V V -1,065 S CO7 171 49,15 54,70 55,49 53,10 53,11 3,455 -4,99 V V -0,441 S CO9 178 54,30 53,30 55,00 54,20 54,20 0,854 -3,04 V V V -0,269 S CO9 188 62,70 61,70 64,60 6																
CO9 162 57,70 56,80 57,60 57,36 57,37 0,493 2,62 ✓ ✓ ✓ 0,232 S CO7 164 45,98 50,63 50,92 49,18 49,18 2,772 -12,03 ✓ ✓ ✓ -1,065 S CO7 171 49,15 54,70 55,49 53,10 53,11 3,455 -4,99 ✓ ✓ ✓ -0,441 S CO9 178 54,30 53,30 55,00 54,20 54,20 0,854 -3,04 ✓ ✓ ✓ -0,269 S CO9 188 62,70 61,70 64,60 63,00 63,00 1,473 12,70 ✓ ✓ ✓ -0,124 S CO9 197 53,99 55,21 56,16 55,12 55,12 1,088 -1,40 ✓ ✓ ✓ -0,124 S	C07	043	42,91	41,18		!		0,879		√	√	√			-2,209	D
CO7 164 45,98 50,63 50,92 49,18 49,18 2,772 -12,03 ✓ ✓ ✓ -1,065 S C07 171 49,15 54,70 55,49 53,10 53,11 3,455 -4,99 ✓ ✓ ✓ -0,441 S C09 178 54,30 53,30 55,00 54,20 54,20 0,854 -3,04 ✓ ✓ ✓ -0,269 S C09 188 62,70 61,70 64,60 63,00 63,00 1,473 12,70 ✓ ✓ ✓ 1,124 S C09 197 53,99 55,21 56,16 55,12 55,12 1,088 -1,40 ✓ ✓ ✓ -0,124 S	C07	152	57,00	56,46	56,00	56,50	56,49	0,501	1,05	√	√	√			0,093	S
C07 171 49,15 54,70 55,49 53,10 53,11 3,455 -4,99 ✓ ✓ ✓ -0,441 S C09 178 54,30 53,30 55,00 54,20 54,20 0,854 -3,04 ✓ ✓ ✓ ✓ -0,269 S C09 188 62,70 61,70 64,60 63,00 63,00 1,473 12,70 ✓ ✓ ✓ ✓ 1,124 S C09 197 53,99 55,21 56,16 55,12 55,12 1,088 -1,40 ✓ ✓ ✓ ✓ -0,124 S	C09	162	57,70	56,80	57,60	57,36	57,37	0,493	2,62	√	✓	✓			0,232	S
CO9 178 54,30 53,30 55,00 54,20 54,20 0,854 -3,04 ✓ ✓ ✓ -0,269 S CO9 188 62,70 61,70 64,60 63,00 63,00 1,473 12,70 ✓ ✓ ✓ ✓ 1,124 S CO9 197 53,99 55,21 56,16 55,12 55,12 1,088 -1,40 ✓ ✓ ✓ ✓ -0,124 S	C07	164	45,98	50,63	50,92	49,18	49,18	2,772	-12,03	✓	✓	√			-1,065	S
C09 188 62,70 61,70 64,60 63,00 63,00 1,473 12,70 C09 197 53,99 55,21 56,16 55,12 55,12 1,088 -1,40 -0,124 S	C07	171	49,15	54,70	55,49	53,10	53,11	3,455	-4,99	✓	✓	√			-0,441	S
C09 197 53,99 55,21 56,16 55,12 55,12 1,088 -1,40 ✓ ✓ ✓ -0,124 S	C09	178	54,30	53,30	55,00	54,20	54,20	0,854	-3,04	✓	✓	√			-0,269	S
	C09	188	62,70	61,70	64,60	63,00	63,00	1,473	12,70	✓	✓	✓			1,124	S
C07 237 61,60 62,70 61,50 61,90 61,93 0,666 10,79 v v v 0,955 \$	C09	197	53,99	55,21	56,16	55,12	55,12	1,088	-1,40	✓	✓	✓			-0,124	S
	C07	237	61,60	62,70	61,50	61,90	61,93	0,666	10,79	√	√	✓			0,955	S

NOTAS:

[no coinciden]

[dudoso]

05 Valores de referencia asignados para el cálculo de las varianzas y evaluación Z-Score (excluidos los resultados anómalos y aberrantes del análisis estadístico):

	$\forall X_{i}$ 1	∀X _{i2}	AX ⁱ³	∀ X i lab	∀X _{i arit}
M (N/mm²)	55,13	56,27	56,30	55,90	55,90
SD _L ()	6,63	6,62	6,08	6,31	6,31
CV (%)	12,03	11,76	10,80	11,29	11,30

- · "∀X;;" determinaciones individuales de los laboratorios.
- · " $\forall \overline{X}_{i \, lab}$ " medias aportadas por los laboratorios.
- · " $\forall \overline{X}_{i \text{ arit}}$ " medias calculadas.
- · "M" promedio del grupo de valores de la central.
- · "SDL" desviación típica interlaboratorios de la central.
- · "CV" coeficiente de variación de la central.
- ⁰⁶ Cálculo de la media general y de las varianzas de repetibilidad y reproducibilidad, después de descartar los laboratorios anómalos y/o aberrantes:

	γ _r (%)	r (%)	γ _L (%)	γ _R (%)	R (%)
Calculado	2,991	8,375	11,163	11,557	32,359
Referencia	2,900	8,000		3,100	11,700

- · " γ_r " varianza de repetibilidad.
- · "r (%)" repetibilidad.
- \cdot " γ_L " varianza interlaboratorios.
- · " γ_R " varianza de reproducibilidad.
- · "R (%)" reproducibilidad.

 $^{^{01}}$ " X_{ij} con j = 1, 2, 3" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \, lab}$ " es la media aritmética intralaboratorio y " $\overline{X}_{i \, arit}$ " es la media aritmética intralaboratorio calculada sin redondear.

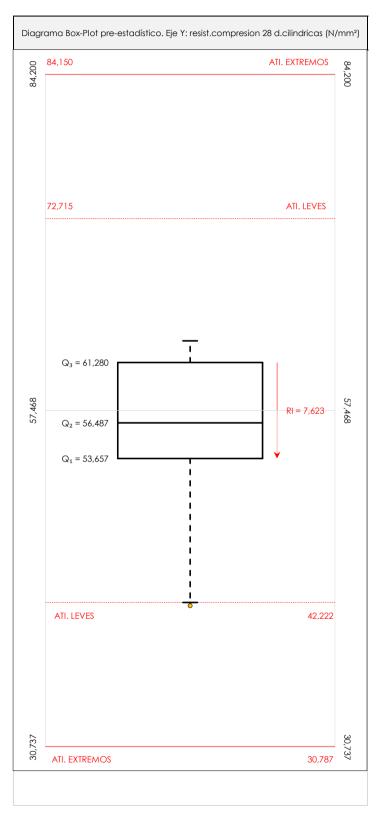
^{02 &}quot;S_{L i}" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

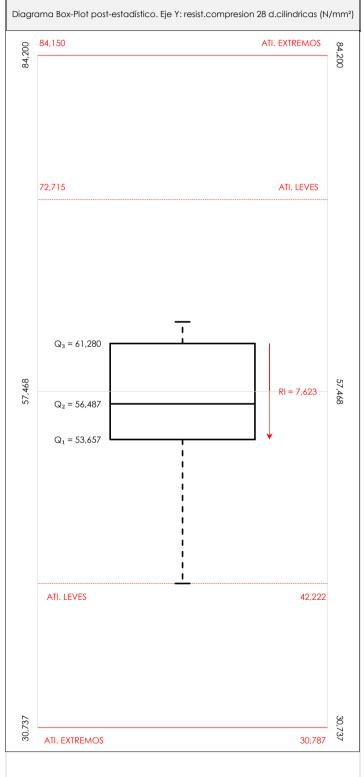
 $^{^{03}}$ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leq 2] [Dudoso (D) - si 2 < | ZS | \leq 3] [Insatisfactorio (I) - si | ZS | > 3].

⁰⁴ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación

Calidad de la Edificación




SACESubcomisión Administrativa para la

RESIST.COMPRESION 28 D.CILINDRICAS (N/mm²)

Análisis D. Estudios post-estadisticos

Apartado D.3. Diagramas Box-Plot o de Caja y Bigotes

ANALISIS GRAFICO DE CAJA Y BIGOTES (ANTES Y DESPUES DE ANALISIS ESTADISTICO)

Diagramas de caja y bigotes (Box Plot) de las medias aritméticas de los resultados aportados por los laboratorios antes (diagrama de la izquierda. Este incluye valores aberrantes y anómalos) y después (diagrama de la derecha. No incluye los valores descartados a lo largo del estudio) de análisis estadístico.

En ambos se han representado: el primer cuartil (Q_1 ; 25% de los datos), el segundo cuartil o la mediana (Q_2 ; 50% de los datos), el tercer cuartil (Q_3 ; 75% de los datos), el rango intercuartílico (RI; cuartil tres menos cuartil uno) y los límites de valores atípicos leves (f_3 y f_1 para el máximo y mínimo respectivamente; líneas discontinuas de color rojo) y extremos (f_3 * y f_1 * para el máximo y mínimo respectivamente; líneas continuas de color rojo).

CICE Comité de infraestructuras para la Calidad de la Edificación

SACE
Subcomisión Administrativa para la
Calidad de la Edificación

RESIST.COMPRESION 28 D.CILINDRICAS (N/mm²) Conclusiones

Determinación de la repetibilidad y reproducibilidad

El análisis estadístico EILA20 para el ensayo "RESIST.COMPRESION 28 D.CILINDRICAS", ha contado con la participación de un total de 11 laboratorios, debiendo haber aportado cada uno de ellos, un total de 3 determinaciones individuales además de su valor medio.

Tras analizar los resultados podemos concluir que, para cumplir con los criterios estadísticos establecidos en el informe, un total de 0 laboratorios han sido apartados de la evaluación final: 0 en el Análisis Pre-Estadístico (por no cumplir el criterio de validación y/o el procedimiento de ejecución recogido en la norma de ensayo) y 0 en el Análisis Estadístico (por resultar anómalos o aberrantes en las técnicas gráficas de consistencia de Mandel y en los ensayos de detección de resultados numéricos de Cochran y Grubbs), al cabo de 1 iteraciones.

De cada uno de los análisis (pre-estadístico y estadístico), se obtienen las siguientes tablas:

TIPO DE ANALISIS		PRE	E-ESTADISTI	со		ESTADISTICO					
Variables	X _{i 1}	X _{i 2}	X _{i 3}	$\overline{X}_{i lab}$	$\overline{X}_{i arit}$	X _{i 1}	X _{i 2}	X _{i 3}	$\overline{X}_{i lab}$	$\overline{X}_{i arit}$	
Valor Máximo (max ; %)	62,70	63,55	64,60	63,00	63,00	62,70	63,55	64,60	63,00	63,00	
Valor Mínimo (min ; %)	42,91	41,18	41,77	41,95	41,95	42,91	41,18	41,77	41,95	41,95	
Valor Promedio (M; %)	55,13	56,27	56,30	55,90	55,90	55,13	56,27	56,30	55,90	55,90	
Desviación Típica (SDL ;)	6,63	6,62	6,08	6,31	6,31	6,63	6,62	6,08	6,31	6,31	
Coef. Variación (CV ;)	0,12	0,12	0,11	0,11	0,11	0,12	0,12	0,11	0,11	0,11	
VARIABLES	γ _r (%)	r (%)	γ _L (%)	γ _R (%)	R (%)	γ _r (%)	r (%)	γ _L (%)	γ _R (%)	R (%)	
Valor Calculado	2,99	8,37	11,16	11,56	32,36	2,99	8,37	11,16	11,56	32,36	
Valor Referencia	2,90	8,00		3,10	11,70	2,90	8,00		3,10	11,70	

Asimismo, acompañando a éstas tablas y dependiendo del análisis que se esté llevando a cabo, se introducen los indicadores estadísticos "h y k" de Mandel y los valores críticos "C" de Cochran y " G_{Sim} y G_{Dob} " de Grubbs, todos ellos adimensionales, obtenidos de las tablas 4, 5, 6 y 7 de la norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios y del número de ensayos efectuados por cada uno de ellos:

TIPO DE ANALISIS		PRI	E-ESTADISTI	со		ESTADISTICO					
VARIABLES	h	k	С	G_{sim}	G_{Dob}	h	k	С	G_{sim}	G_{Dob}	
Nivel de Significación 1%	2,22	2,01	0,504	2,564	0,1448	2,22	2,01	0,504	2,564	0,1448	
Nivel de Significación 5%	1,82	1,69	0,417	2,355	0,2213	1,82	1,69	0,417	2,355	0,2213	

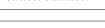
Con los resultados de los laboratorios, que tras los dos análisis estadísticos son evaluados por Z-Score, se han obtenido: 10 resultados satisfactorios, 1 resultados dudosos y 0 resultados insatisfactorios.

Respecto a los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística recogida en la ISO 17025, sobre las dispersiones de los resultados individuales y su media, en forma de varianzas o desviaciones estándar, también conocida como ANOVA (siglas de analisys of varience).

Sabiendo que una varianza es la suma de cuadrados dividida por un número, que se llama grados de libertad, que depende del número de participantes menos 1, se puede decir que la imprecisión del ensayo se descompone en dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad (variabilidad intralaboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad debida al cambio de laboratorio).

Las condiciones de repetibilidad de este ensayo son: mismo laborante, mismo laboratorio y mismo equipo de medición utilizado dentro de un período de tiempo corto. Por ende, las condiciones de reproducibilidad para la misma muestra y ensayo, cambian en: el laboratorio, el equipo y las condiciones de uso y tiempo.

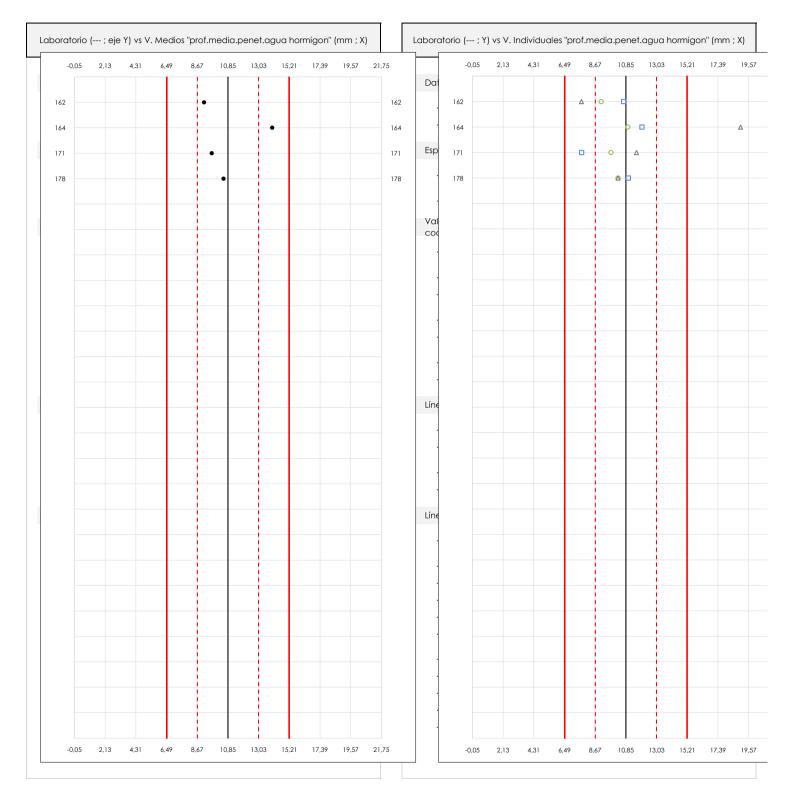
Comité de infraestructuras para la Calidad de la Edificación


Subcomisión Administrativa para la Calidad de la Edificación

INFORME DE ENSAYO HORMIGON

PROF.MEDIA.PENET.AGUA HORMIGON

Comité de infraestructuras para la



SACE

Subcomisión Administrativa para la Calidad de la Edificación

PROF.MEDIA.PENET.AGUA HORMIGON (mm) Análisis A. Estudio pre-estadístico

Apartado A.1. Gráficos de dispersión de valores medios

ANALISIS GRAFICO DE DISPERSION MEDIA E INDIVIDUAL (ANTES DE ANALISIS ESTADISTICO)

Dispersión de las medias aritméticas intra-laboratorios (gráfico izquierda) y de los valores individuales aportados por los participantes (gráfico derecha), respecto de la media aritmética inter-laboratorios (10,85; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (13,03/8,68; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (15,20/6,51; líneas rojas de trazo continuo), todos ellos valores obtenidos antes de efectuar descartes estadísticos."

En el eje Y (adimensional) quedan reflejados los códigos de los laboratorios participantes y en el eje X (las unidades son las mismas que las del ensayo que se está analizando) las medias aritméticas intra-laboratorios (gráfico izquierda) representadas por puntos de color negro "•", o los resultados individuales aportados por los participantes (gráfico derecha): el primero (X_{1,2}) se representa con un cuadrado azul "¬", el segundo (X_{1,2}) con un círculo verde "O" y el tercero (X_{1,3}) con un triángulo grís "Δ".

Comité de infraestructuras para la Calidad de la Edificación

Subcomisión Administrativa para la Calidad de la Edificación

PROF.MEDIA.PENET.AGUA HORMIGON (mm)

Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

Código	Lab	X _{i 1}	X _{i 2}	X _{i 3}	$\overline{X}_{i lab}$	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	¿Pasa A?	Observaciones
C00	162	10,70	9,10	7,70	9,20	9,17	1,501	-15,55	√	
C09	164	12,00	11,00	19,00	14,00	14,00	4,359	28,98	→	
		7,71		11,61	· — – – - ·	9,71		-10,57	√	
C07	171 178	11,03	9,80 10,30	10,30	9,71 10,50	10,54	1,952 0,421	-2,86	→	
C09	1/8	11,03	10,30	10,30	10,50	10,54	0,421	-2,86		

NOTAS:

Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma.

- 02 "X_{i j} con j = 1, 2, 3" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i lab}" es la media aritmética intralaboratorio y "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.
 - "S_Li" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.
- $^{\rm 04}\,$ El código colorimétrico empleado para las celdas es:

[máximo]

[mínimo]

[no coinciden]

Valores empleados para el análisis estadístico, antes de descartar los laboratorios anómalos y/o aberrantes:

	•				
	$\forall X_{i \ 1}$	∀X _{i2}	∀X _{i3}	$\forall \overline{X}_{i lab}$	$\forall \overline{X}_{i \text{ arit}}$
M (mm)	10,36	10,05	12,15	10,85	10,85
SD _L ()	1,85	0,80	4,85	2,17	2,17
CV (%)	17,87	7,98	39,87	19,95	20,01

- · " $\forall X_{ii}$ " determinaciones individuales de los laboratorios.
- · " $\forall \overline{X}_{i \, lab}$ " medias aportadas por los laboratorios.
- · " $\forall \overline{X}_{i \text{ arit}}$ " medias calculadas.
- \cdot "M" promedio del grupo de valores de la central.
- \cdot "SDL" desviación típica interlaboratorios de la central.
- · "CV" coeficiente de variación de la central.

Cálculo de la media general y de las varianzas de repetibilidad y reproducibilidad, antes de descartar los laboratorios anómalos y/o aberrantes:

	γ _r (%)	r (%)	γ _L (%)	γ _R (%)	R (%)
Calculado	23,143	23,143	14,901	27,525	27,525
Referencia					

- · " γ_r " varianza de repetibilidad.
- · "r (%)" repetibilidad.
- · " γ_L " varianza interlaboratorios.
- · " γ_R " varianza de reproducibilidad.
- · "R (%)" reproducibilidad.

CICE nité de infraestructuras para

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

PROF.MEDIA.PENET.AGUA HORMIGON (mm) Análisis B. Mandel, Cochran y Grubbs

Apartado B.1. Gráfico de consistencia inter-laboratorios "h" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTER-LABORATORIOS

Análisis gráfico de consistencia inter-laboratorios "h" de Mandel. En él se representan las medias aritméticas inter-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

ANALISIS GRAFICO DE CONSISTENCIA INTRA-LABORATORIOS

Análisis gráfico de consistencia intra-laboratorios "k" de Mandel. En él se representan las medias aritméticas intra-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes y el número de ensayos efectuados).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

G_{Dob Sup} ¿Pasa B?

0,0103

0,0103

CICE

Comité de infraestructuras para la Calidad de la Edificación

X_{i 3}

7.700

19,000

11,610

10,300

 \overline{X}_{ilab}

9,200

14,000

9,710

10,500

 $\overline{X}_{i,crit}$

9 167

14,000

9,707

10,543

 $S_{l,i}$

1,501

4,359

1,952

0,421

Di arit %

-15.55

28,98

-10,57

-2,86

hi

-0.78

1,45*

-0,53

-0,14

k:

0.60

1,74*

0,78

0,17

SACE

Subcomisión Administrativa para la Calidad de la Edificación

Lab

162

164

171

178

X_i ₁

10.700

12,000

7,710

11,030

 $^{\rm 04}$ El código colorimétrico empleado para las celdas es:

 $\forall X_{i \ 1}$

10,36

1,85

17,87

M (mm)

SD_L (---)

CV (%)

X_{i 2}

9 100

11,000

9,800

10,300

Código

C09

C07

C07

C09

PROF.MEDIA.PENET.AGUA HORMIGON (mm)

G_{sim Inf}

0.777

Ci

0,753

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

 $G_{\text{Sim Sup}}$

1,448

 $G_{\text{Dob Inf}}$

0.4220

0,4220

NOTAS:
"X _{i,j} con j = 1, 2, 3" es cada uno de los resultados individuales aportados por cada laboratorio, "X _{i,jab} " es la media aritmética intralaboratorio y "X _{i,ant} " es la media aritmética
intralaboratorio calculada sin redondear.
02 "S _{L i} " es la desviación típica intralaboratorios y "D _{i arit} x;" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética
interlaboratorios.
"h _i y ki", "C", "G _{sim} y G _{Dob} " hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados
aportados

[mínimo]

 $\forall \overline{X}_{i \text{ arit}}$

10.85

2,17

20,01

Valores de referencia de Mandel, Cochran y Grubbs según tablas de la norma UNE 82009-2, antes de descartar los laboratorios anómalos y/o aberrantes:

 $\forall \overline{X}_{i \, lab}$

10,85

2,17

19,95

[máximo]

	h	k	С	G _{Sim}	G Dob
1%	1,49	1,77	0,864	1,4960	0,0000
5%	1,42	1,59	0,768	1,4810	0,0002

Valores empleados para el análisis estadístico, antes de descartar los laboratorios anómalos y/o aberrantes:

∀X_{i3}

12,15

4,85

39,87

∀X_{i 2}

10,05

0,80

7,98

· "p" número de laboratorios participantes no descrtados.

[aberrante **]

· "∀X;i" determinaciones individuales de los laboratorios.

· " $\forall \overline{X}_{i \, lab}$ " medias aportadas por los laboratorios.

· "M" promedio del grupo de valores de la central.

"SDL" desviación típica interlaboratorios de la central.
"CV" coeficiente de variación de la central.

[anómalo *]

- · "n" indica el número de ensayos por laboratorio.
- · "h" y "k" indicadores estadísticos de Mandel.
- · "C" valor crítico de Cochran.

· " $\forall \overline{X}_{i \text{ arit}}$ " medias calculadas.

[no coinciden]

 \cdot "G $_{\text{Sim}}$ " y "G $_{\text{Dob}}$ " valores críticos de Grubbs.

Comité de infraestructuras para la Calidad de la Edificación

Subcomisión Administrativa para la

Calidad de la Edificación

SACE

PROF.MEDIA.PENET.AGUA HORMIGON (mm)

Análisis C. Evaluación Z-Score

Apartado C.1. Análisis gráfico Altman Z-Score

ANALISIS GRAFICO Z-SCORE

Diagrama Z-Score para los resultados aportados por los laboratorios. Estos se considerarán satisfactorios (S) si el valor absoluto del Z-Score es menor o igual a 2 unidades, dudoso si está comprendido entre 2 y 3 unidades e insatisfactorio si es mayor o igual a 3 unidades.

Los resultados satisfactorios quedan reflejados entre las dos líneas rojas discontinuas, líneas de referencia en la evaluación Z-Score.

Comité de infraestructuras para la Calidad de la Edificación

PROF.MEDIA.PENET.AGUA HORMIGON (mm)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

SACE

Subcomisión Administrativa para la Calidad de la Edificación

Código	Lab	X _{i 1}	X _{i 2}	X _{i 3}	$\overline{X}_{i lab}$	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	¿Pasa A?	¿Pasa B?	Total	Causa	Iteración	Z-Score	Evaluación
C09	162	10,70	9,10	7,70	9,20	9,17	1,501	-15,55	✓	✓	√			-0,777	S
C07	164	12,00	11,00	19,00	14,00	14,00	4,359	28,98	✓	✓	✓			1,448	S
C07	171	7,71	9,80	11,61	9,71	9,71	1,952	-10,57	✓	✓	✓			-0,528	S
C09	178	11,03	10,30	10,30	10,50	10,54	0,421	-2,86	✓	✓	✓			-0,143	S

NOTAS:

⁰⁴ El código colorimétrico empleado para las celdas es:

[no coinciden]

[dudoso]

[insatisfactorio]

05 Valores de referencia asignados para el cálculo de las varianzas y evaluación Z-Score (excluidos los resultados anómalos y aberrantes del análisis estadístico):

	∀X _{i1}	∀X _{i2}	∀X _{i 3}	$\forall \overline{X}_{i lab}$	$\forall \overline{X}_{i \text{ arit}}$
M (mm)	10,36	10,05	12,15	10,85	10,85
SD _L ()	1,85	0,80	4,85	2,17	2,17
CV (%)	17,87	7,98	39,87	19,95	20,01

- · "∀X;;" determinaciones individuales de los laboratorios.
- · " $\forall \overline{X}_{i \, lab}$ " medias aportadas por los laboratorios.
- · " $\forall \overline{X}_{i \text{ arit}}$ " medias calculadas.
- \cdot "M" promedio del grupo de valores de la central.
- \cdot "SDL" desviación típica interlaboratorios de la central.
- \cdot "CV" coeficiente de variación de la central.
- 06 Cálculo de la media general y de las varianzas de repetibilidad y reproducibilidad, después de descartar los laboratorios anómalos y/o aberrantes:

	γ _r (%)	r (%)	γ _L (%)	γ _R (%)	R (%)
Calculado	23,143	23,143	14,901	27,525	27,525
Referencia					

- · " γ_r " varianza de repetibilidad.
- · "r (%)" repetibilidad.
- · " γ_L " varianza interlaboratorios.
- · " γ_R " varianza de reproducibilidad.
- · "R (%)" reproducibilidad.

^{01 &}quot;X_{i j} con j = 1, 2, 3" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i lab}" es la media aritmética intralaboratorio y "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_L" es la desviación típica intralaboratorios y "D_{i arit s}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

 $^{^{03}}$ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leq 2] [Dudoso (D) - si 2 < | ZS | \leq 3] [Insatisfactorio (I) - si | ZS | > 3].

4,064

CICE

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

PROF.MEDIA.PENET.AGUA HORMIGON (mm)

Apartado D.3. Diagramas Box-Plot o de Caja y Bigotes

Análisis D. Estudios post-estadisticos

Diagrama Box-Plot post-estadístico. Eje Y: prof.media.penet.agua hormigon (mm) Diagrama Box-Plot pre-estadístico. Eje Y: prof.media.penet.agua hormigon (mm) 16,915 ATI. EXTREMOS 16,915 ATI. EXTREMOS 16,965 14,161 ATI. LEVES 14,161 ATI. LEVES $Q_3 = 11,408$ $Q_3 = 11,408$ 10,490 10,490 10,490 RI = 1,836RI = 1,836 $Q_2 = 10,125$ $Q_2 = 10,125$ $Q_1 = 9,572$ $Q_1 = 9,572$ ı ATI. LEVES ATI. LEVES

ANALISIS GRAFICO DE CAJA Y BIGOTES (ANTES Y DESPUES DE ANALISIS ESTADISTICO)

4.014

ATI. EXTREMOS

Diagramas de caja y bigotes (Box Plot) de las medias aritméticas de los resultados aportados por los laboratorios antes (diagrama de la izquierda. Este incluye valores aberrantes y anómalos) y después (diagrama de la derecha. No incluye los valores descartados a lo largo del estudio) de análisis estadístico.

4,014

4,064

4,014

ATI. EXTREMOS

En ambos se han representado: el primer cuartil (Q_1 ; 25% de los datos), el segundo cuartil o la mediana (Q_2 ; 50% de los datos), el tercer cuartil (Q_3 ; 75% de los datos), el rango intercuartílico (RI; cuartil tres menos cuartil uno) y los límites de valores atípicos leves (f_3 y f_1 para el máximo y mínimo respectivamente; líneas discontinuas de color rojo) y extremos (f_3 * y f_1 * para el máximo y mínimo respectivamente; líneas continuas de color rojo).

CICE Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

PROF.MEDIA.PENET.AGUA HORMIGON (mm) Conclusiones

Determinación de la repetibilidad y reproducibilidad

El análisis estadístico ElLA20 para el ensayo "PROF.MEDIA.PENET.AGUA HORMIGON", ha contado con la participación de un total de 4 laboratorios, debiendo haber aportado cada uno de ellos, un total de 3 determinaciones individuales además de su valor medio.

Tras analizar los resultados podemos concluir que, para cumplir con los criterios estadísticos establecidos en el informe, un total de 0 laboratorios han sido apartados de la evaluación final: O en el Análisis Pre-Estadístico (por no cumplir el criterio de validación y/o el procedimiento de ejecución recogido en la norma de ensayo) y 0 en el Análisis Estadístico (por resultar anómalos o aberrantes en las técnicas gráficas de consistencia de Mandel y en los ensayos de detección de resultados numéricos de Cochran y Grubbs), al cabo de 1 iteraciones.

De cada uno de los análisis (pre-estadístico y estadístico), se obtienen las siguientes tablas:

TIPO DE ANALISIS		PRE	-ESTADISTI	со			E	STADISTIC	0	
Variables	X _{i 1}	X _{i 2}	X _{i 3}	$\overline{X}_{i lab}$	$\overline{X}_{i arit}$	X _{i 1}	X _{i 2}	X _{i 3}	$\overline{X}_{i lab}$	$\overline{X}_{i arit}$
Valor Máximo (max ; %)	12,00	11,00	19,00	14,00	14,00	12,00	11,00	19,00	14,00	14,00
Valor Mínimo (min ; %)	7,71	9,10	7,70	9,20	9,17	7,71	9,10	7,70	9,20	9,17
Valor Promedio (M; %)	10,36	10,05	12,15	10,85	10,85	10,36	10,05	12,15	10,85	10,85
Desviación Típica (SDL ;)	1,85	0,80	4,85	2,17	2,17	1,85	0,80	4,85	2,17	2,17
Coef. Variación (CV ;)	0,18	0,08	0,40	0,20	0,20	0,18	0,08	0,40	0,20	0,20
VARIABLES	γ _r (%)	r (%)	γ _L (%)	γ _R (%)	R (%)	γ _r (%)	r (%)	γ _L (%)	γ _R (%)	R (%)
Valor Calculado	23,14	23,14	14,90	27,52	27,52	23,14	23,14	14,90	27,52	27,52
Valor Referencia										

Asimismo, acompañando a éstas tablas y dependiendo del análisis que se esté llevando a cabo, se introducen los indicadores estadísticos "h y k" de Mandel y los valores críticos "C" de Cochran y "G_{Sim} y G_{Dob}" de Grubbs, todos ellos adimensionales, obtenidos de las tablas 4, 5, 6 y 7 de la norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios y del número de ensayos efectuados por cada uno de ellos:

TIPO DE ANALISIS		PRI	-ESTADISTI	со			E	STADISTIC)	
VARIABLES	h	k	С	G_{sim}	G_Dob	h	k	С	G_{sim}	G_{Dob}
Nivel de Significación 1%	1,49	1,77	0,864	1,496	0,0000	1,49	1,77	0,864	1,496	0,0000
Nivel de Significación 5%	1,42	1,59	0,768	1,481	0,0002	1,42	1,59	0,768	1,481	0,0002

Con los resultados de los laboratorios, que tras los dos análisis estadísticos son evaluados por Z-Score, se han obtenido: 4 resultados satisfactorios, 0 resultados dudosos y 0 resultados insatisfactorios.

Respecto a los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística recogida en la ISO 17025, sobre las dispersiones de los resultados individuales y su media, en forma de varianzas o desviaciones estándar, también conocida como ANOVA (siglas de analisys of varience).

Sabiendo que una varianza es la suma de cuadrados dividida por un número, que se llama grados de libertad, que depende del número de participantes menos 1, se puede decir que la imprecisión del ensayo se descompone en dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad (variabilidad intralaboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad debida al cambio de laboratorio).

Las condiciones de repetibilidad de este ensayo son: mismo laborante, mismo laboratorio y mismo equipo de medición utilizado dentro de un período de tiempo corto. Por ende, las condiciones de reproducibilidad para la misma muestra y ensayo, cambian en: el laborante, el laboratorio, el equipo y las condiciones de uso y tiempo.

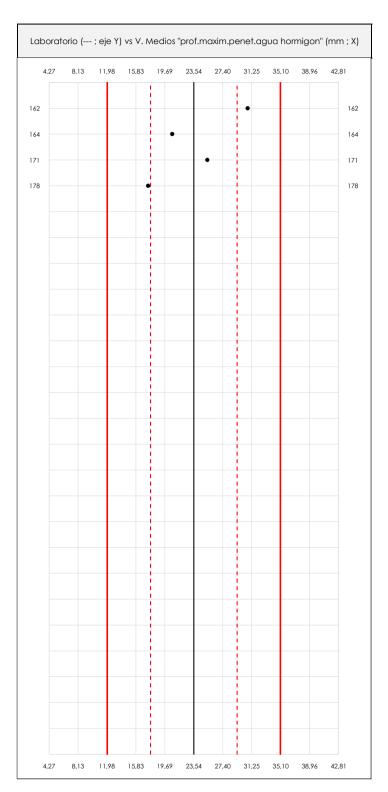
Comité de infraestructuras para la Calidad de la Edificación

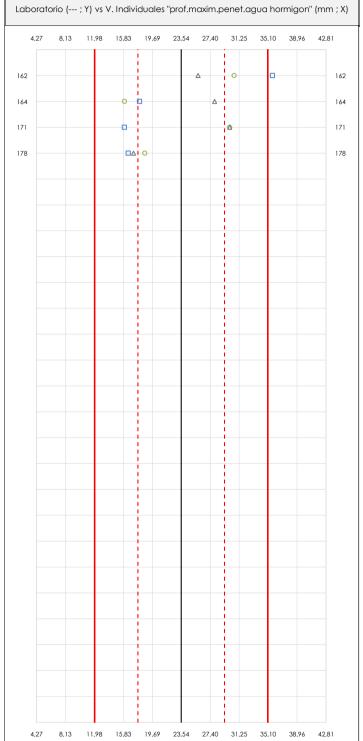
Subcomisión Administrativa para la Calidad de la Edificación

INFORME DE ENSAYO HORMIGON

PROF.MAXIM.PENET.AGUA HORMIGON

Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

PROF.MAXIM.PENET.AGUA HORMIGON (mm) Análisis A. Estudio pre-estadístico

Apartado A.1. Gráficos de dispersión de valores medios

ANALISIS GRAFICO DE DISPERSION MEDIA E INDIVIDUAL (ANTES DE ANALISIS ESTADISTICO)

Dispersión de las medias aritméticas intra-laboratorios (gráfico izquierda) y de los valores individuales aportados por los participantes (gráfico derecha), respecto de la media aritmética inter-laboratorios (23,54; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (29,30/17,78; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (35,07/12,02; líneas rojas de trazo continuo), todos ellos valores obtenidos antes de efectuar descartes estadísticos."

En el eje Y (adimensional) quedan reflejados los códigos de los laboratorios participantes y en el eje X (las unidades son las mismas que las del ensayo que se está analizando) las medias aritméticas intra-laboratorios (gráfico izquierda) representadas por puntos de color negro "•", o los resultados individuales aportados por los participantes (gráfico derecha): el primero (X_{1,2}) se representa con un cuadrado azul "¬", el segundo (X_{1,2}) con un círculo verde "O" y el tercero (X_{1,3}) con un triángulo grís "Δ".

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

PROF.MAXIM.PENET.AGUA HORMIGON (mm) Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

Código	Lab	X _{i 1}	X _{i 2}	X _{i 3}	$\overline{X}_{i \; lab}$	$\overline{X}_{i \text{ arit}}$	S_{Li}	D _{i arit %}	¿Pasa A?	Observaciones
C09	162	35,70	30,60	25,80	30,70	30,70	4,951	30,41	✓	
C07	164	18,00	16,00	28,00	20,70	20,67	6,429	-12,21	✓	
C07	171	16,00	30,00	30,00	25,33	25,33	8,083	7,61	✓	
C09	178	16,50	18,70	17,20	17,50	17,47	1,124	-25,81	✓	

NOTAS:

Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma.

- 02 "X_{i j} con j = 1, 2, 3" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i lab}" es la media aritmética intralaboratorio y "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.
 - "S_Li" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.
- $^{\rm 04}\,$ El código colorimétrico empleado para las celdas es:

[máximo]

[mínimo]

[no coinciden]

Valores empleados para el análisis estadístico, antes de descartar los laboratorios anómalos y/o aberrantes:

	$\forall X_{i}$ 1	∀X _{i 2}	∀X _{i3}	$\forall \overline{X}_{i lab}$	$\forall \overline{X}_{i \text{ arit}}$		
M (mm)	21,55	23,83	25,25	23,56	23,54		
SD _L ()	9,47	7,56	5,63	5,75	5,76		
CV (%)	43,95	31,74	22,31	24,39	24,48		

- · " $\forall X_{ii}$ " determinaciones individuales de los laboratorios.
- · " $\forall \overline{X}_{i \, lab}$ " medias aportadas por los laboratorios.
- · " $\forall \overline{X}_{i \text{ arit}}$ " medias calculadas.
- \cdot "M" promedio del grupo de valores de la central.
- \cdot "SDL" desviación típica interlaboratorios de la central.
- \cdot "CV" coeficiente de variación de la central.

Cálculo de la media general y de las varianzas de repetibilidad y reproducibilidad, antes de descartar los laboratorios anómalos y/o aberrantes:

	γ _r (%)	r (%)	γ _L (%)	γ _R (%)	R (%)
Calculado	24,442	24,442	20,001	31,583	31,583
Referencia					

- · " γ_r " varianza de repetibilidad.
- · "r (%)" repetibilidad.
- · " γ_L " varianza interlaboratorios.
- \cdot " γ_R " varianza de reproducibilidad.
- · "R (%)" reproducibilidad.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

PROF.MAXIM.PENET.AGUA HORMIGON (mm) Análisis B. Mandel, Cochran y Grubbs

Apartado B.1. Gráfico de consistencia inter-laboratorios "h" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTER-LABORATORIOS

Análisis gráfico de consistencia inter-laboratorios "h" de Mandel. En él se representan las medias aritméticas inter-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

ANALISIS GRAFICO DE CONSISTENCIA INTRA-LABORATORIOS

Análisis gráfico de consistencia intra-laboratorios "k" de Mandel. En él se representan las medias aritméticas intra-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes y el número de ensayos efectuados).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

G_{Dob Sup} ¿Pasa B?

0.0514

0,0514

CICE

Comité de infraestructuras para la Calidad de la Edificación

X_{i 3}

25.800

28,000

17,200

 \overline{X}_{ilab}

30.700

20,700

25,330

17,500

 $\overline{X}_{i,crit}$

30,700

20,667

25,333

17,467

 $S_{l,i}$

4.951

6,429

8,083

1,124

Di arit %

30.41

-12,21

7,61

-25,81

hi

1.24

-0,50

0,31

-1,05

k:

0.86

1,12

1,40

0,20

SACE

Subcomisión Administrativa para la Calidad de la Edificación

Lab

162

164

171

178

X_{i 1}

35,700

18,000

16,000

16,500

 $^{\rm 04}$ El código colorimétrico empleado para las celdas es:

 $\forall X_{i \ 1}$

21,55

9,47

43,95

M (mm)

CV (%)

X_{i 2}

30,600

16,000

30,000

18,700

Código

C09

C07

C07

C09

PROF.MAXIM.PENET.AGUA HORMIGON (mm)

G_{Sim Inf}

1,054

Ci

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

 $G_{\text{Sim Sup}}$

1.242

 $G_{\text{Dob Inf}}$

0,1446

0,1446

NOTAS:
"X _{i j} con j = 1, 2, 3" es cada uno de los resultados individuales aportados por cada laboratorio, "X _{i lab} " es la media aritmética intralaboratorio y "X _{i arit} " es la media aritmética
intralaboratorio calculada sin redondear.
02 "S _L ;" es la desviación típica intralaboratorios y "D _{i arit %} " la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética
interlaboratorios.
"h _i y k", "C _i ", "G _{sim} y G _{Dob} " hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados

[mínimo]

 $\forall \overline{X}_{i \text{ arit}}$

23.54

5,76

24,48

Valores de referencia de Mandel, Cochran y Grubbs según tablas de la norma UNE 82009-2, antes de descartar los laboratorios anómalos y/o aberrantes:

 $\forall \overline{X}_{i \, lab}$

23,56

5,75

24,39

[máximo]

	h	k	С	G _{Sim}	G Dob
1%	1,49	1,77	0,864	1,4960	0,0000
5%	1,42	1,59	0,768	1,4810	0,0002

Valores empleados para el análisis estadístico, antes de descartar los laboratorios anómalos y/o aberrantes:

∀X_{i3}

25,25

5,63

22,31

∀X_{i 2}

23,83

7,56

31,74

· "p" número de laboratorios participantes no descrtados.

[aberrante **]

· "∀X;i" determinaciones individuales de los laboratorios.

· " $\forall \overline{X}_{i \, lab}$ " medias aportadas por los laboratorios.

· "M" promedio del grupo de valores de la central.

"SDL" desviación típica interlaboratorios de la central.
"CV" coeficiente de variación de la central.

[anómalo *]

- · "n" indica el número de ensayos por laboratorio.
- · "h" y "k" indicadores estadísticos de Mandel.
- · "C" valor crítico de Cochran.

· " $\forall \overline{X}_{i \text{ arit}}$ " medias calculadas.

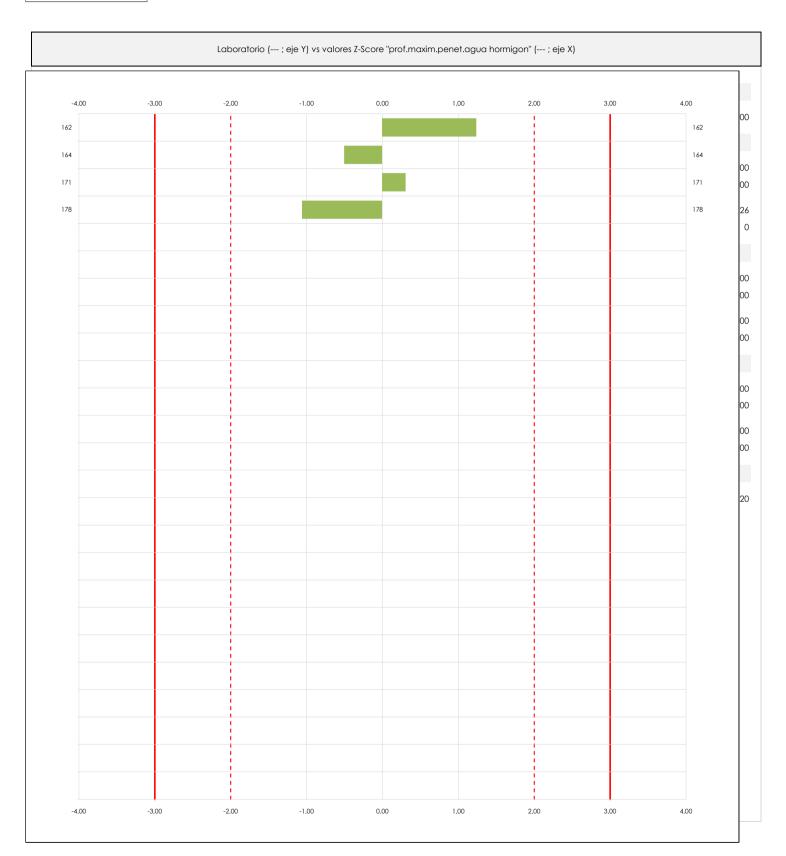
[no coinciden]

 \cdot "G $_{\text{Sim}}$ " y "G $_{\text{Dob}}$ " valores críticos de Grubbs.

Comité de infraestructuras para la Calidad de la Edificación

Subcomisión Administrativa para la

Calidad de la Edificación


SACE

PROF.MAXIM.PENET.AGUA HORMIGON (mm)

Análisis C. Evaluación Z-Score

Apartado C.1. Análisis gráfico Altman Z-Score

ANALISIS GRAFICO Z-SCORE

Diagrama Z-Score para los resultados aportados por los laboratorios. Estos se considerarán satisfactorios (S) si el valor absoluto del Z-Score es menor o igual a 2 unidades, dudoso si está comprendido entre 2 y 3 unidades e insatisfactorio si es mayor o igual a 3 unidades.

Los resultados satisfactorios quedan reflejados entre las dos líneas rojas discontinuas, líneas de referencia en la evaluación Z-Score.

Comité de infraestructuras para la Calidad de la Edificación

PROF.MAXIM.PENET.AGUA HORMIGON (mm)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

SACE

Subcomisión Administrativa para la Calidad de la Edificación

(Código	Lab	X _{i 1}	X _{i 2}	X _{i 3}	$\overline{X}_{i lab}$	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	¿Pasa A?	¿Pasa B?	Total	Causa	Iteración	Z-Score	Evaluación
	C09	162	35,70	30,60	25,80	30,70	30,70	4,951	30,41	√	√	√			1,242	S
	C07	164	18,00	16,00	28,00	20,70	20,67	6,429	-12,21	✓	✓	✓			-0,499	S
	C07	171	16,00	30,00	30,00	25,33	25,33	8,083	7,61	✓	✓	✓			0,311	S
	C09	178	16,50	18,70	17,20	17,50	17,47	1,124	-25,81	✓	✓	✓			-1,054	S

NOTAS:

⁰⁴ El código colorimétrico empleado para las celdas es:

[no coinciden]

[dudoso]

[insatisfactorio]

05 Valores de referencia asignados para el cálculo de las varianzas y evaluación Z-Score (excluidos los resultados anómalos y aberrantes del análisis estadístico):

	۷X _{i 1}	∀X _{i2}	∀X _{i3}	∀ X i lab	∀ X i arit
M (mm)	21,55	23,83	25,25	23,56	23,54
SD _L ()	9,47	7,56	5,63	5,75	5,76
CV (%)	43,95	31,74	22,31	24,39	24,48

- · "∀X;;" determinaciones individuales de los laboratorios.
- · " $\forall \overline{X}_{i \mid ab}$ " medias aportadas por los laboratorios.
- · " $\forall \overline{X}_{i \, \text{arit}}$ " medias calculadas.
- \cdot "M" promedio del grupo de valores de la central.
- \cdot "SDL" desviación típica interlaboratorios de la central.
- \cdot "CV" coeficiente de variación de la central.
- 06 Cálculo de la media general y de las varianzas de repetibilidad y reproducibilidad, después de descartar los laboratorios anómalos y/o aberrantes:

	γ _r (%)	r (%)	γ _L (%)	γ _R (%)	R (%)
Calculado	24,442	24,442	20,001	31,583	31,583
Referencia					

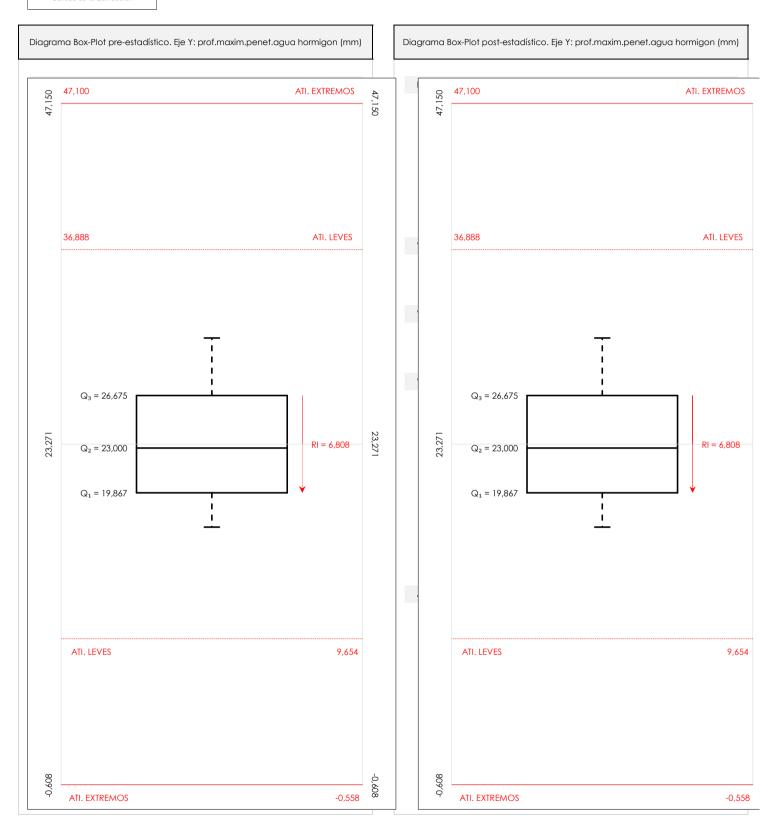
- · " γ_r " varianza de repetibilidad.
- · "r (%)" repetibilidad.
- · " γ_L " varianza interlaboratorios.
- · " γ_R " varianza de reproducibilidad.
- · "R (%)" reproducibilidad.

^{01 &}quot;X_{i j} con j = 1, 2, 3" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i lab}" es la media aritmética intralaboratorio y "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit s}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

 $^{^{03}}$ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leq 2] [Dudoso (D) - si 2 < | ZS | \leq 3] [Insatisfactorio (I) - si | ZS | > 3].

Comité de infraestructuras para la Calidad de la Edificación


SACE

Subcomisión Administrativa para la Calidad de la Edificación

PROF.MAXIM.PENET.AGUA HORMIGON (mm)

Análisis D. Estudios post-estadisticos

Apartado D.3. Diagramas Box-Plot o de Caja y Bigotes

ANALISIS GRAFICO DE CAJA Y BIGOTES (ANTES Y DESPUES DE ANALISIS ESTADISTICO)

Diagramas de caja y bigotes (Box Plot) de las medias aritméticas de los resultados aportados por los laboratorios antes (diagrama de la izquierda. Este incluye valores aberrantes y anómalos) y después (diagrama de la derecha. No incluye los valores descartados a lo largo del estudio) de análisis estadístico.

En ambos se han representado: el primer cuartil (Q_1 ; 25% de los datos), el segundo cuartil o la mediana (Q_2 ; 50% de los datos), el tercer cuartil (Q_3 ; 75% de los datos), el rango intercuartílico (RI; cuartil tres menos cuartil uno) y los límites de valores atípicos leves (f_3 y f_1 para el máximo y mínimo respectivamente; líneas discontinuas de color rojo) y extremos (f_3 y f_1 para el máximo y mínimo respectivamente; líneas continuas de color rojo).

CICE Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

PROF.MAXIM.PENET.AGUA HORMIGON (mm) Conclusiones

Determinación de la repetibilidad y reproducibilidad

El análisis estadístico ElLA20 para el ensayo "PROF.MAXIM.PENET.AGUA HORMIGON", ha contado con la participación de un total de 4 laboratorios, debiendo haber aportado cada uno de ellos, un total de 3 determinaciones individuales además de su valor medio.

Tras analizar los resultados podemos concluir que, para cumplir con los criterios estadísticos establecidos en el informe, un total de 0 laboratorios han sido apartados de la evaluación final: 0 en el Análisis Pre-Estadístico (por no cumplir el criterio de validación y/o el procedimiento de ejecución recogido en la norma de ensayo) y 0 en el Análisis Estadístico (por resultar anómalos o aberrantes en las técnicas gráficas de consistencia de Mandel y en los ensayos de detección de resultados numéricos de Cochran y Grubbs), al cabo de 1 iteraciones.

De cada uno de los análisis (pre-estadístico y estadístico), se obtienen las siguientes tablas:

TIPO DE ANALISIS		PRE	-ESTADISTI	со		ESTADISTICO				
Variables	X _{i 1}	Xi 2	X _{i 3}	$\overline{X}_{i lab}$	$\overline{X}_{i arit}$	X _{i 1}	Xi 2	X _{i 3}	$\overline{X}_{i lab}$	$\overline{X}_{i arit}$
Valor Máximo (max ; %)	35,70	30,60	30,00	30,70	30,70	35,70	30,60	30,00	30,70	30,70
Valor Mínimo (min ; %)	16,00	16,00	17,20	17,50	17,47	16,00	16,00	17,20	17,50	17,47
Valor Promedio (M; %)	21,55	23,83	25,25	23,56	23,54	21,55	23,83	25,25	23,56	23,54
Desviación Típica (SDL ;)	9,47	7,56	5,63	5,75	5,76	9,47	7,56	5,63	5,75	5,76
Coef. Variación (CV ;)	0,44	0,32	0,22	0,24	0,24	0,44	0,32	0,22	0,24	0,24
VARIABLES	γ _r (%)	r (%)	γ _L (%)	γ _R (%)	R (%)	γ _r (%)	r (%)	γ _L (%)	γ _R (%)	R (%)
Valor Calculado	24,44	24,44	20,00	31,58	31,58	24,44	24,44	20,00	31,58	31,58
Valor Referencia										

Asimismo, acompañando a éstas tablas y dependiendo del análisis que se esté llevando a cabo, se introducen los indicadores estadísticos "h y k" de Mandel y los valores críticos "C" de Cochran y " G_{Sim} y G_{Dob} " de Grubbs, todos ellos adimensionales, obtenidos de las tablas 4, 5, 6 y 7 de la norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios y del número de ensayos efectuados por cada uno de ellos:

TIPO DE ANALISIS		PRE-ESTADISTICO					E	STADISTIC)	
VARIABLES	h	k	С	G_{sim}	G_Dob	h	k	С	G_{sim}	G_{Dob}
Nivel de Significación 1%	1,49	1,77	0,864	1,496	0,0000	1,49	1,77	0,864	1,496	0,0000
Nivel de Significación 5%	1,42	1,59	0,768	1,481	0,0002	1,42	1,59	0,768	1,481	0,0002

Con los resultados de los laboratorios, que tras los dos análisis estadísticos son evaluados por Z-Score, se han obtenido: 4 resultados satisfactorios, 0 resultados dudosos y 0 resultados insatisfactorios.

Respecto a los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística recogida en la ISO 17025, sobre las dispersiones de los resultados individuales y su media, en forma de varianzas o desviaciones estándar, también conocida como ANOVA (siglas de analisys of varience).

Sabiendo que una varianza es la suma de cuadrados dividida por un número, que se llama grados de libertad, que depende del número de participantes menos 1, se puede decir que la imprecisión del ensayo se descompone en dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad (variabilidad intralaboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad debida al cambio de laboratorio).

Las condiciones de repetibilidad de este ensayo son: mismo laborante, mismo laboratorio y mismo equipo de medición utilizado dentro de un período de tiempo corto. Por ende, las condiciones de reproducibilidad para la misma muestra y ensayo, cambian en: el laboratorio, el equipo y las condiciones de uso y tiempo.

Comité de infraestructuras para la Calidad de la Edificación

Subcomisión Administrativa para la Calidad de la Edificación

6. VERIFICACIÓN DE LAS MEDIDAS DE LOS MOLDES Y LAS PROBETAS FABRICADAS

Como ya se hizo en el EILA19, se ha incluido una ficha para verificar las medidas de los moldes utilizados y las probetas fabricadas y comprobar si cumplían las tolerancias recogidas según la norma UNE EN 12390-1:2013. De los 187 laboratorios participantes, a nivel nacional, la han cumplimentado: 110 en cubicas y 138 en cilíndricas. Por tanto, en este EILA20 hay un 32% que no contestan, frente al 47% del EILA19.

De todos ellos, y centrándonos en la verificación de los moldes y probetas cúbicas, decir que:

- 3 laboratorios indican que tienen procedimiento interno propio para medirlo,
- ninguno indica problemas dimensionales con los moldes ni con las probetas cúbicas.
- 68 laboratorios tienen moldes en materiales de acero o hierro, calibrados el 62% entre 2019- 2020. Como promedio, rondan los 20 usos, aunque los hay que superan los 100 y 300. Sin embargo, el dato no es concluyente pues más del 50% no aporta este dato.
- 31 laboratorios tienen moldes de material "plástico", calibrados un 40% entre 2019-2020. Como promedio, tienen de 5 a 40 usos y un 26% indican que es la primera vez.
- 11 utilizan moldes de resina epoxi, la mitad de los mismos no están calibrados y el uso medio de los que aportan el dato es de 40.

Respecto a la verificación de los moldes y probetas cilíndricas, decir que:

- 5 laboratorios indican que tienen un procedimiento interno propio para medirlo. (sombreados en verde)
- ninguno indica problemas dimensionales con los moldes, pero tres laboratorios, con moldes de acero, indican que alguna de sus probetas no cumple alguna verificación de planicidad, perpendicularidad. altura y/o diámetro designado.
- el material con el que está fabricado el molde en este caso es unánime: de acero o hierro. Solo 1 indica que es de plástico. Sin embargo, un 36% dice que sus moldes están sin calibrar. Y tres laboratorios los calibraron en 2016 o 2017.
- Como promedio, varía mucho entre centrales, ver tabla siguiente. Podría decirse, en términos generales que los han utilizado entre 100 a 500 veces, aunque el dato no es concluyente, puesto que el 46% señala ser la primera vez o no ponen el dato.

Por otra parte, en la ficha se pedían los datos del equipamiento utilizado, y se concluye que:

- Verificadores para moldes y probetas: el 94% no da el dato.
- Juego de galgas: 24% no da datos suficientes, 40% las verifica y 24% las calibra.
- Regla de filo: 23% no aporta datos.
- Escuadra metálica: 20% no aporta datos.
- Calibre, precisión en %: el 27 % no aporta ningún dato o la fecha de calibración del pie de rey indicado tiene más de dos años.

Se sombrean en "morado" aquellos que no aportan fecha de ultima calibración, o dicen sin calibrar (SC) o ha transcurrido más de dos años desde la fecha de ensayo EILA del pie de rey, calibre de precisión y del juego de galgas.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

Tabla 6.1. Equipamiento para verificar medidas de probetas y moldes cúbicos

		МО	LDE CUBICO		Equipamiento	para verificar m cúbicas	noldes/probetas
CODIGO	Material	N° DE USOS	fecha ultima calibracion	rrocealmiento	Fecha ultima calibracion	Fecha ultima verificación	Fecha ultima calibracion
	del molde		(dd.mm.aaaa)	distinto a norma	Calibre de precisión	Juego c	de galgas
C07							
023	PLÁSTICO	Nuevo	SC	SI		15.06.2020	
043	ACERO		23.06.2020	NO	30.10.2019	30.10.2019	
152	Plástico		26.03.2020	No		26.03.2020	
162	PLASTICO	NUEVO	SC	OBS VISUAL	23.05.2011	02.06.2020	-
164	Polietileno	33	22.05.2020	No	10.01.2020	04.06.2020	04.06.2020
171	PLASTICO	15	SC	SC	13.01.2020	02.09.2019	NP
178	METALICO	11	14.05.2019	NO	08.11.2019		11.06.2020
188	ACERO		28.02.2020	NO	12.02.2020		18.02.2019
237	INOX	menos de 20	SC	no		30.03.2019	
C09			i - -				
162	PLASTICO	NUEVO	SC	OBS VISUAL	23.05.2011	02.06.2020	-
023	PLÁSTICO	Nuevo	SC	SI		15.06.2020	
178	METALICO	11	14.05.2019	NO	08.11.2019		11.06.2020
188	ACERO		28.02.2020	NO	12.02.2020		18.02.2019

Tabla 6.2. Equipamiento para verificar medidas de probetas y moldes cilíndricos

000100		MOLD	E CILINDRICO			amiento para v es/probetas cili	
CODIGO	Material	N° DE USOS	fecha ultima calibracion	1	Fecha ultima calibracion	Fecha ultima verificación	Fecha ultima calibracion
	del molde		(dd.mm.aaaa)	distinto a norma	Calibre de precisión	Juego d	le galgas
C07				į Į			
023	ACERO	<100	SC	SI		15.06.2020	
043	ACERO		23.06.2020	NO	30.10.2019	30.10.2019	
152	Metal		26.03.2020	No		26.03.2020	
162	ACERO	2500	SC	OBS VISUAL	23.05.2011	02.06.2020	-
164	Acero	76	15.06.2020	No	10.01.2020	04.06.2020	04.06.2020
171	PLASTICO	30	SC	NO	13.01.2020	02.09.2019	NP
178	METALICO		14.05.2019	NO	08.11.2019		11.06.2020
188	ACERO		28.02.2020	NO	12.02.2020		18.02.2019
197	Acero	>50	SC	No	26.02.2020		28.11.2018
237	acero	300	\$C	no		30.03.2019	
C09							
162	ACERO	2500	SC	OBS VISUAL	23.05.2011	02.06.2020	-
023	ACERO	<100	SC	SI		15.06.2020	
178	METALICO		14.05.2019	NO	08.11.2019		11.06.2020
188	ACERO		28.02.2020	NO	12.02.2020		18.02.2019
197	Acero	>50	SC	No	26.02.2020		28.11.2018

Comité de infraestructuras para la Calidad de la Edificación

7. EVALUACIÓN GLOBAL DE LOS LABORATORIOS PARA LOS ENSAYOS DE HORMIGÓN

Se recoge en las siguientes tablas la evaluación global de los resultados llevados a cabo en el EILA20 para el material de hormigón, de todos los laboratorios a **nivel de central de fabricación**, que hayan realizado el ensayo y aportado sus resultados.

Tabla 7.1. Evaluación global a nivel de Central 07-09

Código Laboratorio	Resistencia a compresión a 28 días (CÚBICAS)	Resistencia a compresión a 28 días (CILINDRICAS)	Profundidad MEDIA de penetración de agua bajo presión estática	Profundidad MAXIMA de penetración de agua bajo presión estática
028	S	S	-	-
043	S	D	-	-
152	S	S	-	-
164	S	S	S	S
171	S	S	S	S
237	S	S	-	-
023	S	S	-	-
162	S	S	S	S
178	S	S	S	S
188	S	S	-	-
197	-	S	-	-

Resultado satisfactorio (S); Resultado dudoso (D); Resultado insatisfactorio (I); Aberrante (AB); Anómalo (AN); Descartado (DES); (-) no participa.

En base al diagrama de Cajas y bigotes que se adjunta en el informe estadístico, los códigos que recogen las siglas de "AT. LEVE" son atípicos leves. Son valores (máximo o mínimo) que superan la longitud límite de los bigotes (1,5 x Recorrido intercuartil o longitud de la caja (RIC)) y se identificarán individualmente. Si este valor, superase en 3 veces el RIC, sería un valor extremadamente atípico y los códigos serían identificados con las siglas "AT.EXT".

Asimismo, en el interior del documento, se recogen evidencias de posibles No Conformidades (NC) para que el órgano competente realice las acciones que considere oportunas.

Comité de infraestructuras para la Calidad de la Edificación

Central C07-C09

MEDIAS DE LOS ENSAYOS EVALUADOS (descartados valores aberrantes/anómalos)

Resistencia 28 días	Media Central 57,7 MPa	Desviación 6.72MPa	Coef. Variación 12 %
Probetas CÚBICAS	,	, , ,	.,
Resistencia a 28 días	Media Central 55,9 MPa	Desviación 2,02MPa	Coef. Variación 5 %
Probetas CILINDRICAS	110010 00110101 00,5 111 0	200 (1001011 2)0 21 11 0	
Prof. Media agua	Media Central 11 mm	Desviación 2,17mm	Coef. Variación 20 %
Prof. Máxima agua	Media Central 23 mm	Desviación 5,76mm	Coef. Variación 24 %

REPETIBILIDAD- REPRODUCIBILIDAD (descartados valores aberrantes/anómalos)

ENSAYOS	REPETIB	ILIDAD	INTERLABORATORIOS	RIOS REPRODUCIBILIDA		
		r			R	
Resistencia a 28 días	2,69%	7,53%	11,54	11,85%	33,18%	
Pobretas Cúbicas						
Ref. UNE 12390-3	¥ _{r=} 3,2%	9,0%	¥ι(%)	¥ _{R=} 4,7%	13,20%	
Resistencia a 28 días	2,99%	8,37%	11,16%	11,56%	32,36%	
Pobretas Cilíndricas						
Ref. UNE 12390-3	Y r= 2,9%	8,0%	Y L (%)	Y _{R=} 4,1%	11,7%	
Profundidad MEDIA Cilíndricas		23,14%	14,90%		27,52%	
Profundidad MAX.		24,44%	20,00%		31,58%	
Cilíndricas						

Comité de infraestructuras para la Calidad de la Edificación

8. AGRADECIMIENTOS

Este ejercicio interlaboratorios en el área de HORMIGONES, ha cubierto los objetivos y expectativas previstas, debido fundamentalmente, a la buena predisposición, trabajo, y esfuerzo, de todas las personas y entidades participantes en el mismo, para los cuales, sirva el presente recordatorio, y el más sincero agradecimiento.

COORDINADORES GENERALES

Emilio Meseguer Peña

Victoria de los Ángeles Viedma Peláez

Elvira Salazar Martínez

COORDINADORES AUTONÓMICOS

Miguel Ángel	
8 8-	Junta de Andalucía
Santos Amaya	•

Antonio

Herencia Ruíz

Junta de Andalucía

Carlos Cuerda Sierra Junta de Andalucía

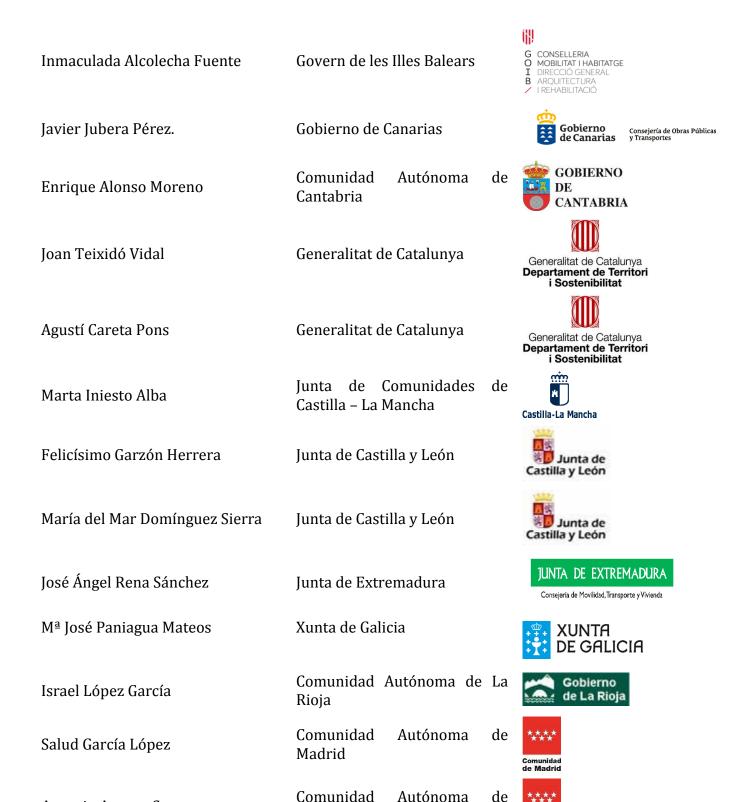
Ana Rico Oliván Gobierno de Aragón

Esperanza Jarauta Pérez Gobierno de Aragón

Juan Carlos Cortina Villar Principado de Asturias

Ana Carolina Álvarez Cañete Principado de Asturias

Govern de les Illes Balears Yolanda Garví Blázquez


Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

Antonio Azcona Sanz

Madrid

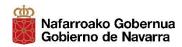
Comité de infraestructuras para la Calidad de la Edificación

Subcomisión Administrativa para la Calidad de la Edificación

María Teresa Elvira Rosado

Comunidad Autónoma de Madrid

Teresa Barceló Clemares


Comunidad Autónoma de la Región de Murcia

Mª Carmen Mazkiarán López de

Goikoetxea

Gobierno de Navarra

Juan José Palencia Guillén

Generalitat Valenciana

Elvira Salazar Martínez

Gobierno Vasco

Lourdes González Garrido

Gobierno Vasco

Alberto Apaolaza Sáez de Viteri

Gobierno Vasco

Ane Hernández Pérez de Guereñu

Gobierno Vasco

ORGANIZACIÓN Y GESTIÓN PROGRAMA ESPECÍFICO EILA HORMIGONES 2020

ANEFHOP. Asociación Nacional de Empresas Fabricantes de Hormigón Preparado

CENTRALES DE HORMIGÓN COLABORADORAS:

PREBETONG HORMIGONES, S.A. San Jerónimo (Sevilla)

HORPRESOL, S.L. Juncaril (Granada)

Llovio - Ribadesella (Asturias) GENERAL DE HORMIGONES, S.A.

La Cartuja Baja (Zaragoza) HORMIGONES ARGA, S.A.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

CENTRALES DE HORMIGÓN COLABORADORAS:

INTEDHOR, S.L. Alcázar de San Juan (Ciudad

Real)

Valladolid HORMIGONES ZARZUELA, S.L.

CATALANA d'EXPLOTACIONS I MANTENIMENTS. Calaf (Barcelona)

SL (PEMACSA)

HORMIGONES CARLET, S.A. Carlet (Valencia)

HORMIGONES ALBA QUERCUS, S.L. Mérida (Cáceres)

PREBETONG HORMIGONES, S.A. Arteixo (A Coruña)

Palma de Mallorca AUXILIAR IBERICA, S.A.

Alaior (Menorca) HORMIRAPIT, S.A.

SUMINISTROS IBIZA DE INVERSIONES Y Ibiza

CORPORACIÓN, S.L.

Tenerife CANARY CONCRETE, S.A.

Teide (Las Palmas de G.C.) HORMIGONES CANARIOS, S.L.

Móstoles (Madrid) HORMIGONES DEL ODÓN, S.L.

HORMISSA, HORMIGONES DEL SURESTE, S.A. Murcia

Orcoyen (Navarra) HORMIGONES ARGA, S.A.

Zaratamo (Bizkaia) ASFALTOS Y HORMIGONES AUBIDE, S.L.

ELABORACIÓN PROTOCOLOS Y GESTIÓN DE LAS FICHAS. ANÁLISIS ESTADÍSTICO.

Fernando Meseguer Serrano

Victoria de los Ángeles Viedma Peláez

IETCC, Instituto de Ciencias de la Construcción Eduardo Torroja:

LABORATORIOS PARTICIPANTES POR COMUNIDADES AUTÓNOMAS EN EILA 2020: JUNTA DE ANDALUCIA

1. Laensa, S.R.L. (Se)		AND-L-002
2. Centro De Estudio De M	lateriales y Control de Obra S.A. (Cemosa) –	AND-L-003
Córdoba		
3. Centro De Estudio De M	lateriales y Control de Obra S.A. (Cemosa) – Jaén	AND-L-013
4. Centro De Estudio De M	lateriales y Control de Obra S.A. (Cemosa) –	AND-L-018
Málaga		
5. OFITECO (Oficina Tecni	ca De Estudios y Control de Obras, SA) (GR)	AND-L-021
6. Sergeyco Andalucia, S.L	. (Ca)	AND-L-046
7. Labson, Geotecnia y Son	ndeos, S.L. (Co)	AND-L-054

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

8.	Centro De Estudio De Materiales y Control de Obra S.A. (Cemosa) -	AND-L-074
	Sevilla	
9.	Centro De Estudio De Materiales y Control de Obra S.A. (Cemosa) –	AND-L-076
	Granada	
10.	. Geotécnica Del Sur, S.A. (Gr)	AND-L-059
11.	. Laboratorio Tcal S.L. (Co)	AND-L-108
12.	. Ingenieria, Analisis y Control de Calidad S.C.A. (Iacc)(Gr)	AND-L-120
13.	. Elabora, Agencia Para La Calidad En La Construccion, S.L. (Se)	AND-L-155
14.	. Inecca, Ingeniería Y Control S.L. (Ma)	AND-L-164
15.	. Evintes Calidad S.L.L. (Al)	AND-L-186
16.	. Laboratorios De Tecnología Estructural S.L Granada	AND-L-206
17.	. Sigmac (Ma)	AND-L-221
18.	. Sgs Tecnos S.A. (Ma)	AND-L-237
19.	. Centro De Estudio De Materiales y Control de Obra S.A. (Cemosa) -	AND-L-258
	Almeria	
20.	. Laboratorio control de calidad- Delegación territorial de fomento y	(oficial)
	vivienda de Córdoba	
21.	. Laboratorio control de calidad- Delegación territorial de fomento y	(oficial)
	vivienda de Granada	
22.	. Laboratorio control de calidad- Delegación territorial de fomento y	(oficial)
	vivienda de Sevilla	
23.	. Hormigones Domingo Giménez	Laboratorio
		Central
24.	. Andaluza de Morteros SA – Villa Rosa (MA)	Laboratorio
		Central
18. 19. 20. 21. 22.	. Sgs Tecnos S.A. (Ma) . Centro De Estudio De Materiales y Control de Obra S.A. (Cemosa) - Almeria . Laboratorio control de calidad- Delegación territorial de fomento y vivienda de Córdoba . Laboratorio control de calidad- Delegación territorial de fomento y vivienda de Granada . Laboratorio control de calidad- Delegación territorial de fomento y vivienda de Sevilla . Hormigones Domingo Giménez	(oficial) (oficial) (oficial) Laboratorio Central Laboratorio

GOBIERNO DE ARAGÓN

1. TPF GETINSA-EUROESTUDIOS, SL - Zaragoza	ARA-L-001
2. Igeo-2, S.LDelegación de Huesca	ARA-L-002
3. Laboratorio de Ensayos Técnicos, SA (ENSAYA) - Zaragoza	ARA-L-005
4. Control 7, SAU - Zaragoza	ARA-L-006
5. Igeo-2, S.L Delegación de Zaragoza	ARA-L-021
6. Laboratorio para la Calidad de la Edificación del Gobierno de Aragón	(oficial)

PRINCIPADO DE ASTURIAS

1. Centro de Investigación Elias Masaveu	AST-L-012
2. Laboratorio Asturiano de Control Técnico, SAL (LACOTEC)	AST-L-020
3. Centro de Estudios de Materiales y Control de Obras S.A. (CEMOSA)	AST-L-023
4. Laboratorio Asturiano Calidad Edificación del Principado de Asturias	(oficial)
5. JUAN ROCES S.A.	Laboratorio
	Central
6. GENERAL DE HORMIGONES (GEDHOSA)	Laboratorio
	Central

Comité de infraestructuras para la Calidad de la Edificación

SACE Subcomisión Administrativa para la Calidad de la Edificación

GOBIERNO DE LES ILLES BALEARS

1. Federación de Empresarios de Petita y Mitjana Empresa de Menorca -	BAL-L-001
PIMELAB - Centro Tecnológico	
2. Laboratorio Balear de la Calidad, SLU	BAL-L-002
3. LABARTEC, SLU	BAL-L-005
4. Control BLAU-Q, SLU	BAL-L-007
5. Instituto de la Gestión Técnica de Calidad, SL (IGETEC)	BAL-L-009
6. LABARTEC IBIZA, SLU	BAL-L-010
7. Intercontrol Levante SA	BAL-L-013
8. SGS Tecnos, SA- Delegación Menorca	BAL-L-014
9. Laboratori de Carreteres del Consell de Mallorca	(oficial)
10. HORMIRAPIT	Laboratorio
	Central

GOBIERNO DE CANARIAS

1. Instituto Canario de Investigaciones en la Construcción, SA (ICINCO,	CNR-L-001
SA)- Delegación Santa Cruz de Tenerife	
2. Controles Externos de la Calidad Canarias, SL	CNR-L-003
3. Instituto Canario de Investigaciones en la Construcción, SA (ICINCO,	CNR-L-006
SA)- Delegación de Las Palmas	
4. Alliroz, S.L.	CNR-L-010
5. Labetec Ensayos Técnicos Canarios, S.A Delegación de Las Palmas	CNR-L-027
6. Estudios de Suelos y Obras Canarias SL (ESOCAN)	CNR-L-030
7. Labetec Ensayos Técnicos Canarios, S.A Delegación de Tenerife	CNR-L-043
8. Consultores Control Tres, S.L.	CNR-L-044
9. Servicio de Laboratorios y Calidad de la Construcción. Consejería de	(oficial)
Obras Públicas y Transportes - Delegación Tenerife	
10. Laboratorio y Calidad de la construcción- Delegación Gran Canaria del	(oficial)
Gobierno Canarias	

COMUNIDAD AUTÓNOMA DE CANTABRIA

1. ICINSA, SA	CTB-L-003
2. GTK Laboratorio geotécnico	CTB-L-008
3. SONINGEO SL	CTB-L-010
4. Laboratorio de Carreteras- Gobierno de Cantabria	(oficial)

JUNTA DE COMUNIDADES DE CASTILLA - LA MANCHA

1	l. Laboratorio y consultoría Carring S.L.	CLM-L-005
2	2. SGS Tecnos, SA- Delegación Ciudad Real	CLM-L-019
3	3. Unicontrol Ingeniería de Calidad y Arquitectura Aplicada, SL	CLM-L-029
4	ł. Fernández- Pacheco Ingenieros SL- Delegación Albacete Asistencia	CLM-L-030

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

5.	Servicios Externos y Aprovisionamiento SL (SEA SL)- Delegación Ciudad Real	CLM-L-032
6.	Servicios Externos y Aprovisionamiento SL. (SEA SL) - Delegación Albacete	CLM-L-033
7.	SGS Tecnos, SA- Delegación Guadalajara	CLM-L-038
8.	Ibérica de Ensayos, Asistencia Técnica y Control JJCE, SL (IBENSA)	CLM-L-040

JUNTA DE CASTILLA Y LEÓN

1. EPTISA, Servicios de Ingeniería, SL - Delegación de Valladolid	CYL-L-005
2. Investigaciones Geotécnicas y Medioambientales S. L. (INGEMA)	CYL-L-014
3. Centro de Estudio de Materiales y Control De Obra S.A	CYL-L-017
4. EPTISA Servicios de Ingeniería SL - Delegación de León	CYL-L-025
5. Cenilesa Ingeniería y Calidad SL	CYL-L-044
6. Centro de Estudio de Materiales y Control de Obra, SA (CEMOSA)-	CYL-L-055
Delegación Zamora	
7. Centro de Estudio de Materiales y Control de Obra, SA (CEMOSA)-	CYL-L-062
Delegación Salamanca	
8. Laboratorio de Calidad de Materiales S.L.L.	CYL-L-070
9. Servicio de tecnología y Control de Calidad de la Junta de Castilla-León.	(oficial)
S.T. Fomento de Valladolid	
10. GEDHOSA ZARATAN	Laboratorio
	Central

GENERALITAT DE CATALUNYA

CAT-L-002
CAT-L-009
CAT-L-012
CAT-L-027
CAT-L-028
CAT-L-054
CAT-L-057
CAT-L-062
CAT-L-068
CAT-L-104
CAT-L-108
CAT-L-109
CAT-L-114
Laboratorio
Central

JUNTA DE EXTREMADURA

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

1.	Intromac	EXT-L-007
2.	Elaborex, Calidad en la Construcción SL-Delegación Badajoz	EXT-L-014
3.	Instituto Extremeño de Geotecnia SLU (INEGEO)	EXT-L-018
4.	TPF GETINSA-EUROESTUDIOS, SL	EXT-L-029

XUNTA DE GALICIA

1. Control y Estudios, SL (CYE)	GAL-L-005
2. Galaicontrol, SL (Arteixo)	GAL-L-014
3. Investigación y Control Lugo SL (INVECO)	GAL-L-016
4. Applus Norcontrol, SL	GAL-L-018
5. Galaicontrol, SL (Vigo)	GAL-L-021
6. Ingenieria, geotecnia y calidad SL (IG Calidad)	GAL-L-028
7. EPTISA, Servicios de Ingeniería, SL - Delegación de La Coruña	GAL-L-034
8. 3C Calidad y Control, SCOOP Galega	GAL-L-044
9. Enmacosa Consultoría Técnica SA	GAL-L-056

COMUNIDAD AUTÓNOMA DE LA RIOJA

1. ENSATEC S.L.	LRJ-L-001
2. ENTECSA Rioja, SL	LRJ-L-005
3. TÜV SÜD IBERIA, SAU	LRJ-L-009
4. Laboratorio de Obras Públicas y Edificaciones -Consejería de	(oficial)
Sostenibilidad y Transición Ecológica	

COMUNIDAD AUTÓNOMA DE MADRID

1. Geotecnia y Medio Ambiente 2000 SL (GMD 2000)	MAD-L-002
2. Euroconsult SA	MAD-L-004
3. Cepasa Ensayos Geotécnicos SA	MAD-L-005
4. Ciesm- Intevia SAU	MAD-L-019
5. Instituto Técnico de Control S.A. (ITC)	MAD-L-027
6. Instituto Técnico de Materiales y Construcciones (INTEMAC)	MAD-L-030
7. Centro de Estudios de Materiales y Control de Obra S.A (CEMOSA)	MAD-L-036
8. Control de Obras Públicas y Edificación, SL	MAD-L-046
9. Geotécnia y calidad en la construcción, SLL	MAD-L-050
10. Esgeyco SL	MAD-L-053
11. (LABINGE) Laboratorio de Ingenieros del ejército "GENERAL MARVÁ"	MAD-L-058
12. Control de Estructuras y Geotecnia SL (CEyGE)	MAD-L-061
13. Laboratorio De Control De Calidad E Ingeniería, S.L. (LCCI)	MAD-L-064
14. Control de estructuras y suelos SA (CONES)	MAD-L-065
15. Adamas Control y Geotecnia S.L.L	MAD-L-066

Comité de infraestructuras para la Calidad de la Edificación

Subcomisión Administrativa para la Calidad de la Edificación

16. Laboratorio Oficial para Ensayo de Materiales de Construcción - LOEMCO	MAD-L-077
17. Labiker Ingenieria y Control de Calidad SL	MAD-L-080
18. Centro Investigación Materiales (CIMAT)	MAD-L-082
19. Materiales y Hormigones SL (MAHORSA)	Laboratorio Central
20. HORMIGONES DEL ODÓN	Laboratorio Central

COMUNIDAD AUTÓNOMA DE LA REGIÓN DE MURCIA

1. Laboratorios del Sureste, S.L.	MUR-L-003
2. Centro de Estudios, Investigaciones y Control de Obras, S.L. (CEICO,	MUR-L-005
SL)	
3. Inversiones de Murcia, S.L., laboratorios HORYSU- Delegación de	MUR-L-006
Cartagena	11011 11 000
4. Inversiones de Murcia, S.L., laboratorios HORYSU-Delegación de	MUR-L-007
Espinardo	MUK-L-007
5. Asociación Empresarial Investigación Centro Tecnológico de la	MUR-L-015
Construcción Región de Murcia (CTCON)	
6. ITC laboratorio de ensayos, S.L.L.	MUR-L-018
7. Massalia Ingenieros, S.L.	MUR-L-019
8. Técnica y Calidad de Proyectos Industriales, S.L (TYC PROYECTOS)	MUR-L-021
9. INGEOLAB Calidad en Obra S.L.	MUR-L-022
10. Serrano Aznar Obras Públicas SL	MUR-L-023
11. Laboratorio Regional de Control de Calidad en la Edificación	(oficial)

GOBIERNO DE NAVARRA

1. Laboratorios Entecsa, SA	NAV-L-001
2. Igeo-2 SL	NAV-L-002
3. Laboratorio de Ensayos Navarra SA (LABENSA)	NAV-L-003
4. Laboratorio de Edificación del Instituto Científico y Tecnológico de	NAV-L-004
la E.T.S. Arquitectura e Ingeniería de Edificación de Navarra	
5. GEEA Geólogos S.L- Delegación Estella	NAV-L-005
6. GEEA Geólogos S.L- Delegación Pamplona	NAV-L-008
7. Laboratorio de Control de Calidad del Gobierno de Navarra	(oficial)
8. HORMIGONES BERIAIN	Laboratorio
	Central

COMUNIDAD VALENCIANA

1.	Intercontrol Levante, SA- Delegación de Carlet	VAL-L-001
2.	Comaypa, S.A.	VAL-L-006
3.	Gandiacontrol, S.L.	VAL-L-010

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

4. Consulteco, S.L.	VAL-L-013
5. ASVER Verificaciones, SLU	VAL-L-047
6. Laboratorio de Ingeniería y Medio Ambiente S.A (IMASALAB)	VAL-L-051
7. Maestrat Global SL	VAL-L-052
8. Laboratorio de Calidad y Tecnología de los Materiales, S. L. (CyTEM)-	VAL-L-053
Delegación de Ribarroja de Turia (VALENCIA)	
9. Laboratorio de Calidad y Tecnología de los Materiales, S. L. (CyTEM)-	VAL-L-054
Delegación de Alicante	
10. LESIN Levante, SL	VAL-L-056
11. C2C Servicios Técnicos de Inspección S.L Delegación de Albaida	VAL-L-058
(Valencia)	
12. C2C Servicios Técnicos de Inspección S.L Delegación de Manises	VAL-L-059
(Valencia)	
13. Levatec Control de Calidad SL	VAL-L-060
14. Servicios de Ingeniería, Geotecnia, Mantenimiento y Control S.L.	VAL-L-061
(SIGMA)	
15. Laboratorio y entidad de control SL (LAECO)	VAL-L-070

GOBIERNO VASCO

1. EPTISA-CINSA Ingeniería y Calidad, SA - Grupo EP	PVS-L-002
2. SAIO TEGI, SA	PVS-L-004
3. GIKE, SA Control Calidad Edificación	PVS-L-005
4. LABIKER Ingeniería y Control de Calidad, SL	PVS-L-006
5. Serinko Servicios de Ingeniería y Comerciales- Euskadi, S.L.	PVS-L-007
6. Euskontrol, S.A.	PVS-L-009
7. Fundación Tecnalia Research and Innovation	PVS-L-013

AENOR

1. OGERCO	País Vasco
2. HORMAR XXI	Valencia
3. HONGOMAR S.A.	Cantabria
4. HORMIGONES RELOSA	Murcia

ANEFHOP

1.	CANDESA HERRERA	Cantabria
2.	HORMISSA	Murcia

AW

1.	CANTERA LA TORRETA SAU	Valencia