Comité de infraestructuras para la Calidad de la Edificación

Subcomisión Administrativa para la Calidad de la Edificación

ANÁLISIS ESTADÍSTICO DE ACÚSTICA

AISLAMIENTO ACÚSTICO AEREO ENTRE LOCALES- ZONA 04

Comité de infraestructuras para la

Calidad de la Edificación

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 100 HZ (DB)

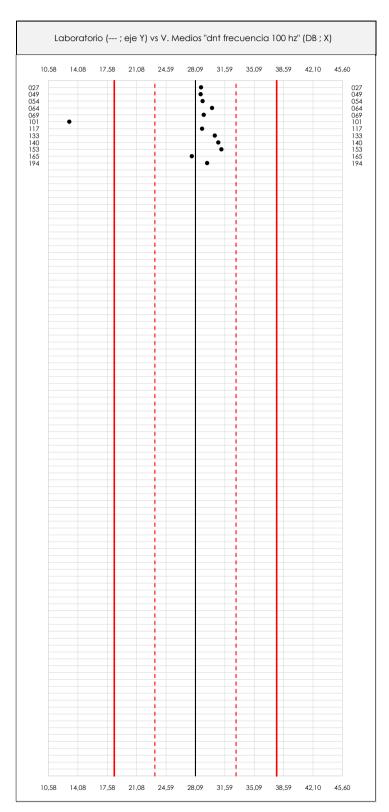
Introducción

Criterios de análisis establecidos

El procedimiento llevado a cabo para analizar los resultados del ensayo "AISLAMIENTO ACÚSTICO AEREO ENTRE LOCALES", está basado en los protocolos EILA20 y las normas UNE 82009-2:1999 y UNE-EN ISO/IEC 17043:2010 y es, para cada laboratorio, el que sigue:

- 01. Análisis A: Estudio pre-estadístico. Antes de comenzar con los cálculos matemáticos, los datos son minuciosamente analizados para determinar si deben ser incluidos (\checkmark) o descartados (X) en función, de si cumplen o no, con unos criterios mínimos previamente establecidos y que pueden afectar a los resultados, tales como:
- A. No cumplir con el criterio de validación de la norma de ensayo, en caso de existir éste.
- B. No haber realizado el ensayo conforme a la norma de estudio, sin justificar los motivos por los cuales se ha hecho.
- C. No haber cumplido con las especificaciones particulares del ensayo descritas en los protocolos (pueden incluir aportar algún dato adicional no especificado en la norma).
- D. No haber especificado la fecha de verificación y/o de calibración de los equipos utilizados durante el ensayo (los resultados pueden verse afectados).
- E. No haber aportado, como mínimo, el resultado de dos determinaciones puesto que la desviación típica inter-laboratorio se ve afectada notablemente por ello.
- F. Expresiones erróneas de los resultados que no pudieran explicarse o no tuvieran sentido.
- G. No haber completado total y correctamente las hojas de ensayo, pues es posible que falte información para analizar parámetros importantes o que ayuden a explicar datos incorrectos.
- H. Cualquier otra incidencia o desviación de los resultados que afecte al conjunto de los datos analizados.
- 02. Análisis B: Mandel, Cochran y Grubbs. Los resultados aportados por los laboratorios que hayan superado el paso anterior, se verán sometidos al análisis estadístico compuesto por los métodos de Mandel, Cochran y Grubbs. Los criterios de análisis que se han seguido para considerar los resultados como aptos (\checkmark) o no aptos (X) por éste procedimiento son:
- A. Para cada laboratorio se llevan a cabo los cálculos necesarios para determinar los estadísticos "h y k" de Mandel, "C" de Cochran y "GSimp y GDob" de Grubbs, pudiendo salir un resultado correcto (X sobre fondo blanco), anómalo (X* sobre fondo rosa) o aberrante (X** sobre fondo morado), para todos o cada uno de ellos.
- B. Un laboratorio será considerado como apto, si el binomio Mandel-Cochran y el método de Grubbs no demuestran la presencia de resultados anómalos o aberrantes en comparación con los del resto de participantes. En caso contrario, el laboratorio afectado será excluido y por ende no tenido en cuenta para someterlo al análisis Z-Score.
- C. Binomio Mandel-Cochran. Si el ensayo de Mandel justifica para algún laboratorio (en cualquiera de sus estadísticos) la presencia de un valor anómalo o aberrante, antes de considerarlo como no apto se analiza el parámetro de Cochran. En caso de que éste último sea correcto, los resultados del laboratorio se considerarán aceptables. En caso contrario, el laboratorio será descartado.
- D. Método de Grubbs. Si el ensayo de Grubbs Simple demuestra que los resultados de algúno de los laboratorios son aberrantes o anómalos, finaliza el análisis y el laboratorio en cuestión deberá ser excluido. En caso de que éste método no demuestre la existencia de algún valor extraño, se lleva a cabo entonces el ensayo de Grubbs Doble aplicando los mismos criterios que para el método simple.
- 03. Análisis C: Evaluación Z-Score. La totalidad de los laboratorios que hayan superado el "Análisis B" serán estudiados por éste método. En él, se determina si los parámetros Z-Score obtenidos para cada participante son satisfactorios (S), dudosos (D) o insatisfactorios (I), en función de que estén o no dentro de unos límites críticos establecidos.
- 04. Análisis D: Estudio post-estadístico. Una vez superados los tres análisis anteriores, haremos un último barrido de los datos para ver como quedan los resultados de los laboratorios implicados mediante los diagramas "Box-Plot" o de caja y bigotes antes y después de llevar a cabo los descartes.

Comité de infraestructuras para la Calidad de la Edificación



SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 100 HZ (DB) Análisis A. Estudio pre-estadístico

Apartado A.1. Gráficos de dispersión de valores medios

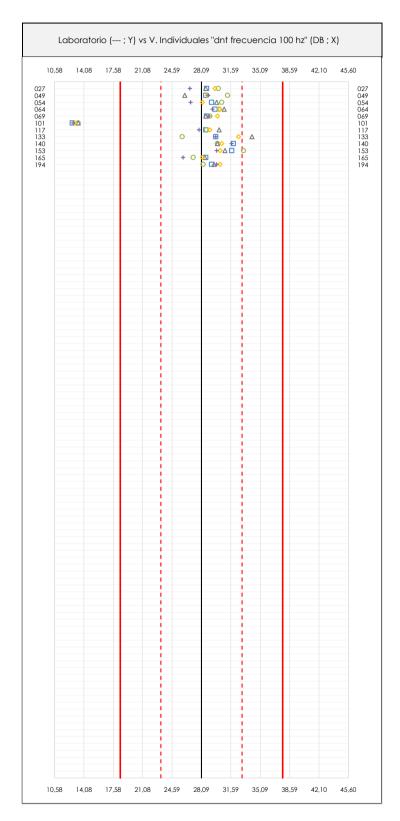
ANALISIS GRAFICO DE DISPERSION MEDIA (ANTES DE ANALISIS ESTADISTICO)

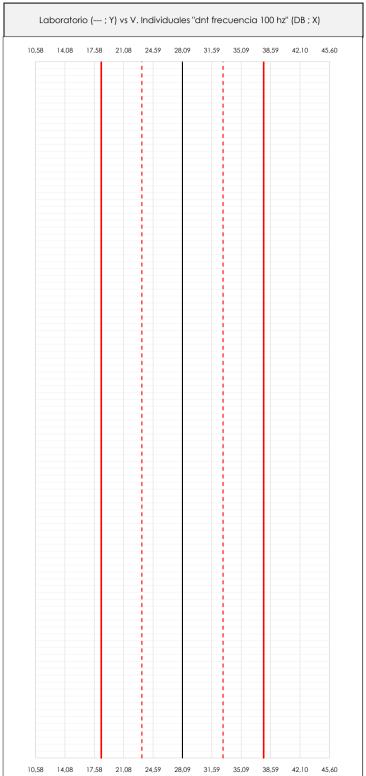
Dispersión de las medias aritméticas intra-laboratorios respecto de la media aritmética inter-laboratorios (28,09; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (32,93/23,25; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (37,76/18,41; líneas rojas de trazo continuo).

En el eje Y (adimensional) quedan reflejados los códigos de los laboratorios participantes y en el eje X (las unidades son las mismas que las del ensayo que se está analizando) las medias aritméticas intra-laboratorios representadas por punto de color negro.

CICE é de infraestructuras para la

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 100 HZ (DB)

Análisis A. Estudio pre-estadístico

Apartado A.2. Gráficos de dispersión de valores individuales

ANALISIS GRAFICOS DE DISPERSION INDIVIDUAL (ANTES DE ANALISIS ESTADISTICO)

Dispersión de los valores individuales respecto de la media aritmética inter-laboratorios (28,09; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (32,93/23,25; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (37,76/18,41; líneas rojas de trazo continuo).

En el eje Y (adimensional) queda reflejado el código del laboratorio participante y en el eje X (las unidades son las de los resultados del ensayo que se está analizando) los resultados individuales: el primero (X_{i 1}) se representa con un cuadrado azul, el segundo (X_{i 2}) con un círculo verde, el tercero (X_{i 3}) con un triángulo grís y el cuarto (X_{i 4}) con un rombo amarillo

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 100 HZ (DB)

Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i2}	X _{i 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{Li}	D _{i arit %}	Pasa A	Observaciones
	00.70	00.10	20.40	00.70	04.70	00.77	1.010	0.00		
27 49	28,70	30,10	28,60	29,70 28,80	26,70 28,90	28,76	1,318	2,39 2,25	√	
54	29,30	30,50	29,90	28,20	26,80	28,94	1,467	3,03	→	
64	29,70	30,20	30,80	30,30	29,40	30,08	0,545	7,09	<u> </u>	
69	28,70	29,10	28,60	30,00	29,00	29,08	0,554	3,53	√	
101	12,70	13,40	13,40	13,00	12,80	13,06	0,329	-53,50	√	
117	28,60	28,70	30,20	29,10	27,80	28,88	0,876	2,82	√	
133	29,80	25,80	34,10	32,50	29,80	30,40	3,161	8,23	✓	
140	31,90	30,00	30,00	30,50	31,70	30,82	0,920	9,73	✓	
153	31,70	33,10	30,90	30,30	29,90	31,18	1,270	11,01	✓	
165	28,60	27,10	28,50	28,20	25,90	27,66	1,150	-1,52	✓	
194	29,30	28,30	29,60	30,30	29,90	29,48	0,756	4,95	✓	

NOTAS:

[máximo]

[mínimo]

[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \, arit}$ " es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación

SACESubcomisión Administrativa para la

Calidad de la Edificación

DNT FRECUENCIA 100 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.1. Gráfico de consistencia inter-laboratorios "h" de Mandel

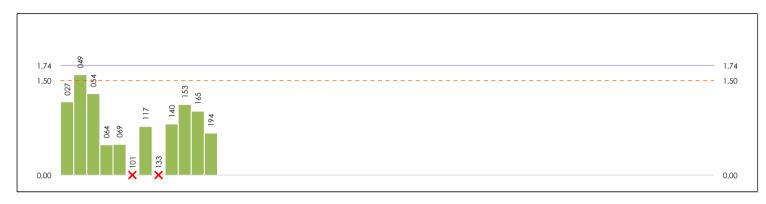
ANALISIS GRAFICO DE CONSISTENCIA INTER-LABORATORIOS

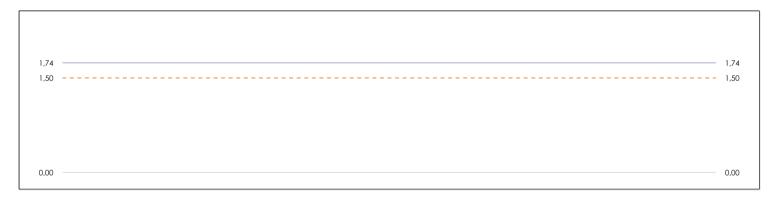
Análisis gráfico de consistencia inter-laboratorios "h" de Mandel. En él se representan las medias aritméticas inter-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes).

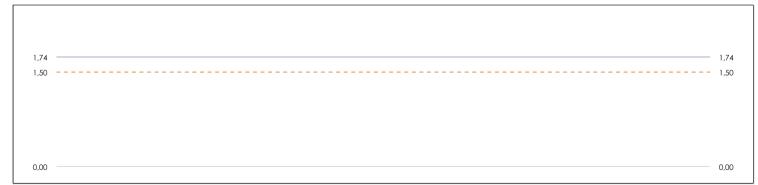
Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación

SACE Subcomisión Administrativa para la


Calidad de la Edificación


DNT FRECUENCIA 100 HZ (DB)


Análisis B. Mandel, Cochran y Grubbs

Apartado B.2. Gráfico de consistencia intra-laboratorios "k" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTRA-LABORATORIOS

Análisis gráfico de consistencia intra-laboratorios "k" de Mandel. En él se representan las medias aritméticas intra-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes y el número de ensayos efectuados).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 100 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

				· · · · · · · · · · · · · · · · · · ·			•									
Lab	X _{i 1}	X _{i 2}	Х _{і 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{Li}	D _{i arit %}	h _i	k _i	Ci	G _{Sim Inf}	G _{Sim Sup}	G _{Dob Inf}	G _{Dob Sup}	Pasa B
27	28,700	30,100	28,600	29,700	26,700	28,760	1,318	-2,04	-0,57	1,16						─ ✓
49	28,60	31,200	26,100	28,800	28,900	28,720	1,807	-2,18	-0,60	1,59*	0,254			0,6064		√
54	29,30	30,500	29,900	28,200	26,800	28,940	1,467	-1,43	-0,40	1,29						✓
64	29,70	30,200	30,800	30,300	29,400	30,080	0,545	2,45	0,68	0,48						√
69	28,70	29,100	28,600	30,000	29,000	29,080	0,554	-0,95	-0,26	0,49						✓
101	12,70	13,400	13,400	13,000	12,800	13,060										X
117	28,60	28,700	30,200	29,100	27,800	28,880	0,876	-1,63	-0,45	0,77						✓
133	29,80	25,800	34,100	32,500	29,800	30,400										X
140	31,90	30,000	30,000	30,500	31,700	30,820	0,920	4,97	1,38	0,81					0,3293	✓
153	31,70	33,100	30,900	30,300	29,900	31,180	1,270	6,20	1,72	1,12			1,716		0,3293	✓
165	28,60	27,100	28,500	28,200	25,900	27,660	1,150	-5,79	-1,60	1,01		1,603		0,6064		✓
194	29,30	28,300	29,600	30,300	29,900	29,480	0,756	0,41	0,11	0,67						✓

NOTAS:

[aberrante]

[anómalo]

[máximo]

[mínimo]

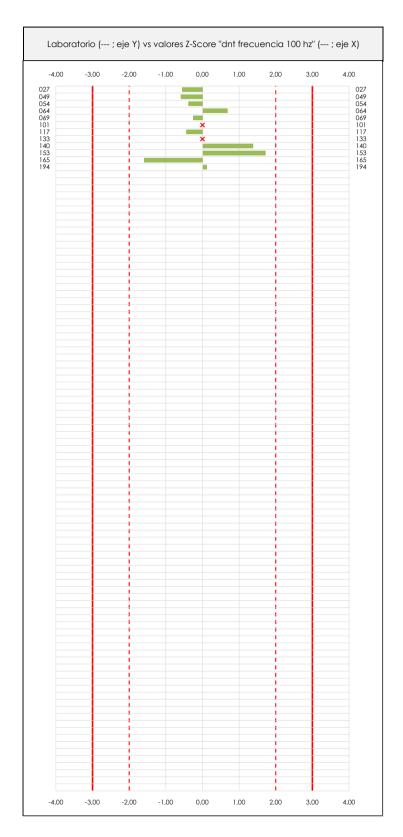
[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \text{ arit}}$ " es la media aritmética intralaboratorio calculada sin redondear.

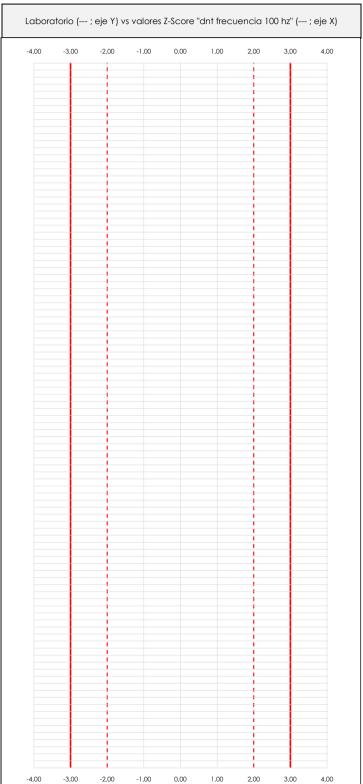
^{02 &}quot;S_Li" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

^{03 &}quot;h₁ y k," ,"C₁", "G_{Sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación




SACESubcomisión Administrativa para la
Calidad de la Edificación

DNT FRECUENCIA 100 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.1. Análisis gráfico Altman Z-Score

ANALISIS GRAFICO Z-SCORE

Diagrama Z-Score para los resultados aportados por los laboratorios. Estos se considerarán satisfactorios (S) si el valor absoluto del Z-Score es menor o igual a 2 unidades, dudoso si está comprendido entre 2 y 3 unidades e insatisfactorio si es mayor o igual a 3 unidades.

Los resultados satisfactorios quedan reflejados entre las dos líneas rojas discontinuas, líneas de referencia en la evaluación Z-Score.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 100 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{Li}	D _{i arit %}	Pasa A	Pasa B	Total	Causa	Iteración	Z-Score	Evaluación
27	28,70	30,10	28,60	29,70	26,70	28,76	1,318	-2,04	√	√	√			-0,566	S
49	28,60	31,20	26,10	28,80	28,90	28,72	1,807	-2,18	√	√	√			-0,603	S
54	29,30	30,50	29,90	28,20	26,80	28,94	1,467	-1,43	√	✓	√			-0,396	S
64	29,70	30,20	30,80	30,30	29,40	30,08	0,545	2,45	√	√	√			0,679	S
69	28,70	29,10	28,60	30,00	29,00	29,08	0,554	-0,95	√	√	√			-0,264	S
101	12,70	13,40	13,40	13,00	12,80	13,06			√	Х	Х	AB	0		
117	28,60	28,70	30,20	29,10	27,80	28,88	0,876	-1,63	√	1	1			-0,453	S
133	29,80	25,80	34,10	32,50	29,80	30,40			√	Х	Х	AB	0		
140	31,90	30,00	30,00	30,50	31,70	30,82	0,920	4,97	√	√	√			1,377	S
153	31,70	33,10	30,90	30,30	29,90	31,18	1,270	6,20	✓	√	√			1,716	S
165	28,60	27,10	28,50	28,20	25,90	27,66	1,150	-5,79	✓	√	√			-1,603	S
194	29,30	28,30	29,60	30,30	29,90	29,48	0,756	0,41	✓	√	√			0,113	S

NOTAS:

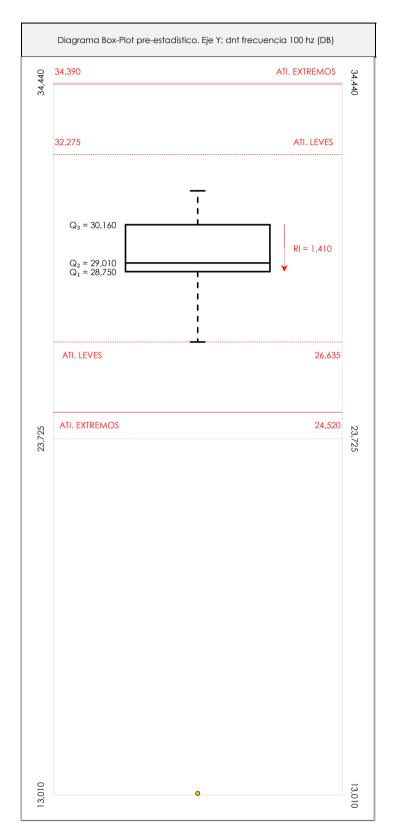
[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \text{ arit}}$ " es la media aritmética intralaboratorio calculada sin redondear.

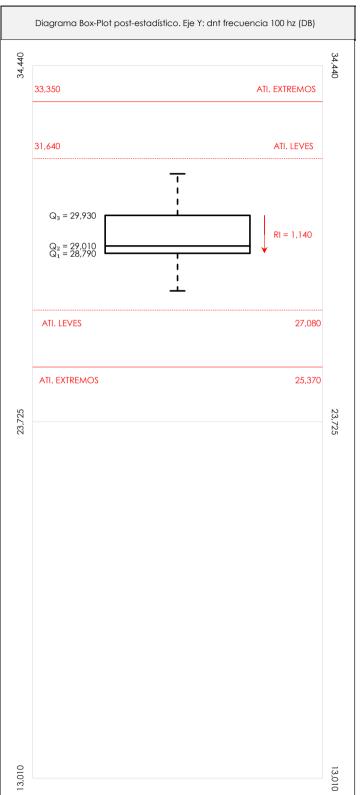
^{02 &}quot;S_Li" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

 $^{^{03}}$ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leqslant 2] [Dudoso (D) - si 2 < | ZS | \leqslant 3] [Insatisfactorio (I) - si | ZS | > 3].

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

CICE Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 100 HZ (DB)

Análisis D. Estudios post-estadisticos

Apartado D.3. Diagramas Box-Plot o de Caja y Bigotes

ANALISIS GRAFICO DE CAJA Y BIGOTES (ANTES Y DESPUES DE ANALISIS ESTADISTICO)

Diagramas de caja y bigotes (Box Plot) de las medias aritméticas de los resultados aportados por los laboratorios antes (diagrama de la izquierda. Este incluye valores aberrantes y anómalos) y después (diagrama de la derecha. No incluye los valores descartados a lo largo del estudio) de análisis estadístico.

En ambos se han representado: el primer cuartil (Q_1 ; 25% de los datos), el segundo cuartil o la mediana (Q_2 ; 50% de los datos), el tercer cuartil (Q_3 ; 75% de los datos), el rango intercuartílico (RI; cuartil tres menos cuartil uno) y los límites de valores atípicos leves (f_3 y f_1 para el máximo y mínimo respectivamente; líneas discontinuas de color rojo) y extremos (f_3 * y f_1 * para el máximo y mínimo respectivamente; líneas continuas de color rojo).

CICE Comité de infraestructuras para la Calidad de la Edificación

DNT FRECUENCIA 100 HZ (DB)

Conclusiones

Determinación de la repetibilidad y reproducibilidad

SACE Subcomisión Administrativa para la Calidad de la Edificación

El análisis estadístico ElLA20 para el ensayo "DNT FRECUENCIA 100 HZ", ha contado con la participación de un total de 12 laboratorios, debiendo haber aportado cada uno de ellos, un total de 5 determinaciones individuales además de su valor medio.

Tras analizar los resultados podemos concluir que, para cumplir con los criterios estadísticos establecidos en el informe, un total de 2 laboratorios han sido apartados de la evaluación final: O en el Análisis Pre-Estadístico (por no cumplir el criterio de validación y/o el procedimiento de ejecución recogido en la norma de ensayo) y 2 en el Análisis Estadístico (por resultar anómalos o aberrantes en las técnicas gráficas de consistencia de Mandel y en los ensayos de detección de resultados numéricos de Cochran y Grubbs), al cabo de 2 iteraciones.

De cada uno de los análisis (pre-estadístico y estadístico), se obtienen las siguientes tablas:

TIPO DE ANALISIS			PRE-ES	TADISTIC	:0				ESTA	DISTICO		
Variables	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$
Valor Máximo (max ; %)	31,90	33,10	34,10	32,50	31,70	31,18	31,90	33,10	30,90	30,50	31,70	31,18
Valor Mínimo (min ; %)	12,70	13,40	13,40	13,00	12,80	13,06	28,60	27,10	26,10	28,20	25,90	27,66
Valor Promedio (M; %)	28,13	28,13	28,39	28,41	27,38	28,09	29,51	29,83	29,32	29,54	28,60	29,36
Desviación Típica (SDL ;)	4,99	5,01	5,08	4,99	4,88	4,84	1,27	1,66	1,43	0,90	1,78	1,06
Coef. Variación (CV ;)	0,18	0,18	0,18	0,18	0,18	0,17	0,04	0,06	0,05	0,03	0,06	0,04
VARIABLES	S_r^2	r		$S_L^{\ 2}$	S_R^2	R	S_r^2	r		S_L^2	S_R^{-2}	R
Valor Calculado	1,916	3,83	36 2	3,025	24,940	13,843	1,288	3,14	16 0	,867	2,155	4,069
Valor Referencia												

Asimismo, acompañando a éstas tablas y dependiendo del análisis que se esté llevando a cabo, se introducen los indicadores estadísticos "h y k" de Mandel y los valores críticos "C" de Cochran y "G_{Sim} y G_{Dob}" de Grubbs, todos ellos adimensionales, obtenidos de las tablas 4, 5, 6 y 7 de la norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios y del número de ensayos efectuados por cada uno de ellos:

TIPO DE ANALISIS		PRI	E-ESTADISTI	со			E	STADISTIC)	
VARIABLES	h	k	С	G_{sim}	G_Dob	h	k	С	G_{sim}	G_{Dob}
Nivel de Significación 1%	2,18	1,74	0,343	2,482	0,1150	2,18	1,74	0,393	2,482	0,1150
Nivel de Significación 5%	1,80	1,50	0,288	2,290	0,1864	1,80	1,50	0,331	2,290	0,1864

Con los resultados de los laboratorios, que tras los dos análisis estadísticos son evaluados por Z-Score, se han obtenido: 10 resultados satisfactorios, 0 resultados dudosos y 0 resultados insatisfactorios.

Respecto a los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística recogida en la ISO 17025, sobre las dispersiones de los resultados individuales y su media, en forma de varianzas o desviaciones estándar, también conocida como ANOVA (siglas de analisys of varience).

Sabiendo que una varianza es la suma de cuadrados dividida por un número, que se llama grados de libertad, que depende del número de participantes menos 1, se puede decir que la imprecisión del ensayo se descompone en dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad (variabilidad intralaboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad debida al cambio de laboratorio).

Las condiciones de repetibilidad de este ensayo son: mismo laborante, mismo laboratorio y mismo equipo de medición utilizado dentro de un período de tiempo corto. Por ende, las condiciones de reproducibilidad para la misma muestra y ensayo, cambian en: el laborante, el laboratorio, el equipo y las condiciones de uso y tiempo.

Comité de infraestructuras para la Calidad de la Edificación

SACE

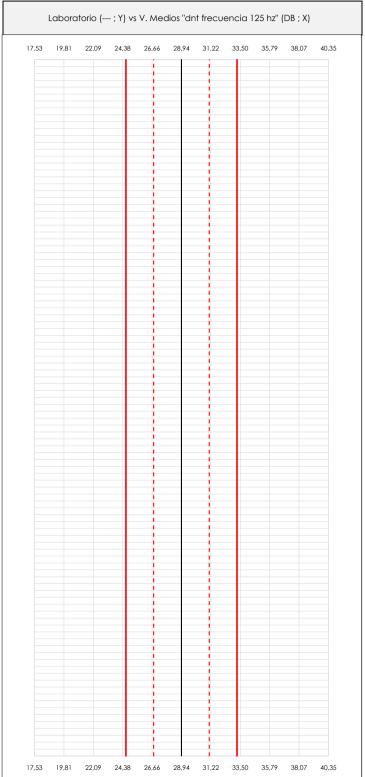
Subcomisión Administrativa para la Calidad de la Edificación

ANÁLISIS ESTADISTICO DE ACÚSTICA

DNT FRECUENCIA 125 HZ

Comité de infraestructuras para la Calidad de la Edificación

SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 125 HZ (DB)

Análisis A. Estudio pre-estadístico

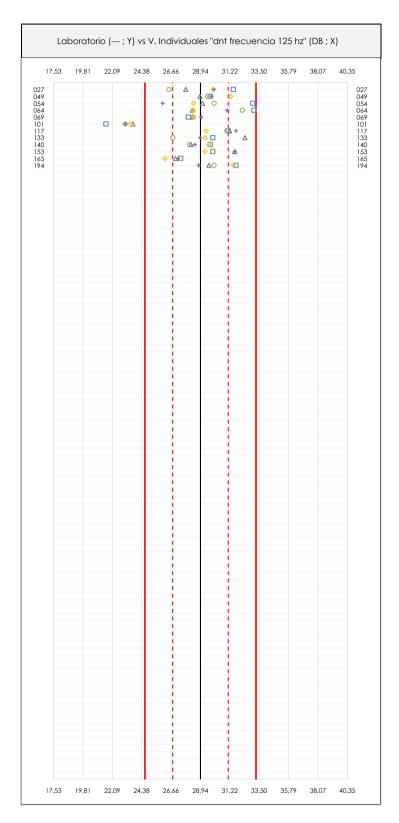
Apartado A.1. Gráficos de dispersión de valores medios

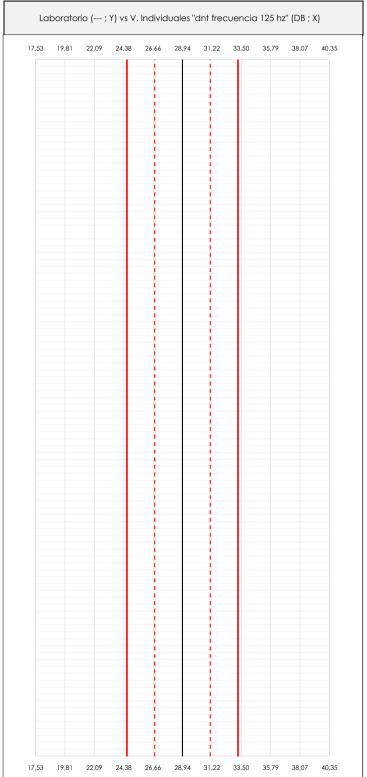
ANALISIS GRAFICO DE DISPERSION MEDIA (ANTES DE ANALISIS ESTADISTICO)

Dispersión de las medias aritméticas intra-laboratorios respecto de la media aritmética inter-laboratorios (28,94; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (31,10/26,78; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (33,25/24,63; líneas rojas de trazo continuo).

En el eje Y (adimensional) quedan reflejados los códigos de los laboratorios participantes y en el eje X (las unidades son las mismas que las del ensayo que se está analizando) las medias aritméticas intra-laboratorios representadas por punto de color negro.

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 125 HZ (DB)

Análisis A. Estudio pre-estadístico

Apartado A.2. Gráficos de dispersión de valores individuales

ANALISIS GRAFICOS DE DISPERSION INDIVIDUAL (ANTES DE ANALISIS ESTADISTICO)

Dispersión de los valores individuales respecto de la media aritmética inter-laboratorios (28,94; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (31,10/26,78; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (33,25/24,63; líneas rojas de trazo continuo).

En el eje Y (adimensional) queda reflejado el código del laboratorio participante y en el eje X (las unidades son las de los resultados del ensayo que se está analizando) los resultados individuales: el primero $(X_{i,1})$ se representa con un cuadrado azul, el segundo $(X_{i,2})$ con un círculo verde, el tercero $(X_{i,3})$ con un triángulo grís y el cuarto $(X_{i,4})$ con un rombo amarillo

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 125 HZ (DB)

Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	Pasa A	Observaciones
27	31,50	26,50	27,80	29,90	30,00	29,14	1,978	0,69	√	
49	29,70	29,50	28,90	31,30	29,80	29,84	0,888	3,11	√	
54	33,00 33,10	30,00	29,10	28,40	26,00	29,30	2,546	1,24	√	
64	28,00	28,40	28,30 28,30	28,40	31,00	30,60	2,185 0,363	5,74	√	
101	21,60	23,10	23,70	23,50	23,10	23,00	0,825	-20,53	→	
117	31,10	31,00	31,20	29,40	31,70	30,88	0,870	6,70	<u> </u>	
133	29,90	26,80	32,40	29,30	28,90	29,46	2,016	1,80	√	
140	29,70	28,10	28,20	29,60	28,50	28,82	0,773	-0,41	√	
153	29,90	29,90	31,60	29,30	31,60	30,46	1,069	5,25	√	
165	27,40	27,40	27,00	26,20	27,20	27,04	0,498	-6,57	✓	
194	31,70	30,00	29,60	31,50	28,80	30,32	1,248	4,77	✓	

NOTAS:

[máximo]

[mínimo]

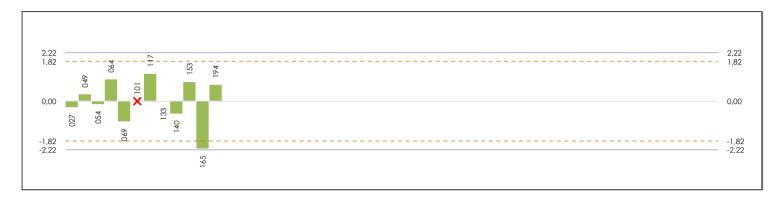
[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \, arit}$ " es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación


SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 125 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

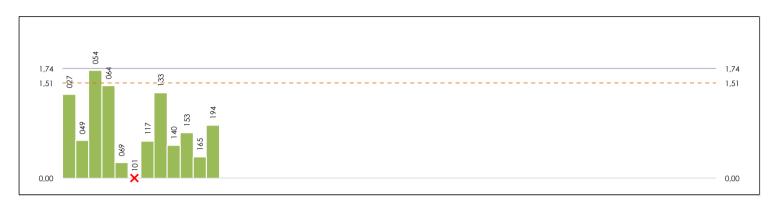
Apartado B.1. Gráfico de consistencia inter-laboratorios "h" de Mandel

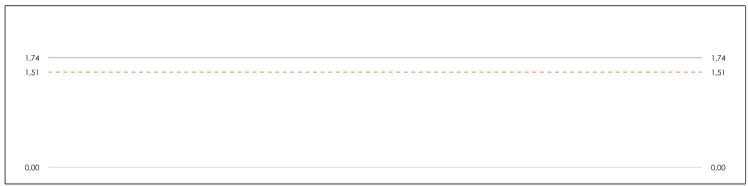
ANALISIS GRAFICO DE CONSISTENCIA INTER-LABORATORIOS

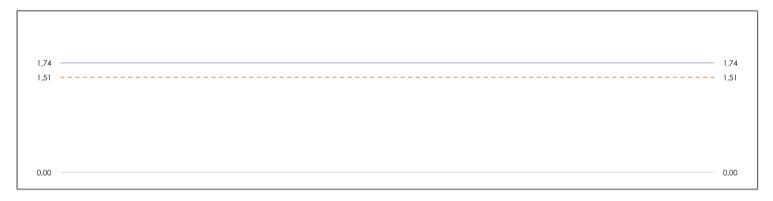
Análisis gráfico de consistencia inter-laboratorios "h" de Mandel. En él se representan las medias aritméticas inter-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes).

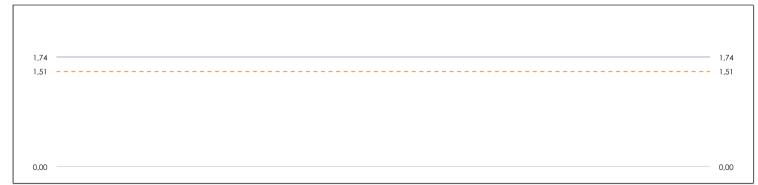
Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación


DNT FRECUENCIA 125 HZ (DB)


Análisis B. Mandel, Cochran y Grubbs

Apartado B.2. Gráfico de consistencia intra-laboratorios "k" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTRA-LABORATORIOS

Análisis gráfico de consistencia intra-laboratorios "k" de Mandel. En él se representan las medias aritméticas intra-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes y el número de ensayos efectuados).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 125 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{Li}	D _{i arit %}	h _i	k _i	Ci	G _{Sim Inf}	G _{sim} sun	G _{Dob Inf}	Gnob Sun	Pasa B
		12	15	17	13	Gill		1 (111 /6	'	'		- 31111111	- 3111300	- 505 III	- Bob 30p	
27	31,500	26,500	27,800	29,900	30,000	29,140	1,978	-1,15	-0,30	1,33						√
49	29,70	29,500	28,900	31,300	29,800	29,840	0,888	1,22	0,32	0,60						✓
54	33,00	30,000	29,100	28,400	26,000	29,300	2,546	-0,61	-0,16	1,71*	0,265					✓
64	33,10	32,200	28,300	28,400	31,000	30,600	2,185	3,80	0,99	1,47					0,6906	✓
69	28,00	28,400	28,300	28,400	29,000	28,420	0,363	-3,60	-0,94	0,24				0,3341		✓
101	21,60	23,100	23,700	23,500	23,100	23,000										X
117	31,10	31,000	31,200	29,400	31,700	30,880	0,870	4,75	1,24	0,58			1,244		0,6906	✓
133	29,90	26,800	32,400	29,300	28,900	29,460	2,016	-0,07	-0,02	1,35						✓
140	29,70	28,100	28,200	29,600	28,500	28,820	0,773	-2,24	-0,59	0,52						√
153	29,90	29,900	31,600	29,300	31,600	30,460	1,069	3,32	0,87	0,72						√
165	27,40	27,400	27,000	26,200	27,200	27,040	0,498	-8,28	-2,17*	0,33	0,265	2,168		0,3341		√
194	31,70	30,000	29,600	31,500	28,800	30,320	1,248	2,85	0,75	0,84						√

NOTAS:

[aberrante]

[anómalo]

[máximo]

[mínimo]

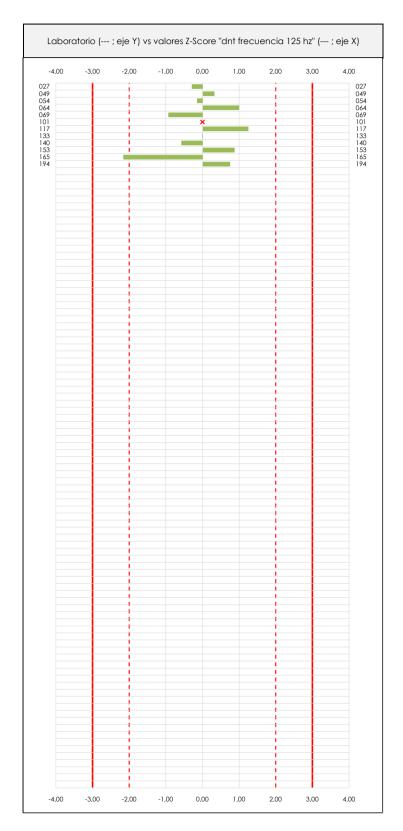
[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \text{ arift}}$ " es la media aritmética intralaboratorio calculada sin redondear.

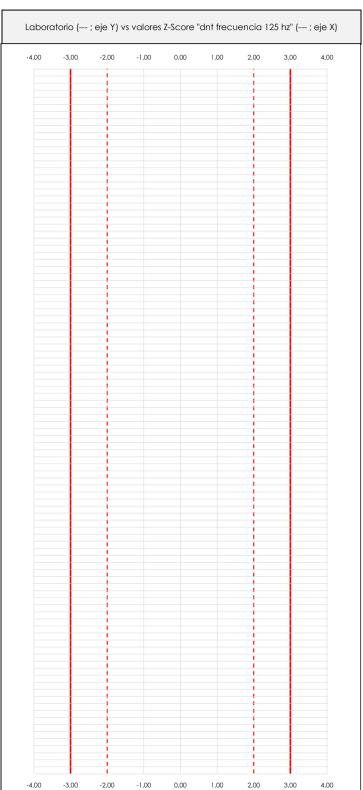
^{02 &}quot;S_Li" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ "h₁ y k," ,"C₁", "G_{Sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 125 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.1. Análisis gráfico Altman Z-Score

ANALISIS GRAFICO Z-SCORE

Diagrama Z-Score para los resultados aportados por los laboratorios. Estos se considerarán satisfactorios (S) si el valor absoluto del Z-Score es menor o igual a 2 unidades, dudoso si está comprendido entre 2 y 3 unidades e insatisfactorio si es mayor o igual a 3 unidades.

Los resultados satisfactorios quedan reflejados entre las dos líneas rojas discontinuas, líneas de referencia en la evaluación Z-Score.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 125 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{Li}	D _{i arit %}	Pasa A	Pasa B	Total	Causa	Iteración	Z-Score	Evaluación
27	31,50	26,50	27,80	29,90	30,00	29,14	1,978	-1,15	√	√	√			-0,302	S
49	29,70	29,50	28,90	31,30	29,80	29,84	0,888	1,22		-	-			0,320	s
54	33,00	30,00	29,10	28,40	26,00	29,30	2,546	-0,61	<u> </u>		<u> </u>			-0,160	S
64	33,10	32,20	28,30	28,40	31,00	30,60	2,185	3,80	<u> </u>		<u> </u>			0,995	S
69	28,00	28,40	28,30	28,40	29,00	28,42	0,363	-3,60			<u> </u>			-0,942	S
101	21,60	23,10	23,70	23,50	23,10	23,00				Х	Х	AB	0		
117	31,10	31,00	31,20	29,40	31,70	30,88	0,870	4,75		<u>√</u>			-	1,244	S
133	29,90	26,80	32,40	29,30	28,90	29,46	2,016	-0,07		<u>√</u>				-0,018	S
140	29,70	28,10	28,20	29,60	28,50	28,82	0,773	-2,24	√	√	√			-0,586	S
153	29,90	29,90	31,60	29,30	31,60	30,46	1,069	3,32	<u>√</u>		→			0,871	S
165	27,40	27,40	27,00	26,20	27,20	27,04	0,498	-8,28	√	√	√			-2,168	D
194	31,70	30,00	29,60	31,50	28,80	30,32	1,248	2,85		<u> </u>				0,746	S
.,,,	0.77.0	00,00	27,00	0.,00	20,00	00,02	1,2.10	2,00	•					0,7 10	

NOTAS:

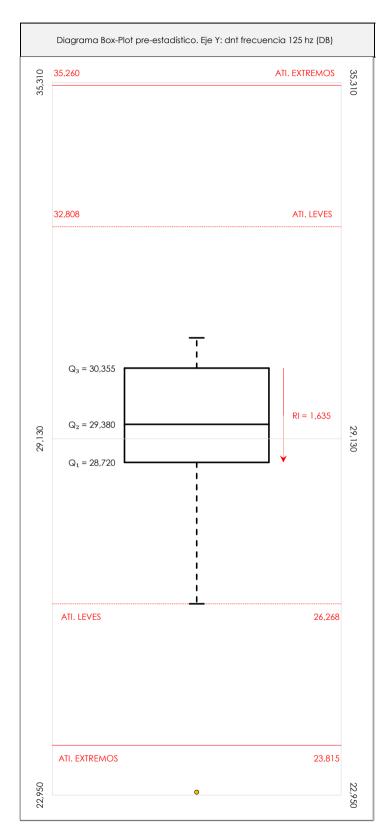
[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \text{ arit}}$ " es la media aritmética intralaboratorio calculada sin redondear.

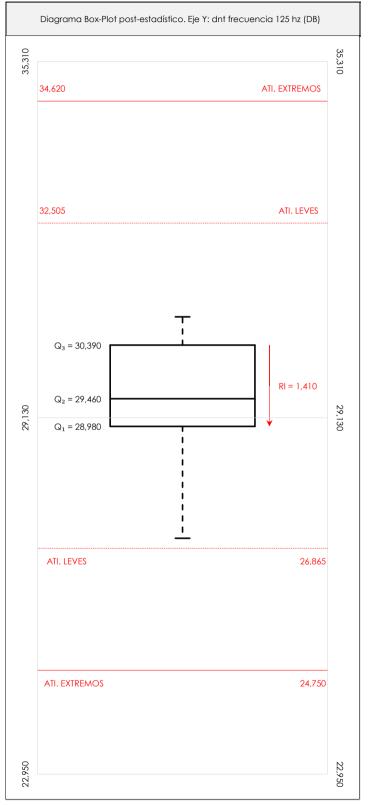
^{02 &}quot;S_Li" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

 $^{^{03}}$ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leqslant 2] [Dudoso (D) - si 2 < | ZS | \leqslant 3] [Insatisfactorio (I) - si | ZS | > 3].

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

CICE Comité de infraestructuras para la Calidad de la Edificación




SACE Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 125 HZ (DB)

Análisis D. Estudios post-estadisticos

Apartado D.3. Diagramas Box-Plot o de Caja y Bigotes

ANALISIS GRAFICO DE CAJA Y BIGOTES (ANTES Y DESPUES DE ANALISIS ESTADISTICO)

Diagramas de caja y bigotes (Box Plot) de las medias aritméticas de los resultados aportados por los laboratorios antes (diagrama de la izquierda. Este incluye valores $aberrantes \ y \ anómalos) \ y \ \underline{despu\'es} \ (diagrama \ de \ la \ derecha. \ No incluye \ los \ valores \ descartados \ a \ lo \ largo \ del \ estudio) \ de \ análisis \ estadístico.$

En ambos se han representado: el primer cuartil (Q1; 25% de los datos), el segundo cuartil o la mediana (Q2; 50% de los datos), el tercer cuartil (Q3; 75% d intercuartílico (RI; cuartil tres menos cuartil uno) y los límites de valores atípicos leves (f3 y f1 para el máximo y mínimo respectivamente; líneas discontinuas de color rojo) y extremos (f_3^+ y f_1^+ para el máximo y mínimo respectivamente ; líneas continuas de color rojo).

CICE Comité de infraestructuras para la Calidad de la Edificación

DNT FRECUENCIA 125 HZ (DB)

Conclusiones

Determinación de la repetibilidad y reproducibilidad

SACESubcomisión Administrativa para la Calidad de la Edificación

El análisis estadístico ElLA20 para el ensayo "DNT FRECUENCIA 125 HZ", ha contado con la participación de un total de 12 laboratorios, debiendo haber aportado cada uno de ellos, un total de 5 determinaciones individuales además de su valor medio.

Tras analizar los resultados podemos concluir que, para cumplir con los criterios estadísticos establecidos en el informe, un total de 1 laboratorios han sido apartados de la evaluación final: 0 en el Análisis Pre-Estadístico (por no cumplir el criterio de validación y/o el procedimiento de ejecución recogido en la norma de ensayo) y 1 en el Análisis Estadístico (por resultar anómalos o aberrantes en las técnicas gráficas de consistencia de Mandel y en los ensayos de detección de resultados numéricos de Cochran y Grubbs), al cabo de 2 iteraciones.

De cada uno de los análisis (pre-estadístico y estadístico), se obtienen las siguientes tablas:

TIPO DE ANALISIS			PRE-ES	TADISTIC	0				ESTA	DISTICO		
Variables	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$
Valor Máximo (max ; %)	33,10	32,20	32,40	31,50	31,70	30,88	33,10	32,20	32,40	31,50	31,70	30,88
Valor Mínimo (min ; %)	21,60	23,10	23,70	23,50	23,10	23,00	27,40	26,50	27,00	26,20	26,00	27,04
Valor Promedio (M; %)	29,72	28,58	28,84	28,77	28,80	28,94	30,45	29,07	29,31	29,25	29,32	29,48
Desviación Típica (SDL ;)	3,10	2,43	2,30	2,17	2,46	2,16	1,83	1,79	1,72	1,46	1,76	1,13
Coef. Variación (CV ;)	0,10	0,08	0,08	0,08	0,09	0,07	0,06	0,06	0,06	0,05	0,06	0,04
VARIABLES	S_r^2	r		$S_L^{\ 2}$	S_R^{2}	R	S_r^2	r		S_L^2	S_R^{2}	R
Valor Calculado	2,094	4,01	11 4	4,232	6,327	6,972	2,223	4,13	3 0	,823	3,046	4,837
Valor Referencia												

Asimismo, acompañando a éstas tablas y dependiendo del análisis que se esté llevando a cabo, se introducen los indicadores estadísticos "h y k" de Mandel y los valores críticos "C" de Cochran y "G_{sim} y G_{Dob}" de Grubbs, todos ellos adimensionales, obtenidos de las tablas 4, 5, 6 y 7 de la norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios y del número de ensayos efectuados por cada uno de ellos:

TIPO DE ANALISIS		PRI	E-ESTADISTI	со			E	STADISTIC	o	
VARIABLES	h	k	С	G_{sim}	G_Dob	h	k	С	G_{sim}	G_{Dob}
Nivel de Significación 1%	2,22	1,74	0,343	2,564	0,1448	2,22	1,74	0,366	2,564	0,1448
Nivel de Significación 5%	1,82	1,51	0,288	2,355	0,2213	1,82	1,51	0,308	2,355	0,2213

Con los resultados de los laboratorios, que tras los dos análisis estadísticos son evaluados por Z-Score, se han obtenido: 10 resultados satisfactorios, 1 resultados dudosos y 0 resultados insatisfactorios.

Respecto a los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística recogida en la ISO 17025, sobre las dispersiones de los resultados individuales y su media, en forma de varianzas o desviaciones estándar, también conocida como ANOVA (siglas de analisys of varience).

Sabiendo que una varianza es la suma de cuadrados dividida por un número, que se llama grados de libertad, que depende del número de participantes menos 1, se puede decir que la imprecisión del ensayo se descompone en dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad (variabilidad intralaboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad debida al cambio de laboratorio).

Las condiciones de repetibilidad de este ensayo son: mismo laborante, mismo laboratorio y mismo equipo de medición utilizado dentro de un período de tiempo corto. Por ende, las condiciones de reproducibilidad para la misma muestra y ensayo, cambian en: el laboratorio, el equipo y las condiciones de uso y tiempo.

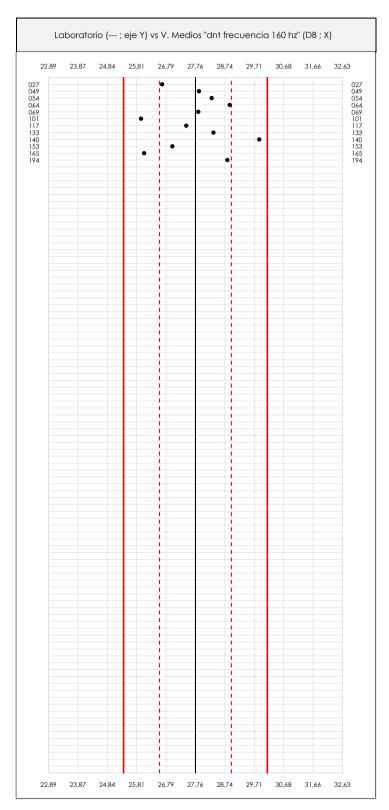
Comité de infraestructuras para la Calidad de la Edificación

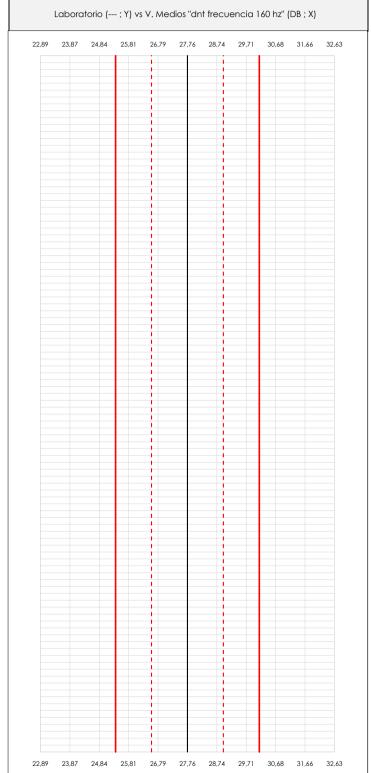
Subcomisión Administrativa para la Calidad de la Edificación

ANÁLISIS ESTADISTICO DE ACÚSTICA

DNT FRECUENCIA 160 HZ

Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 160 HZ (DB) Análisis A. Estudio pre-estadístico

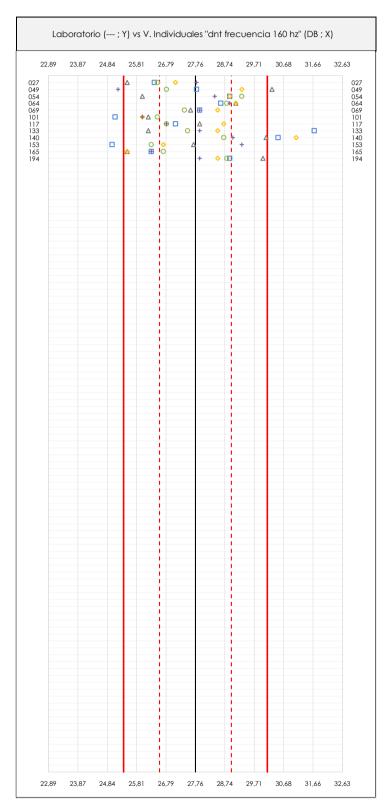
Apartado A.1. Gráficos de dispersión de valores medios

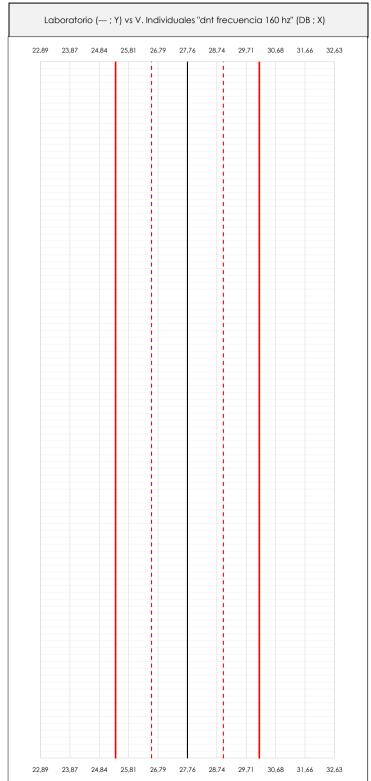
ANALISIS GRAFICO DE DISPERSION MEDIA (ANTES DE ANALISIS ESTADISTICO)

Dispersión de las medias aritméticas intra-laboratorios respecto de la media aritmética inter-laboratorios (27,76; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (28,95/26,57; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (30,14/25,38; líneas rojas de trazo continuo).

En el eje Y (adimensional) quedan reflejados los códigos de los laboratorios participantes y en el eje X (las unidades son las mismas que las del ensayo que se está analizando) las medias aritméticas intra-laboratorios representadas por punto de color negro.

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 160 HZ (DB)

Análisis A. Estudio pre-estadístico

Apartado A.2. Gráficos de dispersión de valores individuales

ANALISIS GRAFICOS DE DISPERSION INDIVIDUAL (ANTES DE ANALISIS ESTADISTICO)

Dispersión de los valores individuales respecto de la media aritmética inter-laboratorios (27,76; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (28,95/26,57; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (30,14/25,38; líneas rojas de trazo continuo).

En el eje Y (adimensional) queda reflejado el código del laboratorio participante y en el eje X (las unidades son las de los resultados del ensayo que se está analizando) los resultados individuales: el primero $(X_{i,1})$ se representa con un cuadrado azul, el segundo $(X_{i,2})$ con un círculo verde, el tercero $(X_{i,3})$ con un triángulo grís y el cuarto $(X_{i,4})$ con un rombo amarillo

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 160 HZ (DB)

Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i2}	X _{i 3}	X _{i 4}	X _{i 5}	X _i arit	S _{Li}	D _{i arit %}	Pasa A	Observaciones
0.7	07.40	27.50	05.50	07.10	07.00	0/ //	0.057	2.07		
27 49	26,40 27,80	26,50 26,80	25,50 30,30	27,10 29,30	27,80 25,20	26,66 27,88	0,856 2,014	-3,97 0,43	√	
54	28,90	29,30	26,00	28,90	28,40	28,30	1,325	1,94	→	
64	28,60	28,80	29,10	29,10	28,90	28,90	0,212	4,10	→	
69	27,90	27,40	27,60	28,50	27,90	27,86	0,416	0,35	→	
101	25,10	26,50	26,20	26,00	26,00	25,96	0,522	-6,49	→	
117	27,10	26,80	27,90	28,70	26,80	27,46	0,826	-1,09	<u> </u>	
133	31,70	27,50	26,20	28,50	27,90	28,36	2,049	2,16	<u>√</u>	
140	30,50	28,70	30,10	31,10	29,00	29,88	1,011	7,63	√	
153	25,00	26,30	27,70	26,70	29,30	27,00	1,609	-2,74	√	
165	26,30	26,70	25,50	25,50	26,30	26,06	0,537	-6,13	√	
194	28,90	28,80	30,00	28,50	27,90	28,82	0,766	3,81	√	

NOTAS:

[máximo]

[mínimo]

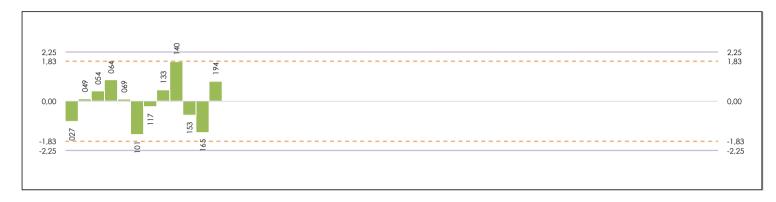
[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " \overline{X}_{i} arit" es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación


SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 160 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

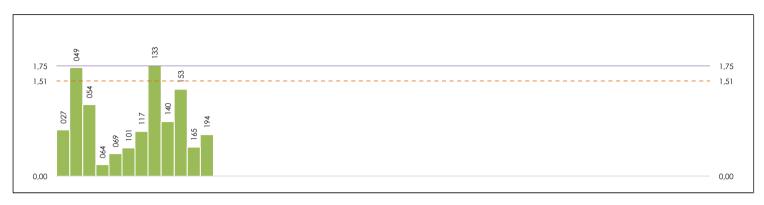
Apartado B.1. Gráfico de consistencia inter-laboratorios "h" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTER-LABORATORIOS

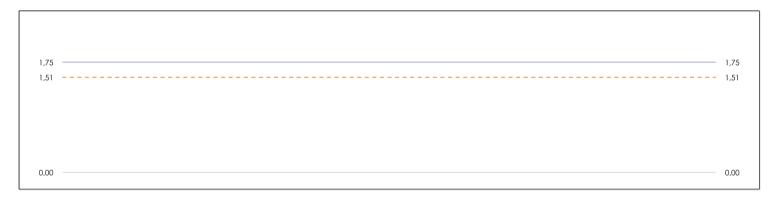
Análisis gráfico de consistencia inter-laboratorios "h" de Mandel. En él se representan las medias aritméticas inter-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes).

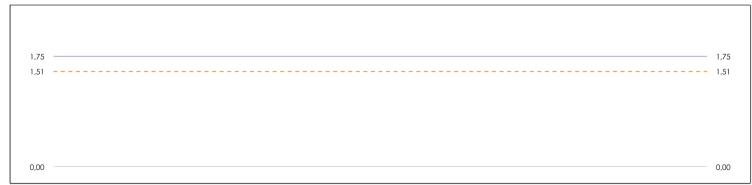
Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación


SACE

Subcomisión Administrativa para la Calidad de la Edificación


DNT FRECUENCIA 160 HZ (DB)


Análisis B. Mandel, Cochran y Grubbs

Apartado B.2. Gráfico de consistencia intra-laboratorios "k" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTRA-LABORATORIOS

Análisis gráfico de consistencia intra-laboratorios "k" de Mandel. En él se representan las medias aritméticas intra-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes y el número de ensayos efectuados).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 160 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{Li}	D _{i arit %}	h _i	k _i	Ci	G _{Sim Inf}	G _{Sim Sup}	G _{Dob Inf}	G _{Dob Sup}	Pasa B
27	26,400	26,500	25,500	27,100	27,800	26,660	0,856	-3,97	-0,93	0,73						✓
49	27,80	26,800	30,300	29,300	25,200	27,880	2,014	0,43	0,10	1,72*	0,256					✓
54	28,90	29,300	26,000	28,900	28,400	28,300	1,325	1,94	0,45	1,13						✓
64	28,60	28,800	29,100	29,100	28,900	28,900	0,212	4,10	0,96	0,18					0,5613	✓
69	27,90	27,400	27,600	28,500	27,900	27,860	0,416	0,35	0,08	0,36						✓
101	25,10	26,500	26,200	26,000	26,000	25,960	0,522	-6,49	-1,51	0,45		1,513		0,5277		✓
117	27,10	26,800	27,900	28,700	26,800	27,460	0,826	-1,09	-0,25	0,71						✓
133	31,70	27,500	26,200	28,500	27,900	28,360	2,049	2,16	0,50	1,75**	0,256					✓
140	30,50	28,700	30,100	31,100	29,000	29,880	1,011	7,63	1,78	0,86			1,779		0,5613	✓
153	25,00	26,300	27,700	26,700	29,300	27,000	1,609	-2,74	-0,64	1,38						✓
165	26,30	26,700	25,500	25,500	26,300	26,060	0,537	-6,13	-1,43	0,46				0,5277		✓
194	28,90	28,800	30,000	28,500	27,900	28,820	0,766	3,81	0,89	0,66						✓

NOTAS:

[aberrante]

[anómalo]

[máximo]

[mínimo]

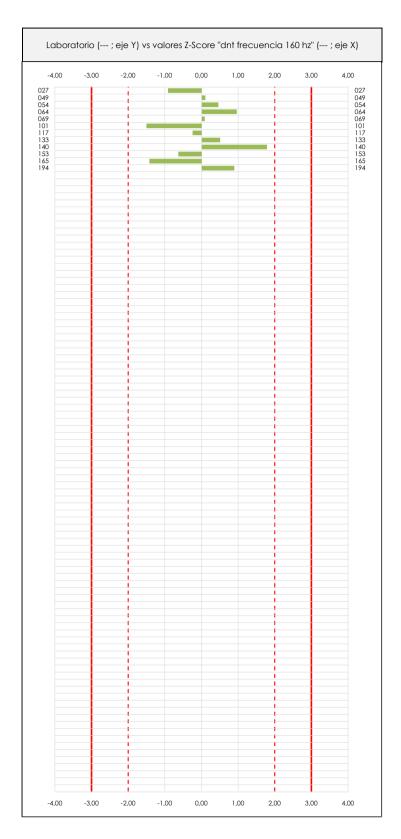
[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \text{ arit}}$ " es la media aritmética intralaboratorio calculada sin redondear.

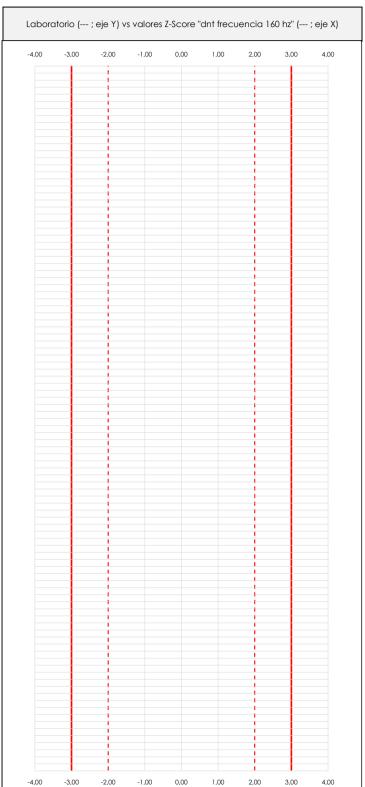
^{02 &}quot;S_Li" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ "h₁ y k," ,"C₁", "G_{Sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 160 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.1. Análisis gráfico Altman Z-Score

ANALISIS GRAFICO Z-SCORE

Diagrama Z-Score para los resultados aportados por los laboratorios. Estos se considerarán satisfactorios (S) si el valor absoluto del Z-Score es menor o igual a 2 unidades, dudoso si está comprendido entre 2 y 3 unidades e insatisfactorio si es mayor o igual a 3 unidades.

Los resultados satisfactorios quedan reflejados entre las dos líneas rojas discontinuas, líneas de referencia en la evaluación Z-Score.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 160 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

Lab	V	V			V	7		<u> </u>	Dasa: A	Dec = D	Total	C	Hore =! 4 -	7 5 6 7 7 7	Evalues:
Lab	X _{i 1}	X _{i 2}	Х _{і 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{Li}	D _{i arit %}	Pasa A	Pasa B	Total	Causa	Iteración	Z-SCORE	Evaluacio
27	26,40	26,50	25,50	27,10	27,80	26,66	0,856	-3,97	√	√	√			-0,925	S
49	27,80	26,80	30,30	29,30	25,20	27,88	2,014	0,43	√	✓	✓			0,099	S
54	28,90	29,30	26,00	28,90	28,40	28,30	1,325	1,94	✓	✓	✓			0,452	S
64	28,60	28,80	29,10	29,10	28,90	28,90	0,212	4,10	✓	✓	✓			0,956	S
69	27,90	27,40	27,60	28,50	27,90	27,86	0,416	0,35	✓	✓	✓			0,083	S
101	25,10	26,50	26,20	26,00	26,00	25,96	0,522	-6,49	✓	✓	✓			-1,513	S
117	27,10	26,80	27,90	28,70	26,80	27,46	0,826	-1,09	✓	✓	✓			-0,253	S
133	31,70	27,50	26,20	28,50	27,90	28,36	2,049	2,16	✓	✓	✓			0,502	S
140	30,50	28,70	30,10	31,10	29,00	29,88	1,011	7,63	✓	✓	✓			1,779	S
153	25,00	26,30	27,70	26,70	29,30	27,00	1,609	-2,74	✓	✓	✓			-0,640	S
165	26,30	26,70	25,50	25,50	26,30	26,06	0,537	-6,13	✓	✓	✓			-1,429	S
194	28,90	28,80	30,00	28,50	27,90	28,82	0,766	3,81	✓	✓	✓			0,889	S

NOTAS:

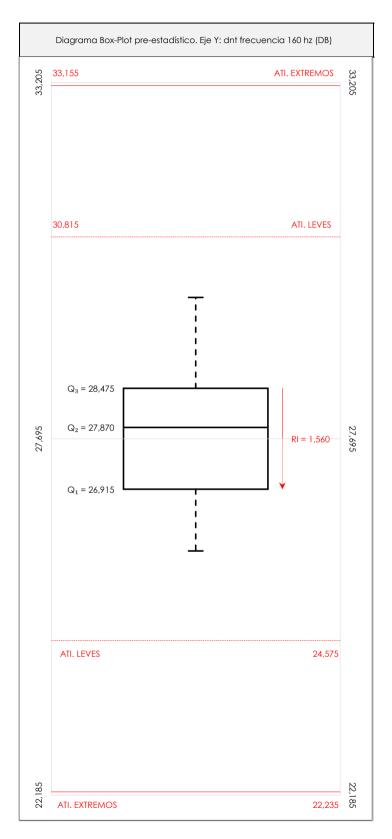
[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \text{ arit}}$ " es la media aritmética intralaboratorio calculada sin redondear.

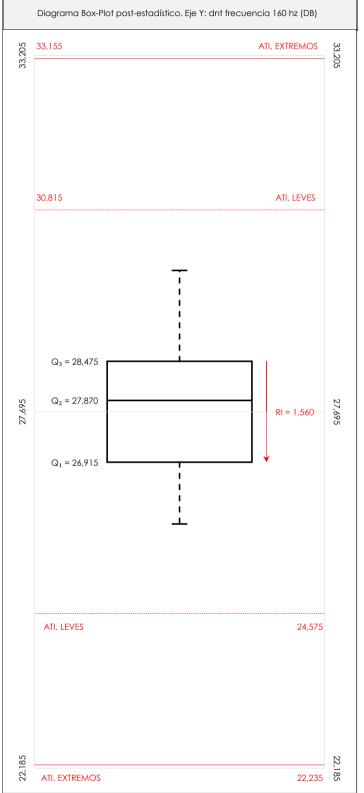
^{02 &}quot;S_Li" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

 $^{^{03}}$ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leqslant 2] [Dudoso (D) - si 2 < | ZS | \leqslant 3] [Insatisfactorio (I) - si | ZS | > 3].

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

CICE Comité de infraestructuras para la Calidad de la Edificación




SACESubcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 160 HZ (DB)

Análisis D. Estudios post-estadisticos

Apartado D.3. Diagramas Box-Plot o de Caja y Bigotes

ANALISIS GRAFICO DE CAJA Y BIGOTES (ANTES Y DESPUES DE ANALISIS ESTADISTICO)

Diagramas de caja y bigotes (Box Plot) de las medias aritméticas de los resultados aportados por los laboratorios antes (diagrama de la izquierda. Este incluye valores aberrantes y anómalos) y después (diagrama de la derecha. No incluye los valores descartados a lo largo del estudio) de análisis estadístico.

En ambos se han representado: el primer cuartil (Q_1 ; 25% de los datos), el segundo cuartil o la mediana (Q_2 ; 50% de los datos), el tercer cuartil (Q_3 ; 75% de los datos), el rango intercuartílico (RI; cuartil tres menos cuartil uno) y los límites de valores atípicos leves (f_3 y f_1 para el máximo y mínimo respectivamente; líneas discontinuas de color rojo) y extremos (f_3 * y f_1 * para el máximo y mínimo respectivamente; líneas continuas de color rojo).

CICE Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 160 HZ (DB)

Conclusiones

Determinación de la repetibilidad y reproducibilidad

El análisis estadístico ElLA20 para el ensayo "DNT FRECUENCIA 160 HZ", ha contado con la participación de un total de 12 laboratorios, debiendo haber aportado cada uno de ellos, un total de 5 determinaciones individuales además de su valor medio.

Tras analizar los resultados podemos concluir que, para cumplir con los criterios estadísticos establecidos en el informe, un total de 0 laboratorios han sido apartados de la evaluación final: 0 en el Análisis Pre-Estadístico (por no cumplir el criterio de validación y/o el procedimiento de ejecución recogido en la norma de ensayo) y 0 en el Análisis Estadístico (por resultar anómalos o aberrantes en las técnicas gráficas de consistencia de Mandel y en los ensayos de detección de resultados numéricos de Cochran y Grubbs), al cabo de 1 iteraciones.

De cada uno de los análisis (pre-estadístico y estadístico), se obtienen las siguientes tablas:

TIPO DE ANALISIS	PRE-ESTADISTICO						ESTADISTICO					
Variables	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i5}	$\overline{X}_{i arit}$	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$
Valor Máximo (max ; %)	31,70	29,30	30,30	31,10	29,30	29,88	31,70	29,30	30,30	31,10	29,30	29,88
Valor Mínimo (min ; %)	25,00	26,30	25,50	25,50	25,20	25,96	25,00	26,30	25,50	25,50	25,20	25,96
Valor Promedio (M; %)	27,85	27,51	27,68	28,16	27,62	27,76	27,85	27,51	27,68	28,16	27,62	27,76
Desviación Típica (SDL ;)	2,03	1,09	1,83	1,57	1,28	1,19	2,03	1,09	1,83	1,57	1,28	1,19
Coef. Variación (CV ;)	0,07	0,04	0,07	0,06	0,05	0,04	0,07	0,04	0,07	0,06	0,05	0,04
VARIABLES	S_r^2	r		$S_L^{\ 2}$	S_R^{2}	R	S_r^2	r		S_L^2	S_R^{2}	R
Valor Calculado	1,367	3,24	41	,145	2,512	4,393	1,367	3,24	41 1	,145	2,512	4,393
Valor Referencia												

Asimismo, acompañando a éstas tablas y dependiendo del análisis que se esté llevando a cabo, se introducen los indicadores estadísticos "h y k" de Mandel y los valores críticos "C" de Cochran y "G_{sim} y G_{Dob}" de Grubbs, todos ellos adimensionales, obtenidos de las tablas 4, 5, 6 y 7 de la norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios y del número de ensayos efectuados por cada uno de ellos:

TIPO DE ANALISIS		PRI	E-ESTADISTI	со		ESTADISTICO					
VARIABLES	h	k	С	G_{sim}	G_Dob	h	k	С	G_{sim}	G_{Dob}	
Nivel de Significación 1%	2,25	1,75	0,343	2,636	0,1738	2,25	1,75	0,343	2,636	0,1738	
Nivel de Significación 5%	1,83	1,51	0,288	2,412	0,2537	1,83	1,51	0,288	2,412	0,2537	

Con los resultados de los laboratorios, que tras los dos análisis estadísticos son evaluados por Z-Score, se han obtenido: 12 resultados satisfactorios, 0 resultados dudosos y 0 resultados insatisfactorios.

Respecto a los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística recogida en la ISO 17025, sobre las dispersiones de los resultados individuales y su media, en forma de varianzas o desviaciones estándar, también conocida como ANOVA (siglas de analisys of varience).

Sabiendo que una varianza es la suma de cuadrados dividida por un número, que se llama grados de libertad, que depende del número de participantes menos 1, se puede decir que la imprecisión del ensayo se descompone en dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad (variabilidad intralaboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad debida al cambio de laboratorio).

Las condiciones de repetibilidad de este ensayo son: mismo laborante, mismo laboratorio y mismo equipo de medición utilizado dentro de un período de tiempo corto. Por ende, las condiciones de reproducibilidad para la misma muestra y ensayo, cambian en: el laboratorio, el equipo y las condiciones de uso y tiempo.

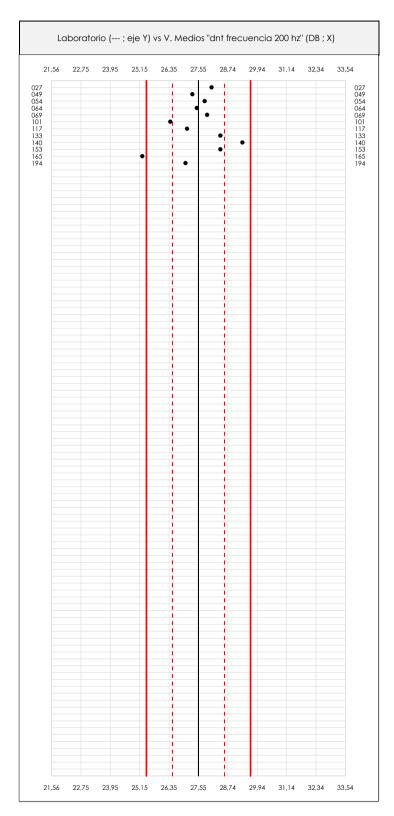
Comité de infraestructuras para la Calidad de la Edificación

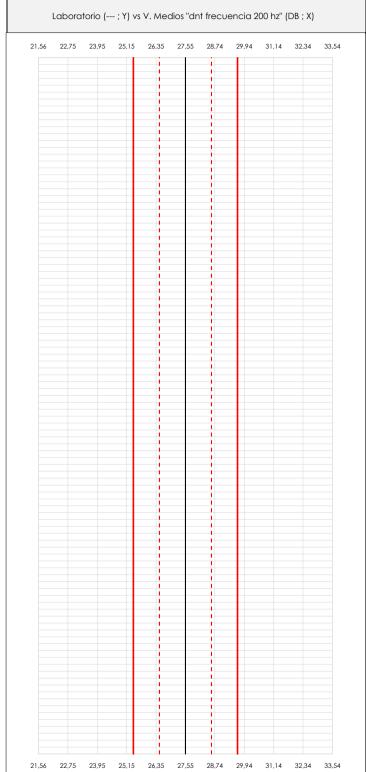
SACE

Subcomisión Administrativa para la Calidad de la Edificación

ANÁLISIS ESTADISTICO DE ACÚSTICA DNT FRECUENCIA 200 HZ

Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 200 HZ (DB) Análisis A. Estudio pre-estadístico

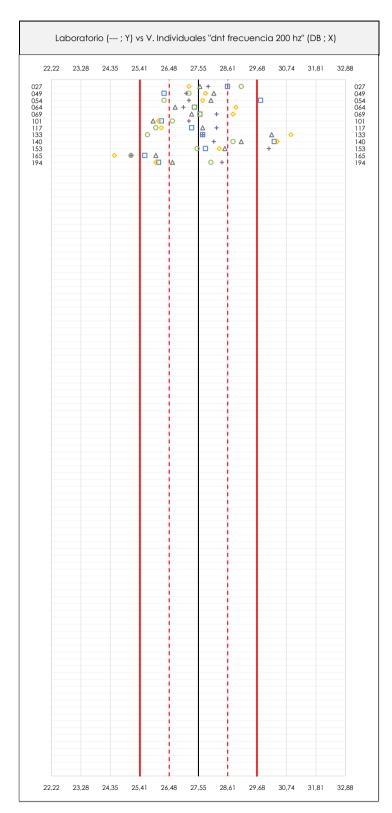
Apartado A.1. Gráficos de dispersión de valores medios

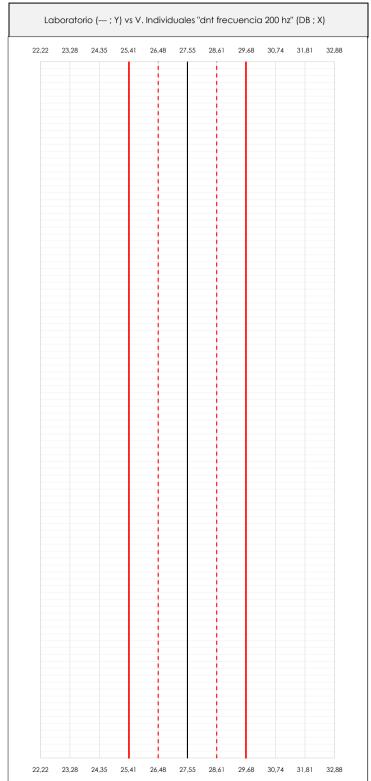
ANALISIS GRAFICO DE DISPERSION MEDIA (ANTES DE ANALISIS ESTADISTICO)

Dispersión de las medias aritméticas intra-laboratorios respecto de la media aritmética inter-laboratorios (27,55; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (28,61/26,48; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (29,67/25,42; líneas rojas de trazo continuo).

En el eje Y (adimensional) quedan reflejados los códigos de los laboratorios participantes y en el eje X (las unidades son las mismas que las del ensayo que se está analizando) las medias aritméticas intra-laboratorios representadas por punto de color negro.

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 200 HZ (DB)

Análisis A. Estudio pre-estadístico

Apartado A.2. Gráficos de dispersión de valores individuales

ANALISIS GRAFICOS DE DISPERSION INDIVIDUAL (ANTES DE ANALISIS ESTADISTICO)

Dispersión de los valores individuales respecto de la media aritmética inter-laboratorios (27,55; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (28,61/26,48; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (29,67/25,42; líneas rojas de trazo continuo).

En el eje Y (adimensional) queda reflejado el código del laboratorio participante y en el eje X (las unidades son las de los resultados del ensayo que se está analizando) los resultados individuales: el primero $(X_{i,1})$ se representa con un cuadrado azul, el segundo $(X_{i,2})$ con un círculo verde, el tercero $(X_{i,3})$ con un triángulo grís y el cuarto $(X_{i,4})$ con un rombo amarillo

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 200 HZ (DB)

Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	Х _{і 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{Li}	D _{i arit %}	Pasa A	Observaciones
27	28,60	29,10	27,60	27,20	27,90	28,08	0,766	1,94	√	
49 54	26,30 29,80	27,20 26,30	28,10	27,80 27,70	27,10 27,20	27,30 27,80	0,696 1,290	-0,89 0,93	√	
64	27,40	27,40	26,70	28,90	27,20	27,48	0,847	-0,24	→	
69	27,40	27,40	27,30	28,80	28,20	27,90	0,600	1,29		
101	26,20	26,60	25,90	26,10	27,20	26,40	0,515	-4,16	→	
117	27,30	26,00	27,70	26,20	28,20	27,08	0,952	-1,69	<u> </u>	
133	27,70	25,70	30,20	30,90	27,70	28,44	2,107	3,25	√	
140	30,30	28,80	29,10	30,40	28,10	29,34	0,991	6,52	√	
153	27,80	27,50	28,50	28,30	30,10	28,44	1,009	3,25	√	
165	25,60	25,10	26,00	24,50	25,10	25,26	0,568	-8,30	√	
194	26,10	28,00	26,60	26,00	28,40	27,02	1,110	-1,91	✓	

NOTAS:

[máximo]

[mínimo]

[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \, arit}$ " es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 200 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

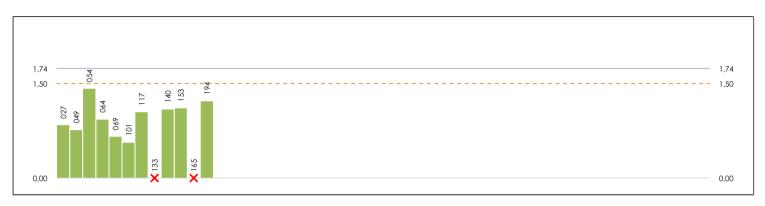
Apartado B.1. Gráfico de consistencia inter-laboratorios "h" de Mandel

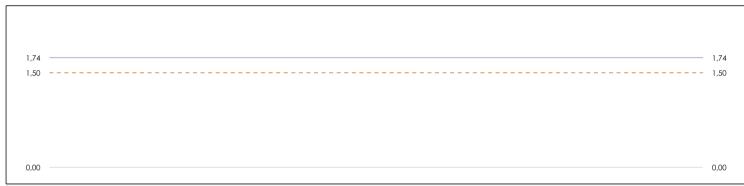
ANALISIS GRAFICO DE CONSISTENCIA INTER-LABORATORIOS

Análisis gráfico de consistencia inter-laboratorios "h" de Mandel. En él se representan las medias aritméticas inter-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 200 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.2. Gráfico de consistencia intra-laboratorios "k" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTRA-LABORATORIOS

Análisis gráfico de consistencia intra-laboratorios "k" de Mandel. En él se representan las medias aritméticas intra-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes y el número de ensayos efectuados).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 200 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

							•									
Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{Li}	D _{i arit %}	h _i	k _i	C _i	G _{Sim Inf}	G _{Sim Sup}	G _{Dob Inf}	G _{Dob Sup}	Pasa B
27	28,600	29,100	27,600	27,200	27,900	28,080	0,766	1,43	0,48	0,85						√
49	26,30	27,200	28,100	27,800	27,100	27,300	0,696	-1,39	-0,46	0,77						<u>√</u>
54	29,80	26,300	28,000	27,700	27,200	27,800	1,290	0,42	0,14	1,42						√
64	27,40	27,400	26,700	28,900	27,000	27,480	0,847	-0,74	-0,25	0,93						✓
69	27,60	27,600	27,300	28,800	28,200	27,900	0,600	0,78	0,26	0,66						√
101	26,20	26,600	25,900	26,100	27,200	26,400	0,515	-4,64	-1,55	0,57		1,550		0,5847		✓
117	27,30	26,000	27,700	26,200	28,200	27,080	0,952	-2,18	-0,73	1,05						✓
133	27,70	25,700	30,200	30,900	27,700	28,440										Х
140	30,30	28,800	29,100	30,400	28,100	29,340	0,991	5,98	2,00*	1,09	0,203		1,999		0,3455	✓
153	27,80	27,500	28,500	28,300	30,100	28,440	1,009	2,73	0,91	1,11					0,3455	✓
165	25,60	25,100	26,000	24,500	25,100	25,260										X
194	26,10	28,000	26,600	26,000	28,400	27,020	1,110	-2,40	-0,80	1,22				0,5847		✓

NOTAS:

[aberrante]

[anómalo]

[máximo]

[mínimo]

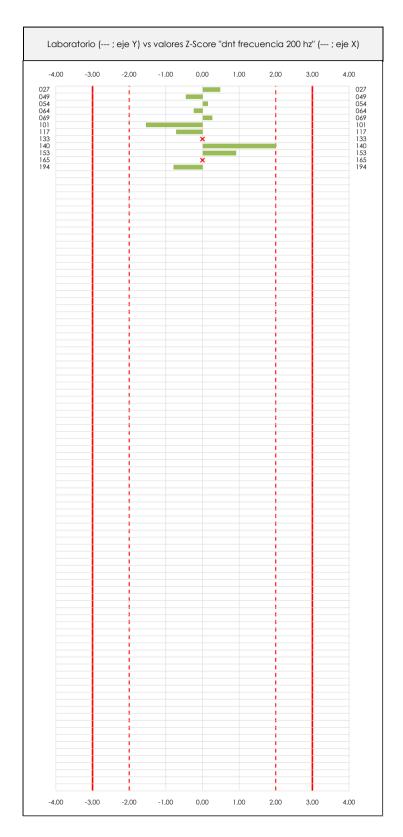
[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \text{ arit}}$ " es la media aritmética intralaboratorio calculada sin redondear.

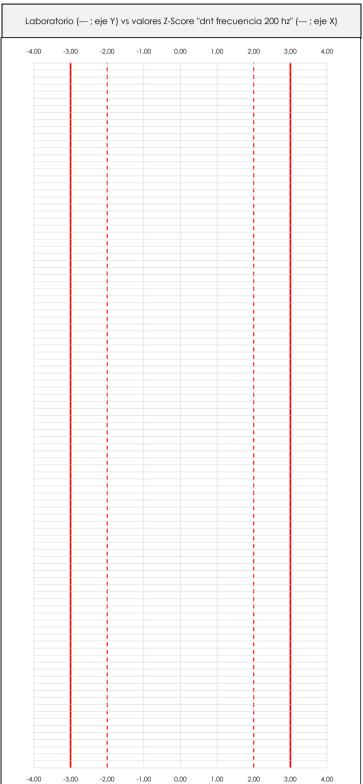
^{02 &}quot;S_Li" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ "h₁ y k," ,"C₁", "G_{Sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 200 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.1. Análisis gráfico Altman Z-Score

ANALISIS GRAFICO Z-SCORE

Diagrama Z-Score para los resultados aportados por los laboratorios. Estos se considerarán satisfactorios (S) si el valor absoluto del Z-Score es menor o igual a 2 unidades, dudoso si está comprendido entre 2 y 3 unidades e insatisfactorio si es mayor o igual a 3 unidades.

Los resultados satisfactorios quedan reflejados entre las dos líneas rojas discontinuas, líneas de referencia en la evaluación Z-Score.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 200 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

									<u> </u>		T			7.0	- · · · · ·
Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{Li}	D _{i arit %}	Pasa A	Pasa B	Total	Causa	Iteracion	Z-Score	Evaluación
27	28,60	29,10	27,60	27,20	27,90	28,08	0,766	1,43	√	✓	√			0,478	S
49	26,30	27,20	28,10	27,80	27,10	27,30	0,696	-1,39	√	✓	√			-0,464	S
54	29,80	26,30	28,00	27,70	27,20	27,80	1,290	0,42	√	√	√			0,140	S
64	27,40	27,40	26,70	28,90	27,00	27,48	0,847	-0,74	√	✓	✓			-0,246	S
69	27,60	27,60	27,30	28,80	28,20	27,90	0,600	0,78	✓	✓	✓			0,261	S
101	26,20	26,60	25,90	26,10	27,20	26,40	0,515	-4,64	✓	✓	✓			-1,550	S
117	27,30	26,00	27,70	26,20	28,20	27,08	0,952	-2,18	✓	✓	✓			-0,729	S
133	27,70	25,70	30,20	30,90	27,70	28,44			✓	X	X	AN	0		
140	30,30	28,80	29,10	30,40	28,10	29,34	0,991	5,98	✓	✓	✓			1,999	S
153	27,80	27,50	28,50	28,30	30,10	28,44	1,009	2,73	✓	✓	✓			0,913	S
165	25,60	25,10	26,00	24,50	25,10	25,26			✓	X	X	AN	0		
194	26,10	28,00	26,60	26,00	28,40	27,02	1,110	-2,40	✓	✓	✓			-0,802	S

NOTAS:

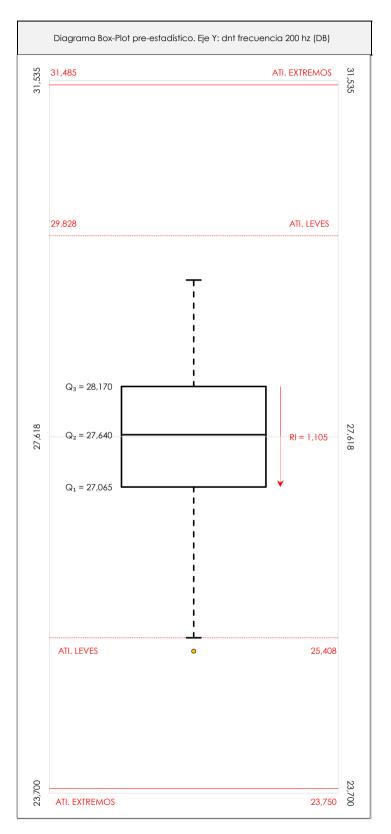
[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \text{ arit}}$ " es la media aritmética intralaboratorio calculada sin redondear.

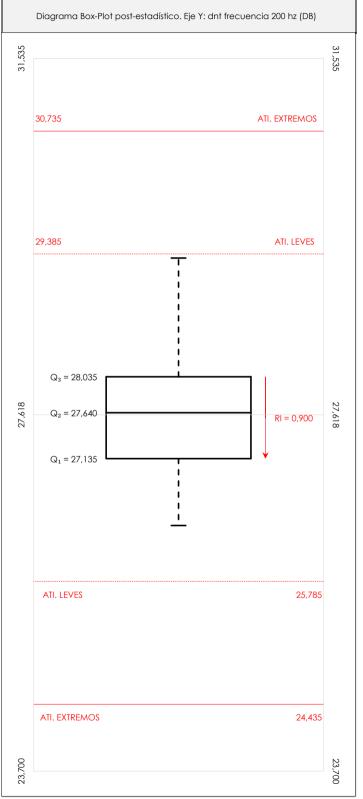
^{02 &}quot;S_Li" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

 $^{^{03}}$ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leqslant 2] [Dudoso (D) - si 2 < | ZS | \leqslant 3] [Insatisfactorio (I) - si | ZS | > 3].

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

CICEComité de infraestructuras para la Calidad de la Edificación




SACE
Subcomisión Administrativa para la
Calidad de la Edificación

DNT FRECUENCIA 200 HZ (DB)

Análisis D. Estudios post-estadisticos

Apartado D.3. Diagramas Box-Plot o de Caja y Bigotes

ANALISIS GRAFICO DE CAJA Y BIGOTES (ANTES Y DESPUES DE ANALISIS ESTADISTICO)

Diagramas de caja y bigotes (Box Plot) de las medias aritméticas de los resultados aportados por los laboratorios antes (diagrama de la izquierda. Este incluye valores aberrantes y anómalos) y después (diagrama de la derecha. No incluye los valores descartados a lo largo del estudio) de análisis estadístico.

En ambos se han representado: el primer cuartil (Q_1 ; 25% de los datos), el segundo cuartil o la mediana (Q_2 ; 50% de los datos), el tercer cuartil (Q_3 ; 75% de los datos), el rango intercuartílico (RI; cuartil tres menos cuartil uno) y los límites de valores atípicos leves (f_3 y f_1 para el máximo y mínimo respectivamente; líneas discontinuas de color rojo) y extremos (f_3 * y f_1 * para el máximo y mínimo respectivamente; líneas continuas de color rojo).

CICE Comité de infraestructuras para la Calidad de la Edificación

COM

SACE
Subcomisión Administrativa para la
Calidad de la Edificación

DNT FRECUENCIA 200 HZ (DB)

Conclusiones

Determinación de la repetibilidad y reproducibilidad

El análisis estadístico ElLA20 para el ensayo "DNT FRECUENCIA 200 HZ", ha contado con la participación de un total de 12 laboratorios, debiendo haber aportado cada uno de ellos, un total de 5 determinaciones individuales además de su valor medio.

Tras analizar los resultados podemos concluir que, para cumplir con los criterios estadísticos establecidos en el informe, un total de 2 laboratorios han sido apartados de la evaluación final: 0 en el Análisis Pre-Estadístico (por no cumplir el criterio de validación y/o el procedimiento de ejecución recogido en la norma de ensayo) y 2 en el Análisis Estadístico (por resultar anómalos o aberrantes en las técnicas gráficas de consistencia de Mandel y en los ensayos de detección de resultados numéricos de Cochran y Grubbs), al cabo de 2 iteraciones.

De cada uno de los análisis (pre-estadístico y estadístico), se obtienen las siguientes tablas:

TIPO DE ANALISIS			PRE-ES	TADISTIC	0				ESTA	DISTICO		
Variables	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$
Valor Máximo (max ; %)	30,30	29,10	30,20	30,90	30,10	29,34	30,30	29,10	29,10	30,40	30,10	29,34
Valor Mínimo (min ; %)	25,60	25,10	25,90	24,50	25,10	25,26	26,10	26,00	25,90	26,00	27,00	26,40
Valor Promedio (M; %)	27,56	27,11	27,64	27,73	27,68	27,55	27,74	27,45	27,55	27,74	27,94	27,68
Desviación Típica (SDL ;)	1,45	1,22	1,26	1,88	1,17	1,06	1,45	1,00	0,96	1,42	0,93	0,83
Coef. Variación (CV ;)	0,05	0,04	0,05	0,07	0,04	0,04	0,05	0,04	0,03	0,05	0,03	0,03
VARIABLES	S_r^2	r		$S_L^{\ 2}$	S_R^{2}	R	S_r^2	r		S_L^2	S_R^{-2}	R
Valor Calculado	1,082	2,88	33 (0,910	1,992	3,912	0,822	2,51	13 0	,522	1,344	3,213
Valor Referencia												

Asimismo, acompañando a éstas tablas y dependiendo del análisis que se esté llevando a cabo, se introducen los indicadores estadísticos "h y k" de Mandel y los valores críticos "C" de Cochran y "G_{sim} y G_{Dob}" de Grubbs, todos ellos adimensionales, obtenidos de las tablas 4, 5, 6 y 7 de la norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios y del número de ensayos efectuados por cada uno de ellos:

TIPO DE ANALISIS		PRE	-ESTADISTI	со			E	STADISTIC)	
VARIABLES	h	k	С	G_{sim}	G_{Dob}	h	k	С	G_{sim}	G_{Dob}
Nivel de Significación 1%	2,18	1,74	0,343	2,482	0,1150	2,18	1,74	0,393	2,482	0,1150
Nivel de Significación 5%	1,80	1,50	0,288	2,290	0,1864	1,80	1,50	0,331	2,290	0,1864

Con los resultados de los laboratorios, que tras los dos análisis estadísticos son evaluados por Z-Score, se han obtenido: 10 resultados satisfactorios, 0 resultados dudosos y 0 resultados insatisfactorios.

Respecto a los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística recogida en la ISO 17025, sobre las dispersiones de los resultados individuales y su media, en forma de varianzas o desviaciones estándar, también conocida como ANOVA (siglas de analisys of varience).

Sabiendo que una varianza es la suma de cuadrados dividida por un número, que se llama grados de libertad, que depende del número de participantes menos 1, se puede decir que la imprecisión del ensayo se descompone en dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad (variabilidad intralaboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad debida al cambio de laboratorio).

Las condiciones de repetibilidad de este ensayo son: mismo laborante, mismo laboratorio y mismo equipo de medición utilizado dentro de un período de tiempo corto. Por ende, las condiciones de reproducibilidad para la misma muestra y ensayo, cambian en: el laboratorio, el equipo y las condiciones de uso y tiempo.

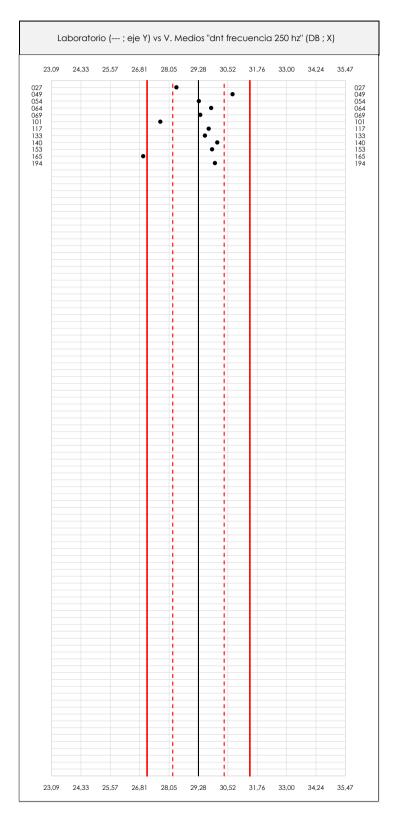
Comité de infraestructuras para la Calidad de la Edificación

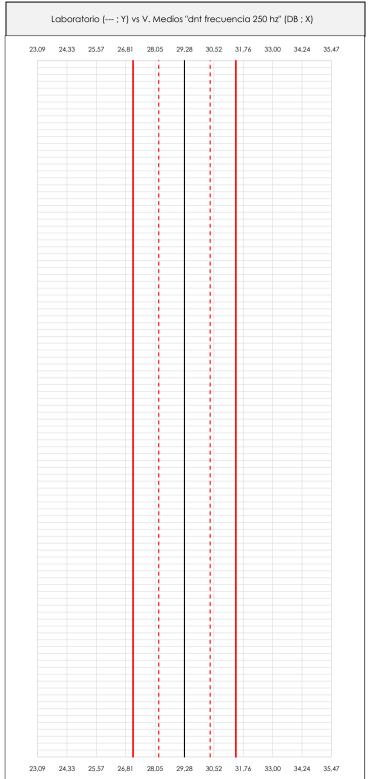
Subcomisión Administrativa para la Calidad de la Edificación

ANÁLISIS ESTADISTICO DE ACÚSTICA

DNT FRECUENCIA 250 HZ

Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 250 HZ (DB) Análisis A. Estudio pre-estadístico

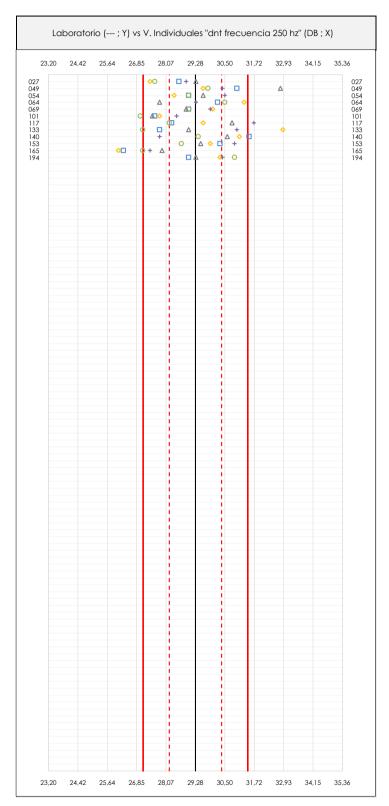
Apartado A.1. Gráficos de dispersión de valores medios

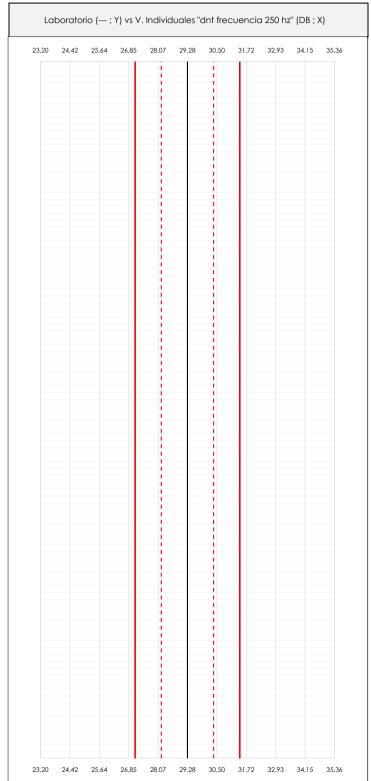
ANALISIS GRAFICO DE DISPERSION MEDIA (ANTES DE ANALISIS ESTADISTICO)

Dispersión de las medias aritméticas intra-laboratorios respecto de la media aritmética inter-laboratorios (29,28; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (30,37/28,20; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (31,45/27,12; líneas rojas de trazo continuo).

En el eje Y (adimensional) quedan reflejados los códigos de los laboratorios participantes y en el eje X (las unidades son las mismas que las del ensayo que se está analizando) las medias aritméticas intra-laboratorios representadas por punto de color negro.

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 250 HZ (DB)

Análisis A. Estudio pre-estadístico

Apartado A.2. Gráficos de dispersión de valores individuales

ANALISIS GRAFICOS DE DISPERSION INDIVIDUAL (ANTES DE ANALISIS ESTADISTICO)

Dispersión de los valores individuales respecto de la media aritmética inter-laboratorios (29,28; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (30,37/28,20; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (31,45/27,12; líneas rojas de trazo continuo).

En el eje Y (adimensional) queda reflejado el código del laboratorio participante y en el eje X (las unidades son las de los resultados del ensayo que se está analizando) los resultados individuales: el primero $(X_{i,1})$ se representa con un cuadrado azul, el segundo $(X_{i,2})$ con un círculo verde, el tercero $(X_{i,3})$ con un triángulo grís y el cuarto $(X_{i,4})$ con un rombo amarillo

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 250 HZ (DB)

Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	Х _{і 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{Li}	D _{i arit %}	Pasa A	Observaciones
27	28,60	27,60	29,30	27,40	28,90	28,36	0,826	-3,15	✓	
49	31,00	29,80	32,80	29,60	30,40	30,72	1,285	4,91	✓	
54	29,00	29,00	29,60	28,40	30,50	29,30	0,794	0,06	✓	
64	30,20	30,50	27,80	31,30	29,30	29,82	1,337	1,83	√	
69	29,00	29,00	28,90	30,00	29,90	29,36	0,541	0,26	√	
101	27,60	27,00	27,50	27,80	28,50	27,68	0,545	-5,48	√	
117	28,30	28,20	30,80	29,60	31,70	29,72	1,535	1,49	√	
133	27,80	27,10	29,00	32,90	31,00	29,56	2,382	0,94	√	
140	31,50	29,40	30,60	31,10	27,80	30,08	1,499	2,72	√	
153	30,30	28,70	29,50	29,90	30,90	29,86	0,829	1,97	√	
165	26,30	27,10	27,90	26,10	27,40	26,96	0,754	-7,93	√	
194	29,00	30,90	29,30	30,30	30,40	29,98	0,798	2,38	√	

NOTAS:

[máximo]

[mínimo]

[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \, arit}$ " es la media aritmética intralaboratorio calculada sin redondear.

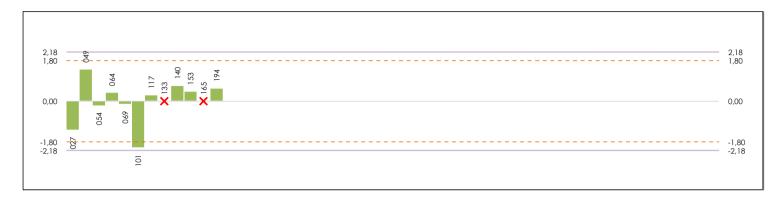
^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación

SACE Subcomisión Administrativa para la


Calidad de la Edificación

DNT FRECUENCIA 250 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.1. Gráfico de consistencia inter-laboratorios "h" de Mandel

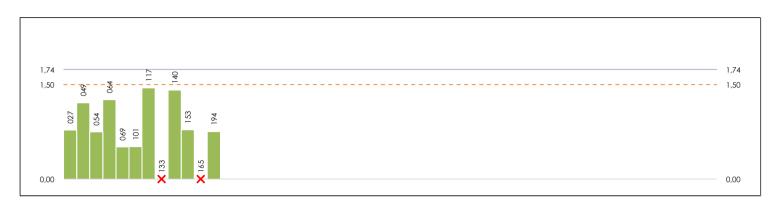
ANALISIS GRAFICO DE CONSISTENCIA INTER-LABORATORIOS

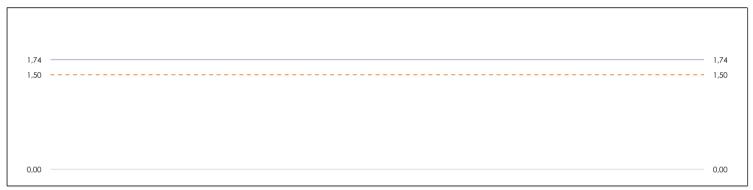
Análisis gráfico de consistencia inter-laboratorios "h" de Mandel. En él se representan las medias aritméticas inter-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes).

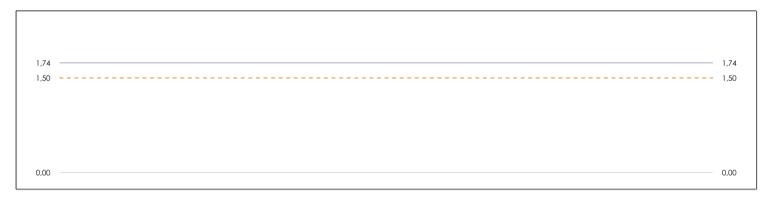
Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

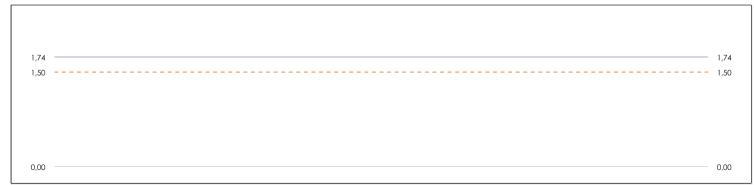
Comité de infraestructuras para la Calidad de la Edificación

SACE Subcomisión Administrativa para la


Calidad de la Edificación




DNT FRECUENCIA 250 HZ (DB)


Análisis B. Mandel, Cochran y Grubbs

Apartado B.2. Gráfico de consistencia intra-laboratorios "k" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTRA-LABORATORIOS

Análisis gráfico de consistencia intra-laboratorios "k" de Mandel. En él se representan las medias aritméticas intra-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes y el número de ensayos efectuados).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 250 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i2}	X _{i 3}	X _{i 4}	X _{i5}	X _{i arit}	S _{Li}	D _{i arit %}	h _i	k _i	C _i	G _{Sim Inf}	G _{Sim Sup}	G _{Dob Inf}	G _{Dob Sup}	Pasa B
27	28,600	27,600	29,300	27,400	28,900	28,360	0,826	-3,83	-1,28	0,78				0,1980		✓
49	31,00	29,800	32,800	29,600	30,400	30,720	1,285	4,18	1,40	1,21			1,396	0,1700	0,6740	<u> </u>
54	29,00	29,000	29,600	28,400	30,500	29,300	0,794	-0,64	-0,21	0,75			1,070		0,07 40	
64	30,20	30,500	27,800	31,300	29,300	29,820	1,337	1,13	0,38	1,26						<u> </u>
69	29,00	29,000	28,900	30,000	29,900	29,360	0,541	-0,43	-0,15	0,51						<u> </u>
101	27,60	27,000	27,500	27,800	28,500	27,680	0,545	-6,13	-2,05*	0,51	0,209	2,049		0,1980		√
117	28,30	28,200	30,800	29,600	31,700	29,720	1,535	0,79	0,26	1,45						√
133	27,80	27,100	29,000	32,900	31,000	29,560										Х
140	31,50	29,400	30,600	31,100	27,800	30,080	1,499	2,01	0,67	1,41					0,6740	√
153	30,30	28,700	29,500	29,900	30,900	29,860	0,829	1,26	0,42	0,78						√
165	26,30	27,100	27,900	26,100	27,400	26,960										X
194	29,00	30,900	29,300	30,300	30,400	29,980	0,798	1,67	0,56	0,75						√

NOTAS:

[aberrante]

[anómalo]

[máximo]

[mínimo]

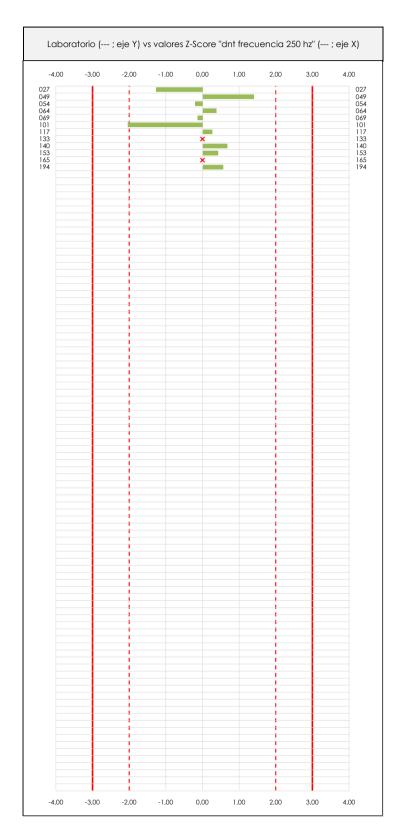
[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \text{ arift}}$ " es la media aritmética intralaboratorio calculada sin redondear.

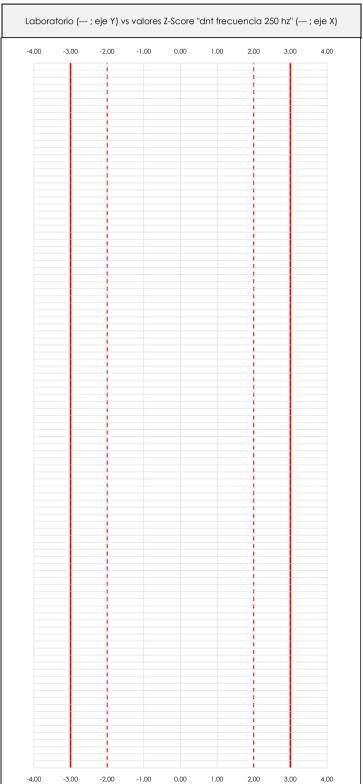
^{02 &}quot;S_Li" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ "h₁ y k," ,"C₁", "G_{Sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 250 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.1. Análisis gráfico Altman Z-Score

ANALISIS GRAFICO Z-SCORE

Diagrama Z-Score para los resultados aportados por los laboratorios. Estos se considerarán satisfactorios (S) si el valor absoluto del Z-Score es menor o igual a 2 unidades, dudoso si está comprendido entre 2 y 3 unidades e insatisfactorio si es mayor o igual a 3 unidades.

Los resultados satisfactorios quedan reflejados entre las dos líneas rojas discontinuas, líneas de referencia en la evaluación Z-Score.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 250 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

Lab	X _{i 1}	X_{i2}	X _{i 3}	X_{i4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S_{Li}	D _{i arit %}	Pasa A	Pasa B	Total	Causa	Iteración	Z-Score	Evaluación
27	28,60	27,60		27,40	28,90	28,36	0,826	-3,83	✓	✓	✓			-1,279	S
49	31,00	29,80		29,60	30,40	30,72	1,285	4,18	✓	✓	✓			1,396	S
54	29,00	29,00		28,40	30,50	29,30	0,794	-0,64	✓	✓	✓			-0,213	S
64	30,20	30,50		31,30	29,30	29,82	1,337	1,13	✓	✓	✓			0,376	S
69	29,00	29,00		30,00	29,90	29,36	0,541	-0,43	√	✓	✓			-0,145	S
101	27,60	27,00		27,80	28,50	27,68	0,545	-6,13	√	✓	✓			-2,049	D
117	28,30	28,20		29,60	31,70	29,72	1,535	0,79	✓	✓	✓			0,263	S
133	27,80	27,10		32,90	31,00	29,56			√	Х	X	AN	0		
140	31,50	29,40		31,10	27,80	30,08	1,499	2,01	✓	✓	✓			0,671	S
153	30,30	28,70		29,90	30,90	29,86	0,829	1,26	✓	✓	✓			0,422	S
165	26,30	27,10		26,10	27,40	26,96			✓	Х	X	AN	0		
194	29,00	30,90	29,30	30,30	30,40	29,98	0,798	1,67	✓	✓	✓			0,558	S

NOTAS:

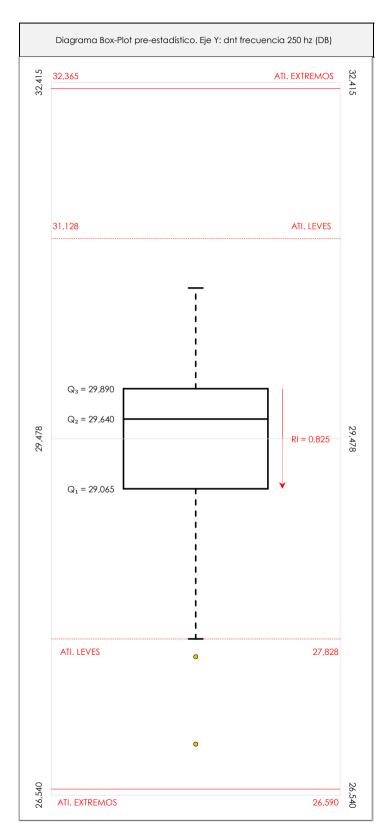
[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \text{ arit}}$ " es la media aritmética intralaboratorio calculada sin redondear.

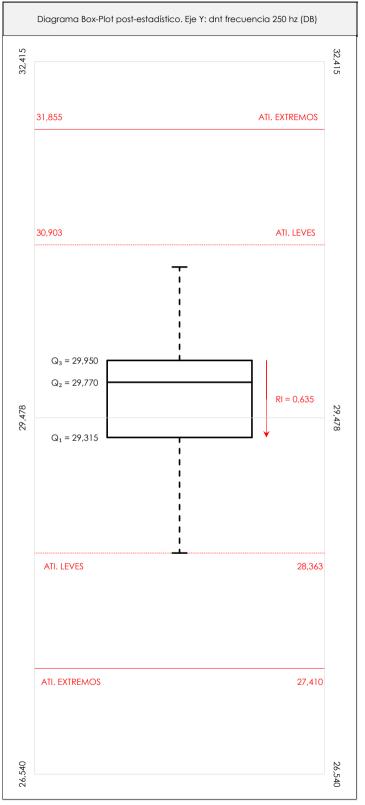
^{02 &}quot;S_Li" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

 $^{^{03}}$ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leqslant 2] [Dudoso (D) - si 2 < | ZS | \leqslant 3] [Insatisfactorio (I) - si | ZS | > 3].

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

CICEComité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 250 HZ (DB)

Análisis D. Estudios post-estadisticos

Apartado D.3. Diagramas Box-Plot o de Caja y Bigotes

ANALISIS GRAFICO DE CAJA Y BIGOTES (ANTES Y DESPUES DE ANALISIS ESTADISTICO)

Diagramas de caja y bigotes (Box Plot) de las medias aritméticas de los resultados aportados por los laboratorios antes (diagrama de la izquierda. Este incluye valores aberrantes y anómalos) y después (diagrama de la derecha. No incluye los valores descartados a lo largo del estudio) de análisis estadístico.

En ambos se han representado: el primer cuartil (Q_1 ; 25% de los datos), el segundo cuartil o la mediana (Q_2 ; 50% de los datos), el tercer cuartil (Q_3 ; 75% de los datos), el rango intercuartílico (RI; cuartil tres menos cuartil uno) y los límites de valores atípicos leves (f_3 y f_1 para el máximo y mínimo respectivamente; líneas discontinuas de color rojo) y extremos (f_3 * y f_1 * para el máximo y mínimo respectivamente; líneas continuas de color rojo).

CICE Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 250 HZ (DB)

Conclusiones

Determinación de la repetibilidad y reproducibilidad

El análisis estadístico ElLA20 para el ensayo "DNT FRECUENCIA 250 HZ", ha contado con la participación de un total de 12 laboratorios, debiendo haber aportado cada uno de ellos, un total de 5 determinaciones individuales además de su valor medio.

Tras analizar los resultados podemos concluir que, para cumplir con los criterios estadísticos establecidos en el informe, un total de 2 laboratorios han sido apartados de la evaluación final: 0 en el Análisis Pre-Estadístico (por no cumplir el criterio de validación y/o el procedimiento de ejecución recogido en la norma de ensayo) y 2 en el Análisis Estadístico (por resultar anómalos o aberrantes en las técnicas gráficas de consistencia de Mandel y en los ensayos de detección de resultados numéricos de Cochran y Grubbs), al cabo de 2 iteraciones.

De cada uno de los análisis (pre-estadístico y estadístico), se obtienen las siguientes tablas:

TIPO DE ANALISIS			PRE-ES	TADISTIC	0				ESTA	DISTICO		
Variables	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$
Valor Máximo (max ; %)	31,50	30,90	32,80	32,90	31,70	30,72	31,50	30,90	32,80	31,30	31,70	30,72
Valor Mínimo (min ; %)	26,30	27,00	27,50	26,10	27,40	26,96	27,60	27,00	27,50	27,40	27,80	27,68
Valor Promedio (M; %)	29,05	28,69	29,42	29,53	29,73	29,28	29,45	29,01	29,61	29,54	29,83	29,49
Desviación Típica (SDL ;)	1,50	1,33	1,47	1,87	1,35	1,08	1,25	1,22	1,53	1,31	1,19	0,88
Coef. Variación (CV ;)	0,05	0,05	0,05	0,06	0,05	0,04	0,04	0,04	0,05	0,04	0,04	0,03
VARIABLES	S_r^2	r		$S_L^{\ 2}$	S_R^{2}	R	S_r^2	r		S_L^2	S_R^{-2}	R
Valor Calculado	1,459	3,34	48 (0,881	2,340	4,240	1,127	2,94	43 C	,553	1,680	3,593
Valor Referencia												

Asimismo, acompañando a éstas tablas y dependiendo del análisis que se esté llevando a cabo, se introducen los indicadores estadísticos "h y k" de Mandel y los valores críticos "C" de Cochran y "G_{sim} y G_{Dob}" de Grubbs, todos ellos adimensionales, obtenidos de las tablas 4, 5, 6 y 7 de la norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios y del número de ensayos efectuados por cada uno de ellos:

TIPO DE ANALISIS		PRI	E-ESTADISTI	со			E	STADISTIC)	
VARIABLES	h	k	С	G_{sim}	G_Dob	h	k	С	G_{sim}	G_{Dob}
Nivel de Significación 1%	2,18	1,74	0,343	2,482	0,1150	2,18	1,74	0,393	2,482	0,1150
Nivel de Significación 5%	1,80	1,50	0,288	2,290	0,1864	1,80	1,50	0,331	2,290	0,1864

Con los resultados de los laboratorios, que tras los dos análisis estadísticos son evaluados por Z-Score, se han obtenido: 9 resultados satisfactorios, 1 resultados dudosos y 0 resultados insatisfactorios.

Respecto a los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística recogida en la ISO 17025, sobre las dispersiones de los resultados individuales y su media, en forma de varianzas o desviaciones estándar, también conocida como ANOVA (siglas de analisys of varience).

Sabiendo que una varianza es la suma de cuadrados dividida por un número, que se llama grados de libertad, que depende del número de participantes menos 1, se puede decir que la imprecisión del ensayo se descompone en dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad (variabilidad intralaboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad debida al cambio de laboratorio).

Las condiciones de repetibilidad de este ensayo son: mismo laborante, mismo laboratorio y mismo equipo de medición utilizado dentro de un período de tiempo corto. Por ende, las condiciones de reproducibilidad para la misma muestra y ensayo, cambian en: el laboratorio, el equipo y las condiciones de uso y tiempo.

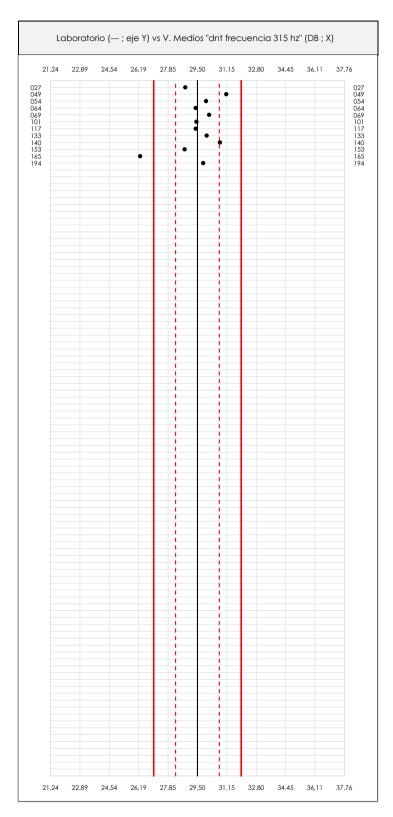
Comité de infraestructuras para la Calidad de la Edificación

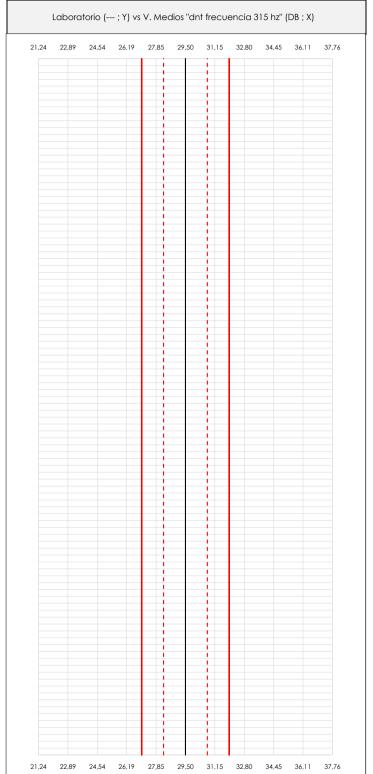
Subcomisión Administrativa para la Calidad de la Edificación

ANÁLISIS ESTADISTICO DE ACÚSTICA

DNT FRECUENCIA 315 HZ

Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 315 HZ (DB) Análisis A. Estudio pre-estadístico

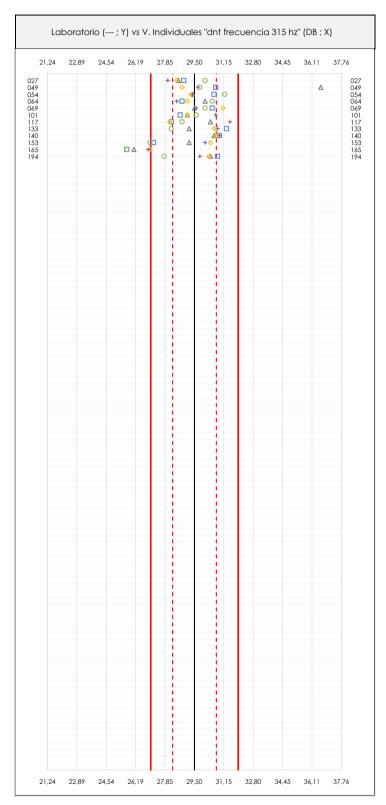
Apartado A.1. Gráficos de dispersión de valores medios

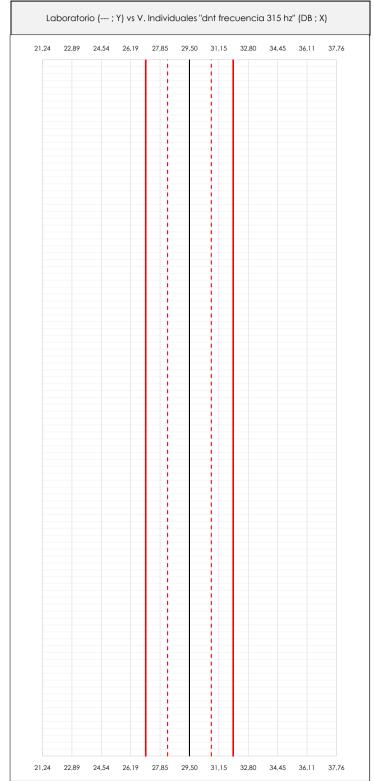
ANALISIS GRAFICO DE DISPERSION MEDIA (ANTES DE ANALISIS ESTADISTICO)

Dispersión de las medias aritméticas intra-laboratorios respecto de la media aritmética inter-laboratorios (29,50 ; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (30,73/28,27 ; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (31,96/27,04 ; líneas rojas de trazo continuo).

En el eje Y (adimensional) quedan reflejados los códigos de los laboratorios participantes y en el eje X (las unidades son las mismas que las del ensayo que se está analizando) las medias aritméticas intra-laboratorios representadas por punto de color negro.

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 315 HZ (DB)

Análisis A. Estudio pre-estadístico

Apartado A.2. Gráficos de dispersión de valores individuales

ANALISIS GRAFICOS DE DISPERSION INDIVIDUAL (ANTES DE ANALISIS ESTADISTICO)

Dispersión de los valores individuales respecto de la media aritmética inter-laboratorios (29,50; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (30,73/28,27; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (31,96/27,04; líneas rojas de trazo continuo).

En el eje Y (adimensional) queda reflejado el código del laboratorio participante y en el eje X (las unidades son las de los resultados del ensayo que se está analizando) los resultados individuales: el primero $(X_{i,1})$ se representa con un cuadrado azul, el segundo $(X_{i,2})$ con un círculo verde, el tercero $(X_{i,3})$ con un triángulo grís y el cuarto $(X_{i,4})$ con un rombo amarillo

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 315 HZ (DB)

Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	Х _{і 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{Li}	D _{i arit %}	Pasa A	Observaciones
27	28,90	30,10	28,60	28,50	28,00	28,82	0,785	-2,30	√	
49	30,70	29,80	36,60	28,80	29,70	31,12	3,136	5,50	√	
54	30,60	31,20	29,40	29,30	29,40	29,98	0,867	1,63	√	
64	28,80	30,50	30,10 29,50	29,10 31,10	28,50 29,60	29,40 30,16	0,860	-0,33 2,24	→	
101	28,70	29,60	29,10	29,10	30,70	29,44	0,773	-0,20	→	
117	28,20	28,80	30,40	28,10	31,50	29,40	1,492	-0,33	<u> </u>	
133	31,30	28,20	29,20	30,60	30,80	30,02	1,281	1,77	√	
140	30,90	30,70	30,60	30,70	30,90	30,76	0,134	4,28	√	
153	27,20	27,00	29,20	30,40	30,10	28,78	1,597	-2,44	√	
165	25,70	25,70	26,10	27,00	26,90	26,28	0,634	-10,91	✓	
194	30,80	27,80	30,40	30,30	29,80	29,82	1,184	1,09	✓	

NOTAS:

[máximo]

[mínimo]

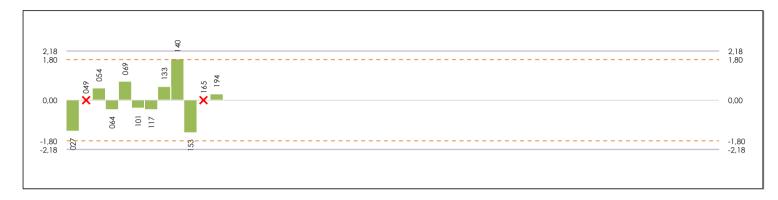
[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \, arit}$ " es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación


SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 315 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.1. Gráfico de consistencia inter-laboratorios "h" de Mandel

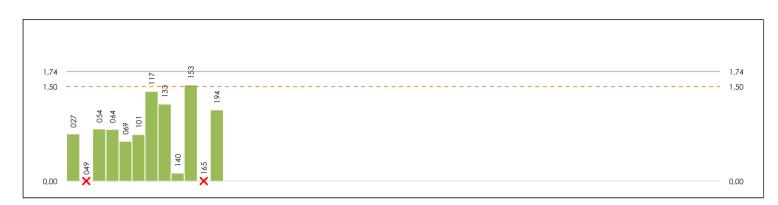
ANALISIS GRAFICO DE CONSISTENCIA INTER-LABORATORIOS

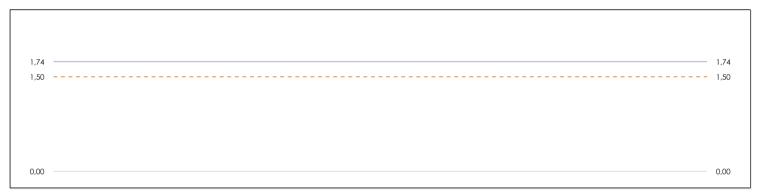
Análisis gráfico de consistencia inter-laboratorios "h" de Mandel. En él se representan las medias aritméticas inter-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes).

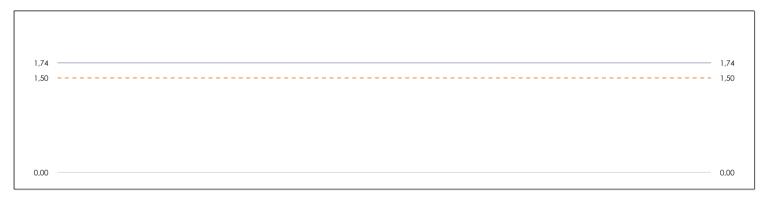
Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

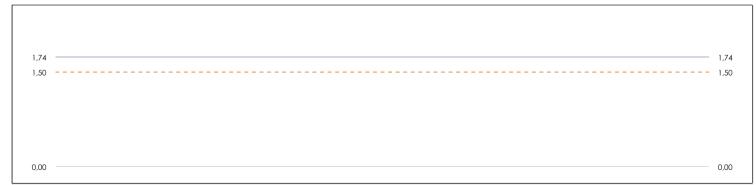
Comité de infraestructuras para la Calidad de la Edificación

SACE Subcomisión Administrativa para la


Calidad de la Edificación




DNT FRECUENCIA 315 HZ (DB)


Análisis B. Mandel, Cochran y Grubbs

Apartado B.2. Gráfico de consistencia intra-laboratorios "k" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTRA-LABORATORIOS

Análisis gráfico de consistencia intra-laboratorios "k" de Mandel. En él se representan las medias aritméticas intra-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes y el número de ensayos efectuados).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 315 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

Lab						~	c	_	I.	1.	_	_	_	_	_	D D
	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{L i}	D _{i arit %}	h _i	k _i	Ci	G _{Sim Inf}	G _{Sim Sup}	G _{Dob Inf}	G _{Dob} Sup	Pasa B
27	28,900	30,100	28,600	28,500	28,000	28,820	0,785	-2,83	-1,37	0,75				0,4555		√
49	30,70	29,800	36,600	28,800	29,700	31,120										X
54	30,60	31,200	29,400	29,300	29,400	29,980	0,867	1,09	0,53	0,83						√
64	28,80	30,500	30,100	29,100	28,500	29,400	0,860	-0,87	-0,42	0,82						√
69	30,50	30,100	29,500	31,100	29,600	30,160	0,662	1,69	0,82	0,63					0,4712	✓
101	28,70	29,600	29,100	29,100	30,700	29,440	0,773	-0,74	-0,36	0,74						✓
117	28,20	28,800	30,400	28,100	31,500	29,400	1,492	-0,87	-0,42	1,42						✓
133	31,30	28,200	29,200	30,600	30,800	30,020	1,281	1,22	0,59	1,22						✓
140	30,90	30,700	30,600	30,700	30,900	30,760	0,134	3,72	1,80	0,13			1,798		0,4712	✓
153	27,20	27,000	29,200	30,400	30,100	28,780	1,597	-2,96	-1,43	1,52*	0,232	1,432		0,4555		✓
165	25,70	25,700	26,100	27,000	26,900	26,280										X
194	30,80	27,800	30,400	30,300	29,800	29,820	1,184	0,55	0,26	1,13						✓

NOTAS:

[aberrante]

[anómalo]

[máximo]

[mínimo]

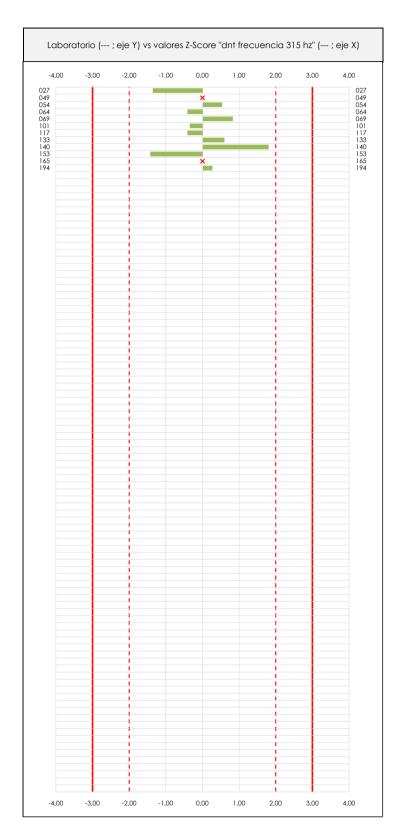
[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \text{ arit}}$ " es la media aritmética intralaboratorio calculada sin redondear.

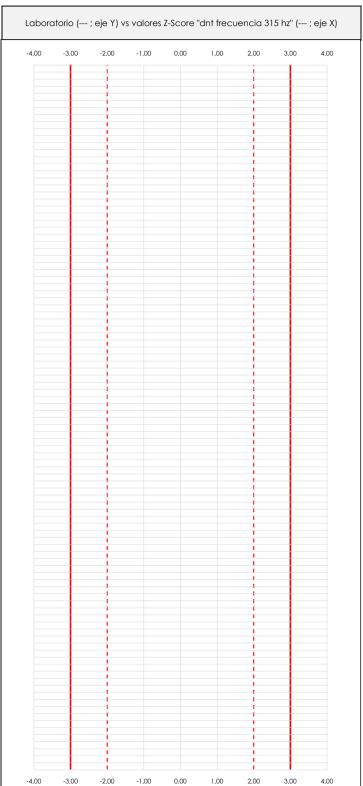
^{02 &}quot;S_Li" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ "h₁ y k," ,"C₁", "G_{Sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 315 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.1. Análisis gráfico Altman Z-Score

ANALISIS GRAFICO Z-SCORE

Diagrama Z-Score para los resultados aportados por los laboratorios. Estos se considerarán satisfactorios (S) si el valor absoluto del Z-Score es menor o igual a 2 unidades, dudoso si está comprendido entre 2 y 3 unidades e insatisfactorio si es mayor o igual a 3 unidades.

Los resultados satisfactorios quedan reflejados entre las dos líneas rojas discontinuas, líneas de referencia en la evaluación Z-Score.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 315 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

Lab	$X_{i 1}$	X _{i2}	X _{i3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S_{Li}	D _{i arit %}	Pasa A	Pasa B	Total	Causa	Iteración	7-Score	Evaluación
	A11	712	713	714	713	74 dili	ori	Didili %						2 000.0	2100000
27	28,90	30,10	28,60	28,50	28,00	28,82	0,785	-2,83	√	√	√			-1,367	S
49	30,70	29,80	36,60	28,80	29,70	31,12			√	Х	Х	AB	0		
54	30,60	31,20	29,40	29,30	29,40	29,98	0,867	1,09	✓	✓	✓			0,525	S
64	28,80	30,50	30,10	29,10	28,50	29,40	0,860	-0,87	✓	✓	✓			-0,421	S
69	30,50	30,10	29,50	31,10	29,60	30,16	0,662	1,69	✓	✓	✓			0,819	S
101	28,70	29,60	29,10	29,10	30,70	29,44	0,773	-0,74	✓	✓	✓			-0,356	S
117	28,20	28,80	30,40	28,10	31,50	29,40	1,492	-0,87	✓	✓	✓			-0,421	S
133	31,30	28,20	29,20	30,60	30,80	30,02	1,281	1,22	✓	✓	✓			0,591	S
140	30,90	30,70	30,60	30,70	30,90	30,76	0,134	3,72	✓	✓	✓			1,798	S
153	27,20	27,00	29,20	30,40	30,10	28,78	1,597	-2,96	✓	✓	✓			-1,432	S
165	25,70	25,70	26,10	27,00	26,90	26,28			✓	X	X	AB	0		
194	30,80	27,80	30,40	30,30	29,80	29,82	1,184	0,55	✓	✓	✓			0,264	S

NOTAS:

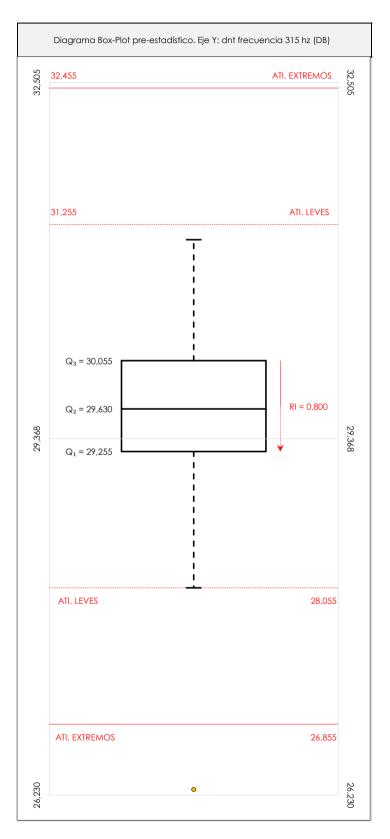
[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \text{ arit}}$ " es la media aritmética intralaboratorio calculada sin redondear.

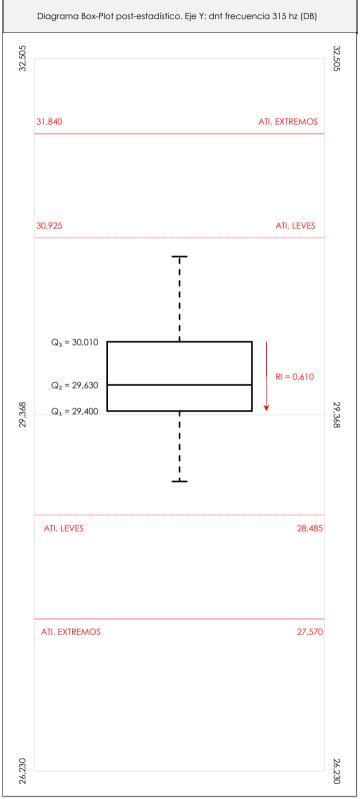
^{02 &}quot;S_Li" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

 $^{^{03}}$ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leqslant 2] [Dudoso (D) - si 2 < | ZS | \leqslant 3] [Insatisfactorio (I) - si | ZS | > 3].

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

CICE Comité de infraestructuras para la Calidad de la Edificación




SACE
Subcomisión Administrativa para la
Calidad de la Edificación

DNT FRECUENCIA 315 HZ (DB)

Análisis D. Estudios post-estadisticos

Apartado D.3. Diagramas Box-Plot o de Caja y Bigotes

ANALISIS GRAFICO DE CAJA Y BIGOTES (ANTES Y DESPUES DE ANALISIS ESTADISTICO)

Diagramas de caja y bigotes (Box Plot) de las medias aritméticas de los resultados aportados por los laboratorios antes (diagrama de la izquierda. Este incluye valores aberrantes y anómalos) y después (diagrama de la derecha. No incluye los valores descartados a lo largo del estudio) de análisis estadístico.

En ambos se han representado: el primer cuartil (Q_1 ; 25% de los datos), el segundo cuartil o la mediana (Q_2 ; 50% de los datos), el tercer cuartil (Q_3 ; 75% de los datos), el rango intercuartílico (RI; cuartil tres menos cuartil uno) y los límites de valores atípicos leves (f_3 y f_1 para el máximo y mínimo respectivamente; líneas discontinuas de color rojo) y extremos (f_3 * y f_1 * para el máximo y mínimo respectivamente; líneas continuas de color rojo).

CICE Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 315 HZ (DB)

Conclusiones

Determinación de la repetibilidad y reproducibilidad

El análisis estadístico ElLA20 para el ensayo "DNT FRECUENCIA 315 HZ", ha contado con la participación de un total de 12 laboratorios, debiendo haber aportado cada uno de ellos, un total de 5 determinaciones individuales además de su valor medio.

Tras analizar los resultados podemos concluir que, para cumplir con los criterios estadísticos establecidos en el informe, un total de 2 laboratorios han sido apartados de la evaluación final: 0 en el Análisis Pre-Estadístico (por no cumplir el criterio de validación y/o el procedimiento de ejecución recogido en la norma de ensayo) y 2 en el Análisis Estadístico (por resultar anómalos o aberrantes en las técnicas gráficas de consistencia de Mandel y en los ensayos de detección de resultados numéricos de Cochran y Grubbs), al cabo de 2 iteraciones.

De cada uno de los análisis (pre-estadístico y estadístico), se obtienen las siguientes tablas:

TIPO DE ANALISIS	PRE-ESTADISTICO							ESTADISTICO					
Variables	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$	
Valor Máximo (max ; %)	31,30	31,20	36,60	31,10	31,50	31,12	31,30	31,20	30,60	31,10	31,50	30,76	
Valor Mínimo (min ; %)	25,70	25,70	26,10	27,00	26,90	26,28	27,20	27,00	28,60	28,10	28,00	28,78	
Valor Promedio (M; %)	29,36	29,13	29,93	29,42	29,66	29,50	29,59	29,40	29,65	29,72	29,93	29,66	
Desviación Típica (SDL ;)	1,74	1,66	2,41	1,23	1,32	1,23	1,39	1,39	0,68	1,03	1,10	0,61	
Coef. Variación (CV ;)	0,06	0,06	0,08	0,04	0,04	0,04	0,05	0,05	0,02	0,03	0,04	0,02	
VARIABLES	S_r^2	r		$S_L^{\ 2}$	S_R^{2}	R	S_r^2	r		S_L^2	S_R^{-2}	R	
Valor Calculado	1,769	3,68	36	1,158	2,926	4,741	1,098	2,90	05 0	,156	1,254	3,104	
Valor Referencia													

Asimismo, acompañando a éstas tablas y dependiendo del análisis que se esté llevando a cabo, se introducen los indicadores estadísticos "h y k" de Mandel y los valores críticos "C" de Cochran y "G_{sim} y G_{Dob}" de Grubbs, todos ellos adimensionales, obtenidos de las tablas 4, 5, 6 y 7 de la norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios y del número de ensayos efectuados por cada uno de ellos:

TIPO DE ANALISIS		PRI	E-ESTADISTI	со		ESTADISTICO					
VARIABLES	h	k	С	G_{sim}	G_Dob	h	k	С	G_{sim}	G_{Dob}	
Nivel de Significación 1%	2,18	1,74	0,343	2,482	0,1150	2,18	1,74	0,393	2,482	0,1150	
Nivel de Significación 5%	1,80	1,50	0,288	2,290	0,1864	1,80	1,50	0,331	2,290	0,1864	

Con los resultados de los laboratorios, que tras los dos análisis estadísticos son evaluados por Z-Score, se han obtenido: 10 resultados satisfactorios, 0 resultados dudosos y 0 resultados insatisfactorios.

Respecto a los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística recogida en la ISO 17025, sobre las dispersiones de los resultados individuales y su media, en forma de varianzas o desviaciones estándar, también conocida como ANOVA (siglas de analisys of varience).

Sabiendo que una varianza es la suma de cuadrados dividida por un número, que se llama grados de libertad, que depende del número de participantes menos 1, se puede decir que la imprecisión del ensayo se descompone en dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad (variabilidad intralaboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad debida al cambio de laboratorio).

Las condiciones de repetibilidad de este ensayo son: mismo laborante, mismo laboratorio y mismo equipo de medición utilizado dentro de un período de tiempo corto. Por ende, las condiciones de reproducibilidad para la misma muestra y ensayo, cambian en: el laboratorio, el equipo y las condiciones de uso y tiempo.

Comité de infraestructuras para la Calidad de la Edificación

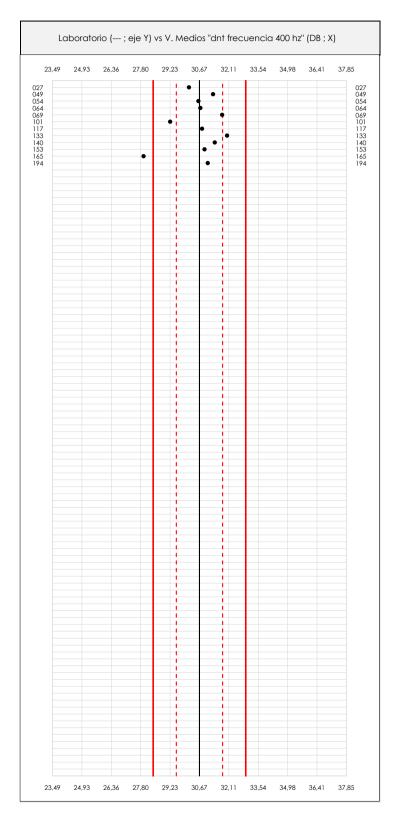
SACE

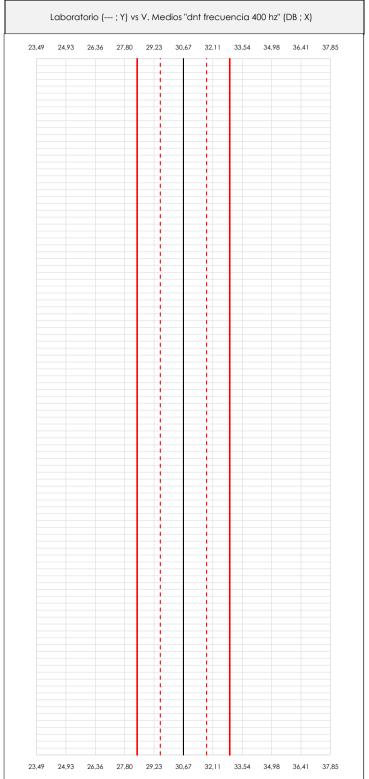
Subcomisión Administrativa para la Calidad de la Edificación

ANÁLISIS ESTADISTICO DE ACÚSTICA

DNT FRECUENCIA 400 HZ

Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 400 HZ (DB) Análisis A. Estudio pre-estadístico

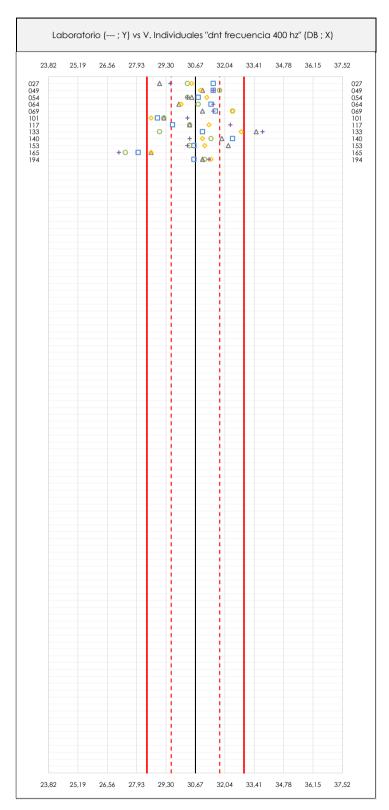
Apartado A.1. Gráficos de dispersión de valores medios

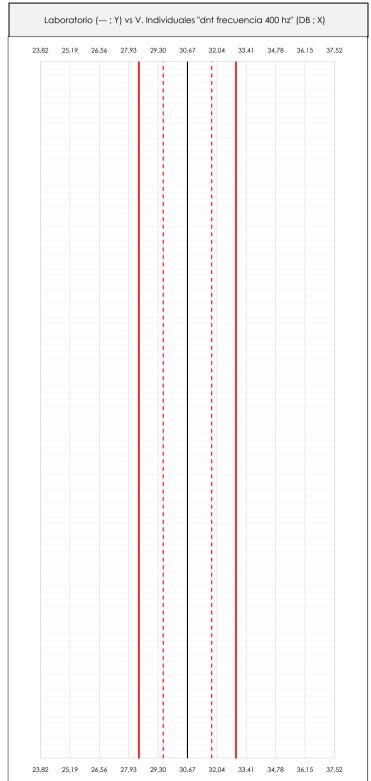
ANALISIS GRAFICO DE DISPERSION MEDIA (ANTES DE ANALISIS ESTADISTICO)

Dispersión de las medias aritméticas intra-laboratorios respecto de la media aritmética inter-laboratorios (30,67; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (31,80/29,54; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (32,93/28,41; líneas rojas de trazo continuo).

En el eje Y (adimensional) quedan reflejados los códigos de los laboratorios participantes y en el eje X (las unidades son las mismas que las del ensayo que se está analizando) las medias aritméticas intra-laboratorios representadas por punto de color negro.

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 400 HZ (DB)

Análisis A. Estudio pre-estadístico

Apartado A.2. Gráficos de dispersión de valores individuales

ANALISIS GRAFICOS DE DISPERSION INDIVIDUAL (ANTES DE ANALISIS ESTADISTICO)

Dispersión de los valores individuales respecto de la media aritmética inter-laboratorios (30,67; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (31,80/29,54; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (32,93/28,41; líneas rojas de trazo continuo).

En el eje Y (adimensional) queda reflejado el código del laboratorio participante y en el eje X (las unidades son las de los resultados del ensayo que se está analizando) los resultados individuales: el primero $(X_{i,1})$ se representa con un cuadrado azul, el segundo $(X_{i,2})$ con un círculo verde, el tercero $(X_{i,3})$ con un triángulo grís y el cuarto $(X_{i,4})$ con un rombo amarillo

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 400 HZ (DB)

Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i2}	X _{i 3}	X _{i 4}	X _{i 5}	₹i arit	S _{Li}	D _{i arit %}	Pasa A	Observaciones
27	31,50	30,30	29,00	30,50	29,50	30,16	0,963	-1,66	✓	
49	31,50	31,80	31,00	30,90	31,50	31,34	0,378	2,18	√	
54	30,80	30,30	30,50	31,20	30,30	30,62	0,383	-0,16	√	
64	31,40	30,80	29,90	30,00	31,50	30,72	0,753	0,16	√	
69	31,60	32,40	31,00	32,40	31,50	31,78	0,610	3,62	√	
101	28,90	29,20	29,20 30,40	28,60 31,30	30,30 32,30	29,24	0,643 1,032	-4,66 0,42	√	
133	31,00	30,40	33,50	32,80	33,80	30,80	2,008	4,40	→	
140	32,40	31,40	31,90	31,00	30,40	31,42	0,776	2,45	√	
153	30,60	30,40	32,20	31,10	30,30	30,92	0,779	0,82	→	
165	28,00	27,40	28,60	28,60	27,10	27,94	0,684	-8,90	<u> </u>	
194	30,60	31,10	31,00	31,40	31,30	31,08	0,311	1,34	→	
	00,00	01,10	01,00	01,10	01,00	01,00	0,011	1,01	•	

NOTAS:

[máximo]

[mínimo]

[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \, arit}$ " es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación

SACESubcomisión Administrativa para la

Calidad de la Edificación

DNT FRECUENCIA 400 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.1. Gráfico de consistencia inter-laboratorios "h" de Mandel

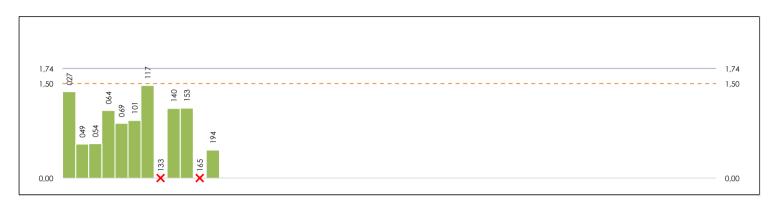
ANALISIS GRAFICO DE CONSISTENCIA INTER-LABORATORIOS

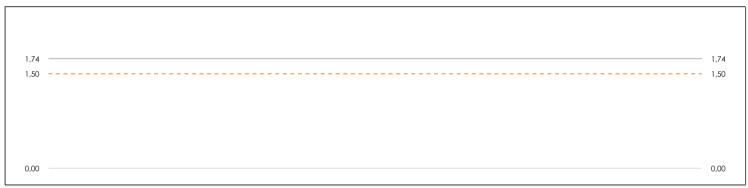
Análisis gráfico de consistencia inter-laboratorios "h" de Mandel. En él se representan las medias aritméticas inter-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes).

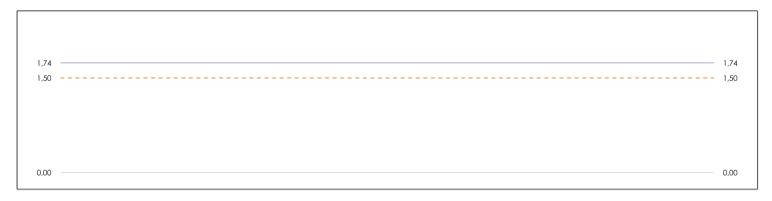
Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

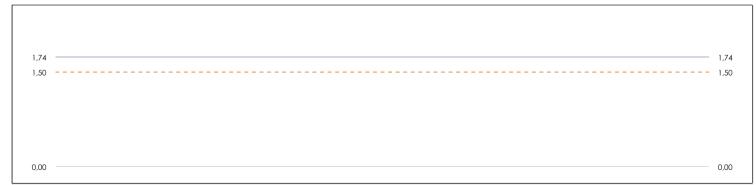
Comité de infraestructuras para la Calidad de la Edificación

SACE Subcomisión Administrativa para la


Calidad de la Edificación




DNT FRECUENCIA 400 HZ (DB)


Análisis B. Mandel, Cochran y Grubbs

Apartado B.2. Gráfico de consistencia intra-laboratorios "k" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTRA-LABORATORIOS

Análisis gráfico de consistencia intra-laboratorios "k" de Mandel. En él se representan las medias aritméticas intra-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes y el número de ensayos efectuados).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 400 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{Li}	D _{i arit %}	h _i	k _i	C _i	G _{Sim Inf}	G _{Sim Sup}	G _{Dob Inf}	G _{Dob Sup}	Pasa B
07	01.500	00.000	00.000	00.500	00.500	00.140	0.040	0.10	0.01	1.07				0.0405		
27	31,500	30,300	29,000	30,500	29,500	30,160	0,963	-2,10	-0,91	1,37				0,2425		-
49	31,50	31,800	31,000	30,900	31,500	31,340	0,378	1,73	0,74	0,54						
54	30,80	30,300	30,500	31,200	30,300	30,620	0,383	-0,61	-0,26	0,55						√
64	31,40	30,800	29,900	30,000	31,500	30,720 31,780	0,753	-0,29 3,16	-0,12 1,36	1,07 0,87			1,358		0,6458	√
101	28,90	29,200	29,200	28,600	30,300	29,240	0,643	-5,09	-2,19**	0,87	0,216	2,191	1,330	0,2425	0,0430	-
117	29,60	30,400	30,400	31,300	32,300	30,800	1,032	-0,03		1,47	0,216	2,171		0,2423		-
133	31,00	29,000	33,500	32,800	33,800	32,020	1,032	-0,03	-0,01							X
140	32,40	31,400	31,900	31,000	30,400	31,420	0,776	1,99	0,86	1,10					0,6458	
153	30,60	30,400	32,200	31,100	30,300	30,920	0,779	0,36	0,16	1,11					0,0430	
165	28,00	27,400	28,600	28,600	27,100	27,940										X
194	30,60	31,100	31,000	31,400	31,300	31,080	0,311	0,88	0,38	0,44						
	00,00	01,100	01,000	01,100	01,000	01,000	0,011	0,00	0,00	0,11						
	_												_			

NOTAS:

[aberrante]

[anómalo]

[máximo]

[mínimo]

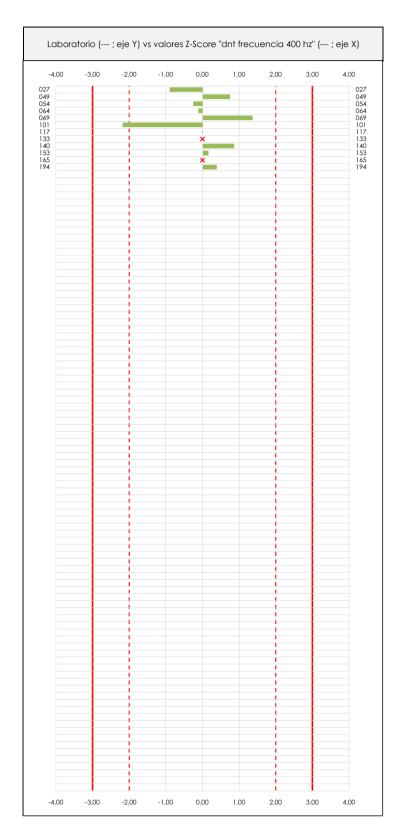
[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \text{ arift}}$ " es la media aritmética intralaboratorio calculada sin redondear.

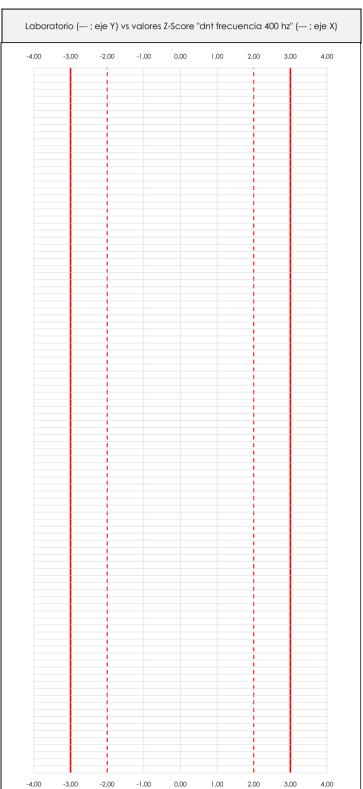
^{02 &}quot;S_Li" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ "h₁ y k," ,"C₁", "G_{Sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 400 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.1. Análisis gráfico Altman Z-Score

ANALISIS GRAFICO Z-SCORE

Diagrama Z-Score para los resultados aportados por los laboratorios. Estos se considerarán satisfactorios (S) si el valor absoluto del Z-Score es menor o igual a 2 unidades, dudoso si está comprendido entre 2 y 3 unidades e insatisfactorio si es mayor o igual a 3 unidades.

Los resultados satisfactorios quedan reflejados entre las dos líneas rojas discontinuas, líneas de referencia en la evaluación Z-Score.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 400 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

Lab	X _{i 1}	X _{i2}	X _{i 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{Li}	D _{i arit %}	Pasa A	Pasa B	Total	Causa	Iteración	Z-Score	Evaluación
27	31,50	30,30	29,00	30,50	29,50	30,16	0,963	-2,10	√	√	√			-0,905	S
49	31,50	31,80	31,00	30,90	31,50	31,34	0,378	1,73	√	√	√			0,743	S
54	30,80	30,30	30,50	31,20	30,30	30,62	0,383	-0,61	√	√	√			-0,263	S
64	31,40	30,80	29,90	30,00	31,50	30,72	0,753	-0,29	√	√	√			-0,123	S
69 101	31,60 28,90	32,40 29,20	31,00 29,20	32,40 28,60	31,50	31,78 29,24	0,610	3,16 -5,09	√	√	√			1,358 -2,191	S D
117	29,60	30,40	30,40	31,30	32,30	30,80	1,032	-0,03	~		√			-0,011	S
133	31,00	29,00	33,50	32,80	33,80	32,02			→	X	X	AB	0		
140	32,40	31,40	31,90	31,00	30,40	31,42	0,776	1,99				710		0,855	S
153	30,60	30,40	32,20	31,10	30,30	30,92	0,779	0,36	<u> </u>	→	<u> </u>			0,156	S
165	28,00	27,40	28,60	28,60	27,10	27,94				Х	Х	AB	0		
194	30,60	31,10	31,00	31,40	31,30	31,08	0,311	0,88	<u>√</u>			, .5		0,380	S
		,					-,							-,,,,,	
_															

NOTAS:

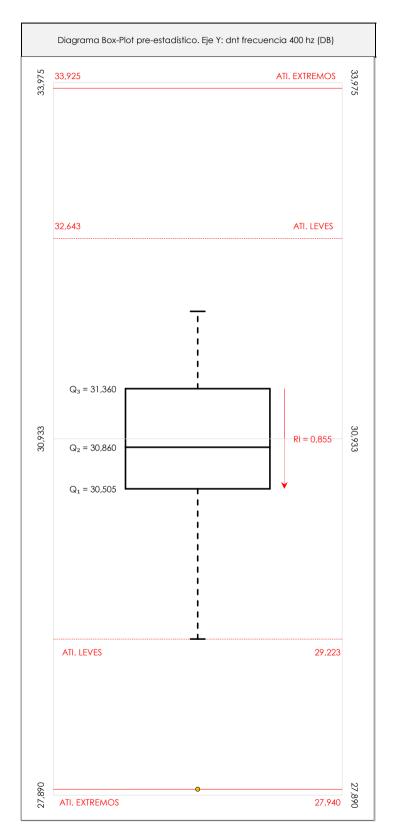
[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \text{ arit}}$ " es la media aritmética intralaboratorio calculada sin redondear.

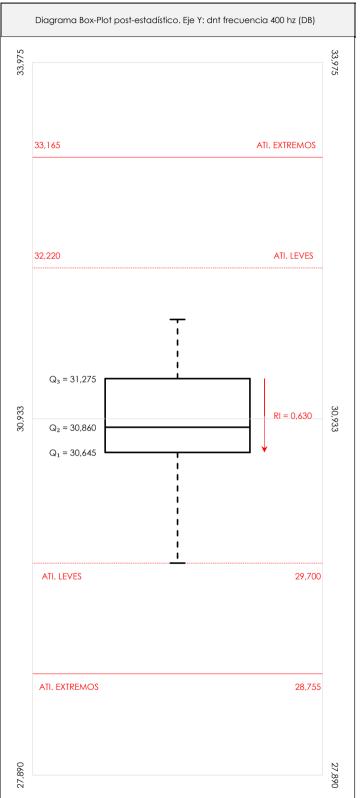
^{02 &}quot;S_Li" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

 $^{^{03}}$ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leqslant 2] [Dudoso (D) - si 2 < | ZS | \leqslant 3] [Insatisfactorio (I) - si | ZS | > 3].

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

CICEComité de infraestructuras para la Calidad de la Edificación




SACESubcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 400 HZ (DB)

Análisis D. Estudios post-estadisticos

Apartado D.3. Diagramas Box-Plot o de Caja y Bigotes

ANALISIS GRAFICO DE CAJA Y BIGOTES (ANTES Y DESPUES DE ANALISIS ESTADISTICO)

Diagramas de caja y bigotes (Box Plot) de las medias aritméticas de los resultados aportados por los laboratorios antes (diagrama de la izquierda. Este incluye valores aberrantes y anómalos) y después (diagrama de la derecha. No incluye los valores descartados a lo largo del estudio) de análisis estadístico.

En ambos se han representado: el primer cuartil (Q_1 ; 25% de los datos), el segundo cuartil o la mediana (Q_2 ; 50% de los datos), el tercer cuartil (Q_3 ; 75% de los datos), el rango intercuartílico (RI; cuartil tres menos cuartil uno) y los límites de valores atípicos leves (f_3 y f_1 para el máximo y mínimo respectivamente; líneas discontinuas de color rojo) y extremos (f_3 * y f_1 * para el máximo y mínimo respectivamente; líneas continuas de color rojo).

CICE Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 400 HZ (DB)

Conclusiones

Determinación de la repetibilidad y reproducibilidad

El análisis estadístico ElLA20 para el ensayo "DNT FRECUENCIA 400 HZ", ha contado con la participación de un total de 12 laboratorios, debiendo haber aportado cada uno de ellos, un total de 5 determinaciones individuales además de su valor medio.

Tras analizar los resultados podemos concluir que, para cumplir con los criterios estadísticos establecidos en el informe, un total de 2 laboratorios han sido apartados de la evaluación final: 0 en el Análisis Pre-Estadístico (por no cumplir el criterio de validación y/o el procedimiento de ejecución recogido en la norma de ensayo) y 2 en el Análisis Estadístico (por resultar anómalos o aberrantes en las técnicas gráficas de consistencia de Mandel y en los ensayos de detección de resultados numéricos de Cochran y Grubbs), al cabo de 2 iteraciones.

De cada uno de los análisis (pre-estadístico y estadístico), se obtienen las siguientes tablas:

TIPO DE ANALISIS			PRE-ES	TADISTIC	0				ESTA	DISTICO		
Variables	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i5}	$\overline{X}_{i arit}$	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$
Valor Máximo (max ; %)	32,40	32,40	33,50	32,80	33,80	32,02	32,40	32,40	32,20	32,40	32,30	31,78
Valor Mínimo (min ; %)	28,00	27,40	28,60	28,60	27,10	27,94	28,90	29,20	29,00	28,60	29,50	29,24
Valor Promedio (M; %)	30,66	30,38	30,68	30,82	30,82	30,67	30,89	30,81	30,61	30,84	30,89	30,81
Desviación Típica (SDL ;)	1,25	1,35	1,42	1,27	1,63	1,13	1,03	0,91	1,04	1,00	0,85	0,72
Coef. Variación (CV ;)	0,04	0,04	0,05	0,04	0,05	0,04	0,03	0,03	0,03	0,03	0,03	0,02
VARIABLES	S_r^2	r		$S_L^{\ 2}$	$S_R^{\ 2}$	R	S_r^2	r		S_L^2	S_R^{-2}	R
Valor Calculado	0,787	2,45	59	1,122	1,909	3,830	0,494	1,94	18 0	,413	0,908	2,641
Valor Referencia												

Asimismo, acompañando a éstas tablas y dependiendo del análisis que se esté llevando a cabo, se introducen los indicadores estadísticos "h y k" de Mandel y los valores críticos "C" de Cochran y "G_{sim} y G_{Dob}" de Grubbs, todos ellos adimensionales, obtenidos de las tablas 4, 5, 6 y 7 de la norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios y del número de ensayos efectuados por cada uno de ellos:

TIPO DE ANALISIS		PRE	-ESTADISTI	со			E	STADISTIC)	
VARIABLES	h	k	С	G_{sim}	G_{Dob}	h	k	С	G_{sim}	G_{Dob}
Nivel de Significación 1%	2,18	1,74	0,343	2,482	0,1150	2,18	1,74	0,393	2,482	0,1150
Nivel de Significación 5%	1,80	1,50	0,288	2,290	0,1864	1,80	1,50	0,331	2,290	0,1864

Con los resultados de los laboratorios, que tras los dos análisis estadísticos son evaluados por Z-Score, se han obtenido: 9 resultados satisfactorios, 1 resultados dudosos y 0 resultados insatisfactorios.

Respecto a los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística recogida en la ISO 17025, sobre las dispersiones de los resultados individuales y su media, en forma de varianzas o desviaciones estándar, también conocida como ANOVA (siglas de analisys of varience).

Sabiendo que una varianza es la suma de cuadrados dividida por un número, que se llama grados de libertad, que depende del número de participantes menos 1, se puede decir que la imprecisión del ensayo se descompone en dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad (variabilidad intralaboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad debida al cambio de laboratorio).

Las condiciones de repetibilidad de este ensayo son: mismo laborante, mismo laboratorio y mismo equipo de medición utilizado dentro de un período de tiempo corto. Por ende, las condiciones de reproducibilidad para la misma muestra y ensayo, cambian en: el laboratorio, el equipo y las condiciones de uso y tiempo.

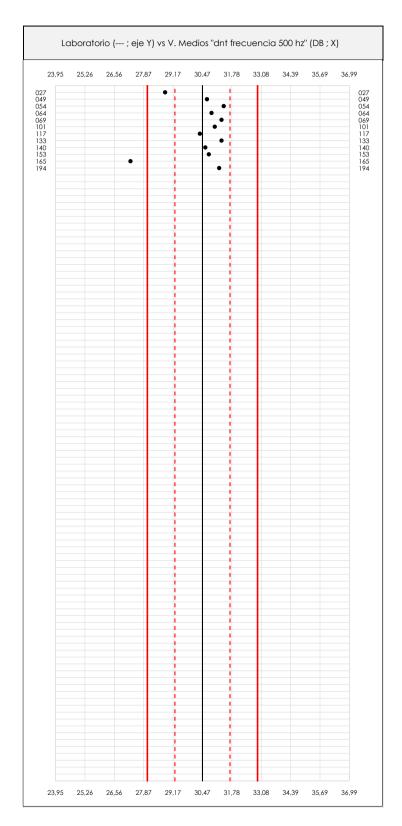
Comité de infraestructuras para la Calidad de la Edificación

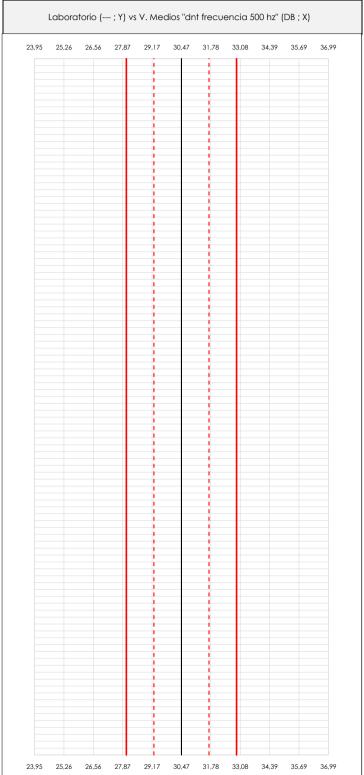
Subcomisión Administrativa para la Calidad de la Edificación

ANÁLISIS ESTADISTICO DE ACÚSTICA

DNT FRECUENCIA 500 HZ

Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 500 HZ (DB) Análisis A. Estudio pre-estadístico

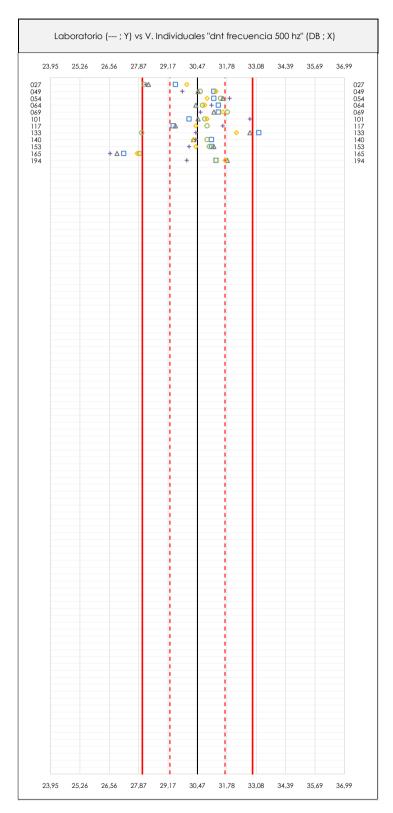
Apartado A.1. Gráficos de dispersión de valores medios

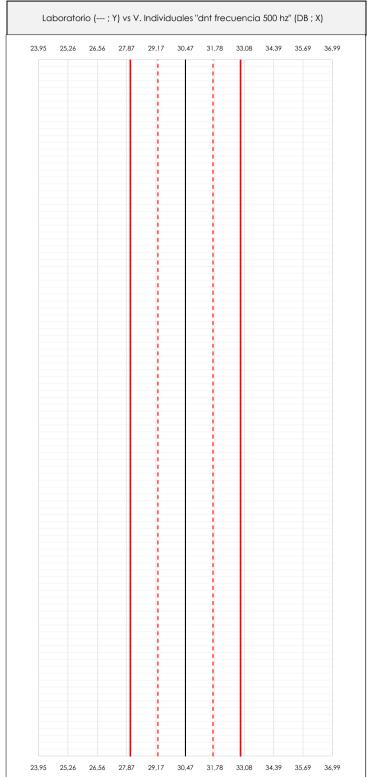
ANALISIS GRAFICO DE DISPERSION MEDIA (ANTES DE ANALISIS ESTADISTICO)

Dispersión de las medias aritméticas intra-laboratorios respecto de la media aritmética inter-laboratorios (30,47; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (31,70/29,25; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (32,92/28,03; líneas rojas de trazo continuo).

En el eje Y (adimensional) quedan reflejados los códigos de los laboratorios participantes y en el eje X (las unidades son las mismas que las del ensayo que se está analizando) las medias aritméticas intra-laboratorios representadas por punto de color negro.

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 500 HZ (DB)

Análisis A. Estudio pre-estadístico

Apartado A.2. Gráficos de dispersión de valores individuales

ANALISIS GRAFICOS DE DISPERSION INDIVIDUAL (ANTES DE ANALISIS ESTADISTICO)

Dispersión de los valores individuales respecto de la media aritmética inter-laboratorios (30,47; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (31,70/29,25; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (32,92/28,03; líneas rojas de trazo continuo).

En el eje Y (adimensional) queda reflejado el código del laboratorio participante y en el eje X (las unidades son las de los resultados del ensayo que se está analizando) los resultados individuales: el primero (X_{i 1}) se representa con un cuadrado azul, el segundo (X_{i 2}) con un círculo verde, el tercero (X_{i 3}) con un triángulo grís y el cuarto (X_{i 4}) con un rombo amarillo

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 500 HZ (DB)

Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i2}	X _{i 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{Li}	D _{i arit %}	Pasa A	Observaciones
27	29,50	28,10	28,30	30,00	28,20	28,82	0,870	-5,43	✓	
49	31,20	30,60	30,50	31,30	29,80	30,68	0,606	0,68	✓	
54	31,20	31,50	31,60	30,90	31,90	31,42	0,383	3,11	✓	
64	31,40	30,70	30,40	30,80	31,10	30,88	0,383	1,33	✓	
69	31,40	31,80	31,20	31,60	30,60	31,32	0,460	2,78	√	
101	30,10	30,80	30,50	30,90	32,80	31,02	1,043	1,79	√	
117	29,40	30,90	29,50	30,40	31,60	30,36	0,934	-0,37	√	
133	33,20	28,00	32,80	32,20	30,40	31,32	2,143	2,78	√	
140	31,10	30,90	30,30	30,30	30,40	30,60	0,374	0,42	√	
153	31,10	31,00	31,20	30,40	30,10	30,76	0,483	0,94	√	
165	27,20 31,30	27,90 31,30	26,90	27,80 31,70	26,60	27,28 31,22	0,563	-10,48	√	
174	31,30	31,30	31,80	31,70	30,00	31,22	0,719	2,45	✓	

NOTAS:

[máximo]

[mínimo]

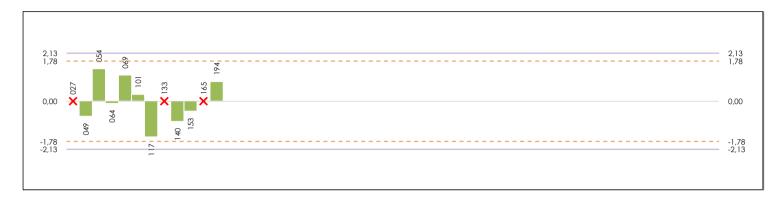
[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \, arit}$ " es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación


SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 500 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.1. Gráfico de consistencia inter-laboratorios "h" de Mandel

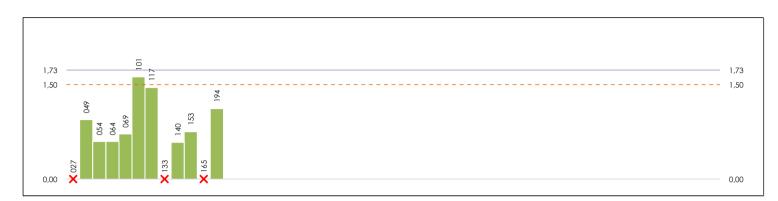
ANALISIS GRAFICO DE CONSISTENCIA INTER-LABORATORIOS

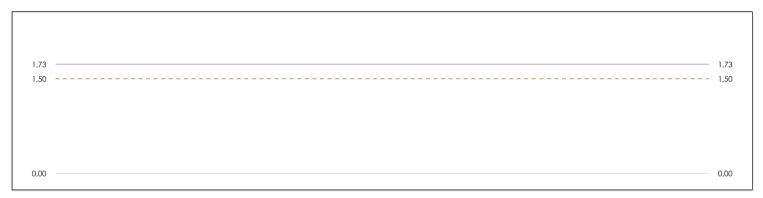
Análisis gráfico de consistencia inter-laboratorios "h" de Mandel. En él se representan las medias aritméticas inter-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes).

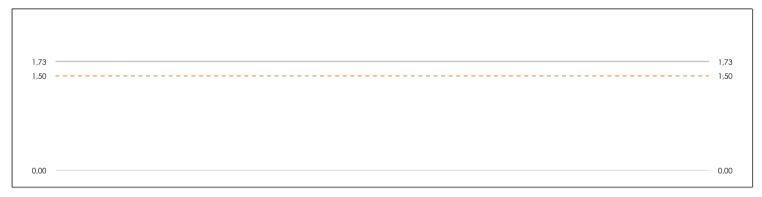
Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación

SACE Subcomisión Administrativa para la


Calidad de la Edificación




DNT FRECUENCIA 500 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.2. Gráfico de consistencia intra-laboratorios "k" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTRA-LABORATORIOS

Análisis gráfico de consistencia intra-laboratorios "k" de Mandel. En él se representan las medias aritméticas intra-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes y el número de ensayos efectuados).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 500 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	h _i	k _i	C _i	G _{Sim Inf}	G _{Sim Sup}	G _{Dob Inf}	G_{DobSup}	Pasa B
27	29,500	28,100	28,300	30,000	28,200	28,820										X
49	31,20	30,600	30,500	31,300	29,800	30,680	0,606	-0,77	-0,67	0,94			1 410		0.47.40	<u> </u>
54	31,20	31,500	31,600	30,900	31,900	31,420	0,383	1,62	1,41	0,60			1,413		0,4748	
64	31,40	30,700	30,400	30,800	31,100	30,880	0,383	-0,12 1,30	-0,11	0,60					0.4749	
101	30,10	31,800 30,800	31,200 30,500	31,600	30,600	31,320 31,020	1,043	0,33	0,29	0,72 1,62*	0,292				0,4748	√
117	29,40	30,900	29,500	30,400	31,600	30,360	0,934	-1,80	-1,57	1,45	0,272	1,569		0,4839		-
133	33,20	28,000	32,800	32,200	30,400	31,320		-1,00	-1,3/			1,307		0,4037		X
140	31,10	30,900	30,300	30,300	30,400	30,600	0,374	-1,03	-0,89	0,58				0,4839		
153	31,10	31,000	31,200	30,400	30,100	30,760	0,483	-0,51	-0,44	0,75				0,4007		
165	27,20	27,900	26,900	27,800	26,600	27,280		-0,51								X
194	31,30	31,300	31,800	31,700	30,000	31,220	0,719	0,98	0,85	1,12						
174	31,30	31,300	31,000	31,700	30,000	31,220	0,717	0,76	0,65	1,12						

NOTAS:

[aberrante]

[anómalo]

[máximo]

[mínimo]

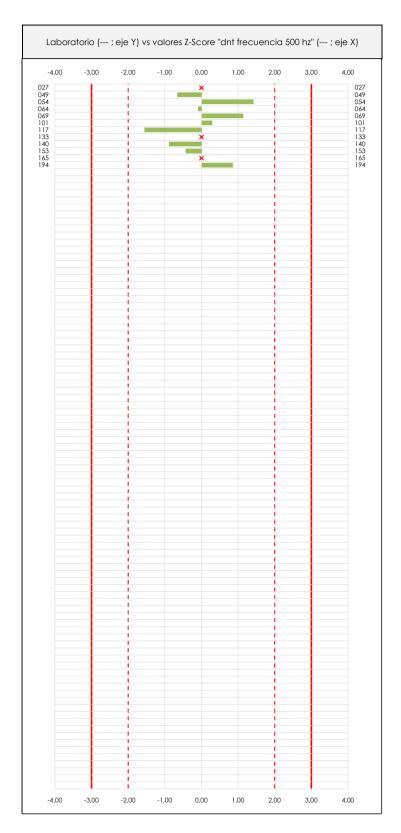
[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \text{ arit}}$ " es la media aritmética intralaboratorio calculada sin redondear.

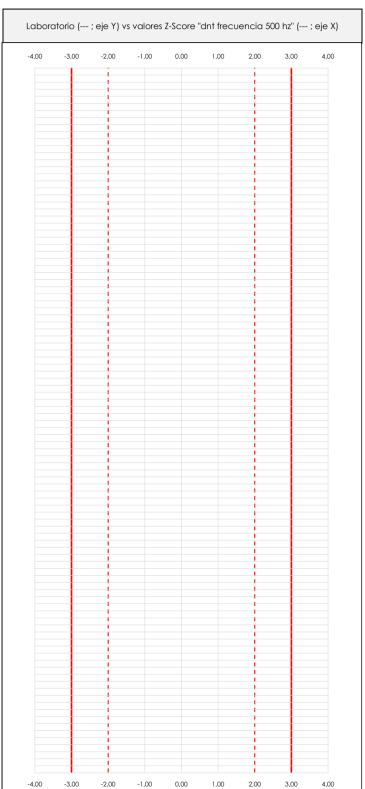
^{02 &}quot;S_Li" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ "h₁ y k," ,"C₁", "G_{Sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 500 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.1. Análisis gráfico Altman Z-Score

ANALISIS GRAFICO Z-SCORE

Diagrama Z-Score para los resultados aportados por los laboratorios. Estos se considerarán satisfactorios (S) si el valor absoluto del Z-Score es menor o igual a 2 unidades, dudoso si está comprendido entre 2 y 3 unidades e insatisfactorio si es mayor o igual a 3 unidades.

Los resultados satisfactorios quedan reflejados entre las dos líneas rojas discontinuas, líneas de referencia en la evaluación Z-Score.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 500 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{Li}	D _{i arit %}	Pasa A	Pasa B	Total	Causa	Iteración	Z-Score	Evaluación
27	29,50	28,10	28,30	30,00	28,20	28,82			√	X	Х	AB	1		
49	31,20	30,60	30,50	31,30	29,80	30,68	0,606	-0,77	√	√	√			-0,669	S
54	31,20	31,50	31,60	30,90	31,90	31,42	0,383	1,62	√	√	√			1,413	S
64	31,40	30,70	30,40	30,80	31,10	30,88	0,383	-0,12	√	✓	✓			-0,106	S
69	31,40	31,80	31,20	31,60	30,60	31,32	0,460	1,30	✓	✓	✓			1,132	S
101	30,10	30,80	30,50	30,90	32,80	31,02	1,043	0,33	✓	✓	✓			0,288	S
117	29,40	30,90	29,50	30,40	31,60	30,36	0,934	-1,80	✓	✓	✓			-1,569	S
133	33,20	28,00	32,80	32,20	30,40	31,32			✓	Х	X	AB	0		
140	31,10	30,90	30,30	30,30	30,40	30,60	0,374	-1,03	✓	✓	✓			-0,894	S
153	31,10	31,00	31,20	30,40	30,10	30,76	0,483	-0,51	✓	✓	✓			-0,444	S
165	27,20	27,90	26,90	27,80	26,60	27,28			✓	X	X	AB	0		
194	31,30	31,30	31,80	31,70	30,00	31,22	0,719	0,98	✓	✓	✓			0,850	S

NOTAS:

[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \text{ arit}}$ " es la media aritmética intralaboratorio calculada sin redondear.

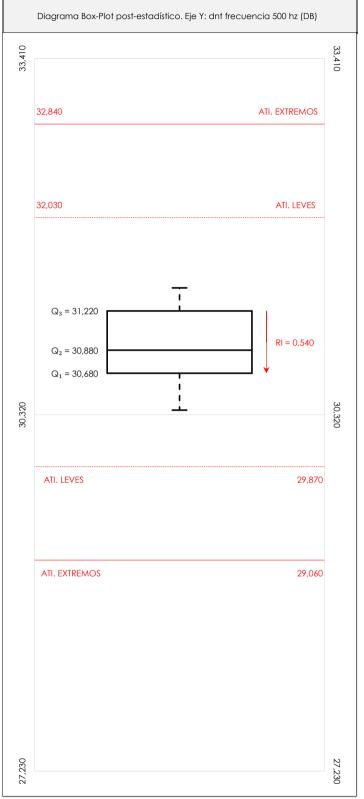
^{02 &}quot;S_Li" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

 $^{^{03}}$ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leqslant 2] [Dudoso (D) - si 2 < | ZS | \leqslant 3] [Insatisfactorio (I) - si | ZS | > 3].

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

CICEComité de infraestructuras para la Calidad de la Edificación

SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 500 HZ (DB)

Análisis D. Estudios post-estadisticos

Apartado D.3. Diagramas Box-Plot o de Caja y Bigotes

ANALISIS GRAFICO DE CAJA Y BIGOTES (ANTES Y DESPUES DE ANALISIS ESTADISTICO)

Diagramas de caja y bigotes (Box Plot) de las medias aritméticas de los resultados aportados por los laboratorios antes (diagrama de la izquierda. Este incluye valores aberrantes y anómalos) y después (diagrama de la derecha. No incluye los valores descartados a lo largo del estudio) de análisis estadístico.

En ambos se han representado: el primer cuartil (Q_1 ; 25% de los datos), el segundo cuartil o la mediana (Q_2 ; 50% de los datos), el tercer cuartil (Q_3 ; 75% de los datos), el rango intercuartílico (RI; cuartil tres menos cuartil uno) y los límites de valores atípicos leves (f_3 y f_1 para el máximo y mínimo respectivamente; líneas discontinuas de color rojo) y extremos (f_3 * y f_1 * para el máximo y mínimo respectivamente; líneas continuas de color rojo).

CICE Comité de infraestructuras para la Calidad de la Edificación

DNT FRECUENCIA 500 HZ (DB)

Conclusiones

Determinación de la repetibilidad y reproducibilidad

SACE Subcomisión Administrativa para la Calidad de la Edificación

El análisis estadístico ElLA20 para el ensayo "DNT FRECUENCIA 500 HZ", ha contado con la participación de un total de 12 laboratorios, debiendo haber aportado cada uno de ellos, un total de 5 determinaciones individuales además de su valor medio.

Tras analizar los resultados podemos concluir que, para cumplir con los criterios estadísticos establecidos en el informe, un total de 3 laboratorios han sido apartados de la evaluación final: 0 en el Análisis Pre-Estadístico (por no cumplir el criterio de validación y/o el procedimiento de ejecución recogido en la norma de ensayo) y 3 en el Análisis Estadístico (por resultar anómalos o aberrantes en las técnicas gráficas de consistencia de Mandel y en los ensayos de detección de resultados numéricos de Cochran y Grubbs), al cabo de 3 iteraciones.

De cada uno de los análisis (pre-estadístico y estadístico), se obtienen las siguientes tablas:

TIPO DE ANALISIS			PRE-ES	TADISTIC	:0				ESTA	DISTICO		
Variables	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$
Valor Máximo (max ; %)	33,20	31,80	32,80	32,20	32,80	31,42	31,40	31,80	31,80	31,70	32,80	31,42
Valor Mínimo (min ; %)	27,20	27,90	26,90	27,80	26,60	27,28	29,40	30,60	29,50	30,30	29,80	30,36
Valor Promedio (M; %)	30,68	30,29	30,42	30,69	30,29	30,47	30,91	31,06	30,78	30,92	30,92	30,92
Desviación Típica (SDL ;)	1,48	1,42	1,59	1,12	1,64	1,22	0,69	0,40	0,73	0,52	1,01	0,36
Coef. Variación (CV ;)	0,05	0,05	0,05	0,04	0,05	0,04	0,02	0,01	0,02	0,02	0,03	0,01
VARIABLES	S_r^2	r		$S_L^{\ 2}$	S_R^2	R	S_r^2	r		S _L ²	S_R^{2}	R
Valor Calculado	0,782	2,45	52	1,338	2,120	4,036	0,414	1,78	33 0	,044	0,457	1,874
Valor Referencia												

Asimismo, acompañando a éstas tablas y dependiendo del análisis que se esté llevando a cabo, se introducen los indicadores estadísticos "h y k" de Mandel y los valores críticos "C" de Cochran y "G_{sim} y G_{Dob}" de Grubbs, todos ellos adimensionales, obtenidos de las tablas 4, 5, 6 y 7 de la norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios y del número de ensayos efectuados por cada uno de ellos:

TIPO DE ANALISIS		PRI	-ESTADISTI	со			E	STADISTIC)	
VARIABLES	h	k	С	G_{sim}	G _{Dob}	h	k	С	G_{sim}	G_{Dob}
Nivel de Significación 1%	2,13	1,73	0,343	2,387	0,0851	2,13	1,73	0,425	2,387	0,0851
Nivel de Significación 5%	1,78	1,50	0,288	2,215	0,1492	1,78	1,50	0,358	2,215	0,1492

Con los resultados de los laboratorios, que tras los dos análisis estadísticos son evaluados por Z-Score, se han obtenido: 9 resultados satisfactorios, 0 resultados dudosos y 0 resultados insatisfactorios.

Respecto a los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística recogida en la ISO 17025, sobre las dispersiones de los resultados individuales y su media, en forma de varianzas o desviaciones estándar, también conocida como ANOVA (siglas de analisys of varience).

Sabiendo que una varianza es la suma de cuadrados dividida por un número, que se llama grados de libertad, que depende del número de participantes menos 1, se puede decir que la imprecisión del ensayo se descompone en dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad (variabilidad intralaboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad debida al cambio de laboratorio).

Las condiciones de repetibilidad de este ensayo son: mismo laborante, mismo laboratorio y mismo equipo de medición utilizado dentro de un período de tiempo corto. Por ende, las condiciones de reproducibilidad para la misma muestra y ensayo, cambian en: el laboratorio, el equipo y las condiciones de uso y tiempo.

Comité de infraestructuras para la Calidad de la Edificación

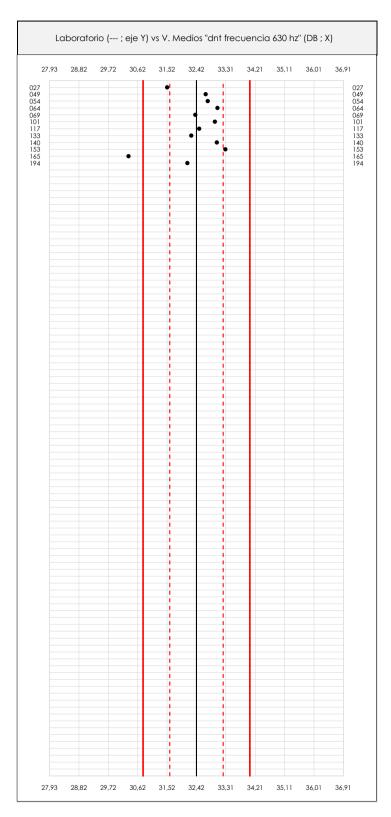
SACE

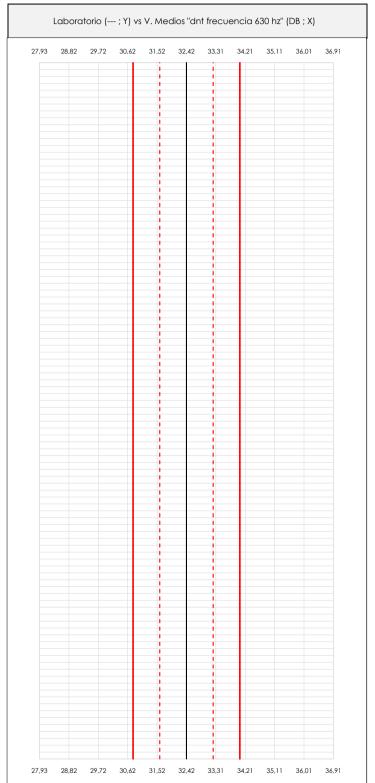
Subcomisión Administrativa para la Calidad de la Edificación

ANÁLISIS ESTADISTICO DE **ACÚSTICA**

DNT FRECUENCIA 630 HZ

Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 630 HZ (DB) Análisis A. Estudio pre-estadístico

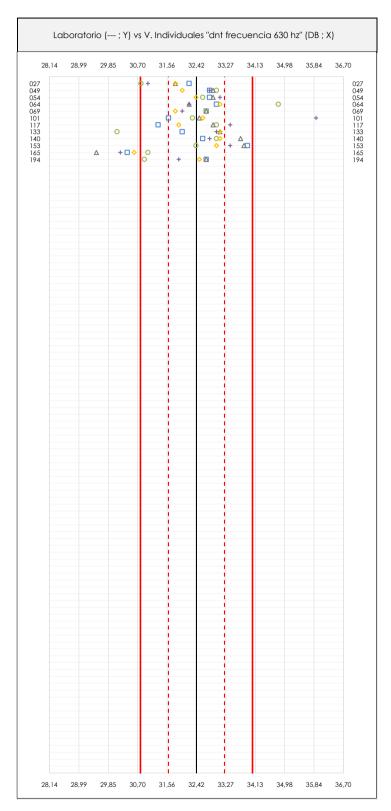
Apartado A.1. Gráficos de dispersión de valores medios

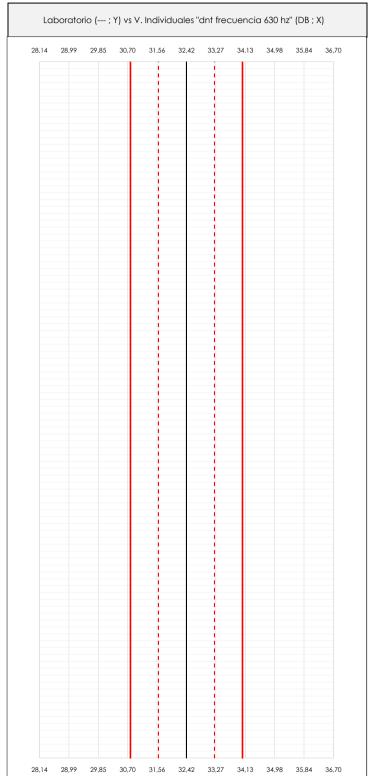
ANALISIS GRAFICO DE DISPERSION MEDIA (ANTES DE ANALISIS ESTADISTICO)

Dispersión de las medias aritméticas intra-laboratorios respecto de la media aritmética inter-laboratorios (32,42; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (33,23/31,60; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (34,05/30,78; líneas rojas de trazo continuo).

En el eje Y (adimensional) quedan reflejados los códigos de los laboratorios participantes y en el eje X (las unidades son las mismas que las del ensayo que se está analizando) las medias aritméticas intra-laboratorios representadas por punto de color negro.

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 630 HZ (DB)

Análisis A. Estudio pre-estadístico

Apartado A.2. Gráficos de dispersión de valores individuales

ANALISIS GRAFICOS DE DISPERSION INDIVIDUAL (ANTES DE ANALISIS ESTADISTICO)

Dispersión de los valores individuales respecto de la media aritmética inter-laboratorios (32,42; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (33,23/31,60; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (34,05/30,78; líneas rojas de trazo continuo).

En el eje Y (adimensional) queda reflejado el código del laboratorio participante y en el eje X (las unidades son las de los resultados del ensayo que se está analizando) los resultados individuales: el primero $(X_{i,1})$ se representa con un cuadrado azul, el segundo $(X_{i,2})$ con un círculo verde, el tercero $(X_{i,3})$ con un triángulo grís y el cuarto $(X_{i,4})$ con un rombo amarillo

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 630 HZ (DB)

Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	Pasa A	Observaciones
27	32,20	30,80	31,80	31,80	31,00	31,52	0,593	-2,76	√	
49	32,80	33,00	32,90	32,00	32,80	32,70	0,400	0,88	√	
54 64	32,80 33,00	32,60 34,80	32,90 32,20	32,40 33,10	33,10	32,76	0,270 1,062	1,06	√	
69	32,70	32,70	32,70	31,80	32,20 32,00	33,06 32,38	0,444	-0,11	√	
101	31,60	32,30	32,50	32,60	35,90	32,98	1,678	1,74	→	
117	31,30	33,00	32,90	31,90	33,40	32,50	0,869	0,26	- ✓	
133	32,00	30,10	33,10	33,10	33,00	32,26	1,293	-0,48	→	
140	32,60	33,00	33,70	33,10	32,80	33,04	0,416	1,93	<u> </u>	
153	33,90	32,40	33,80	33,00	33,40	33,30	0,616	2,73	<u>√</u>	
165	30,40	31,00	29,50	30,60	30,20	30,34	0,555	-6,40	√	
194	32,70	30,90	32,70	32,50	31,90	32,14	0,767	-0,85	<u>√</u>	

NOTAS:

[máximo]

[mínimo]

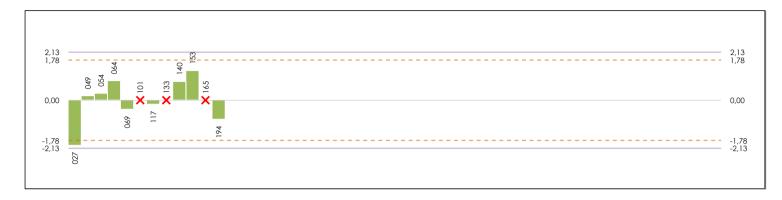
[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \, arit}$ " es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación


SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 630 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.1. Gráfico de consistencia inter-laboratorios "h" de Mandel

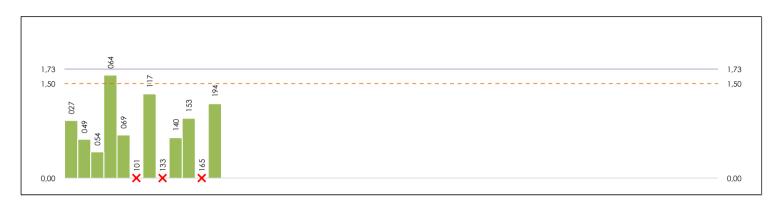
ANALISIS GRAFICO DE CONSISTENCIA INTER-LABORATORIOS

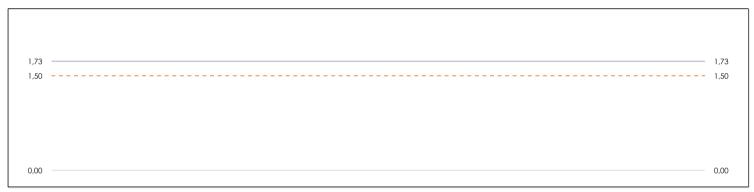
Análisis gráfico de consistencia inter-laboratorios "h" de Mandel. En él se representan las medias aritméticas inter-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes).

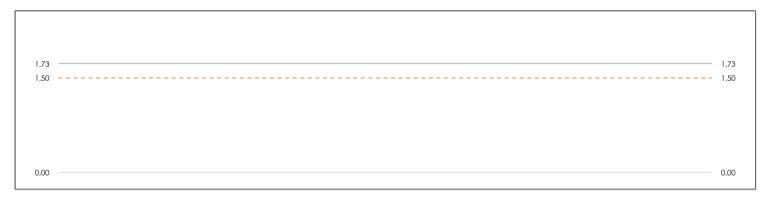
Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

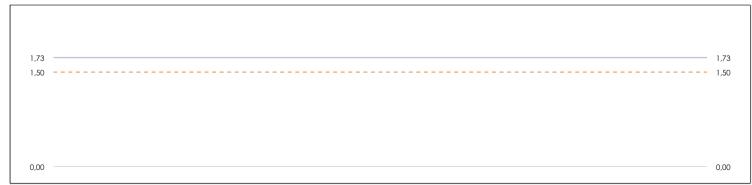
Comité de infraestructuras para la Calidad de la Edificación

SACE Subcomisión Administrativa para la


Calidad de la Edificación




DNT FRECUENCIA 630 HZ (DB)


Análisis B. Mandel, Cochran y Grubbs

Apartado B.2. Gráfico de consistencia intra-laboratorios "k" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTRA-LABORATORIOS

Análisis gráfico de consistencia intra-laboratorios "k" de Mandel. En él se representan las medias aritméticas intra-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes y el número de ensayos efectuados).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 630 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i2}	X _{i 3}	X _{i 4}	X _{i5}	₹ arit	S _{Li}	D _{i arit %}	h _i	k _i	Ci	G _{Sim Inf}	G _{Sim Sup}	G _{Dob Inf}	G _{Dob Sup}	Pasa B
27	32,200	30,800	31,800	31,800	31,000	31,520	0,593	-3,31	-1,99*	0,91	0,296	1,985		0,2748		√
49	32,80	33,000	32,900	32,000	32,800	32,700	0,400	0,31	0,18	0,62	0,270	1,700		0,27 40		<u> </u>
54	32,80	32,600	32,900	32,400	33,100	32,760	0,270	0,49	0,29	0,42						<u> </u>
64	33,00	34,800	32,200	33,100	32,200	33,060	1,062	1,41	0,85	1,63*	0,296				0,6224	<u> </u>
69	32,70	32,700	32,700	31,800	32,000	32,380	0,444	-0,67	-0,40	0,68						√
101	31,60	32,300	32,500	32,600	35,900	32,980										X
117	31,30	33,000	32,900	31,900	33,400	32,500	0,869	-0,31	-0,18	1,34						V
133	32,00	30,100	33,100	33,100	33,000	32,260										X
140	32,60	33,000	33,700	33,100	32,800	33,040	0,416	1,35	0,81	0,64						√
153	33,90	32,400	33,800	33,000	33,400	33,300	0,616	2,15	1,29	0,95			1,287		0,6224	✓
165	30,40	31,000	29,500	30,600	30,200	30,340										X
194	32,70	30,900	32,700	32,500	31,900	32,140	0,767	-1,41	-0,85	1,18				0,2748		✓

NOTAS:

[aberrante]

[anómalo]

[máximo]

[mínimo]

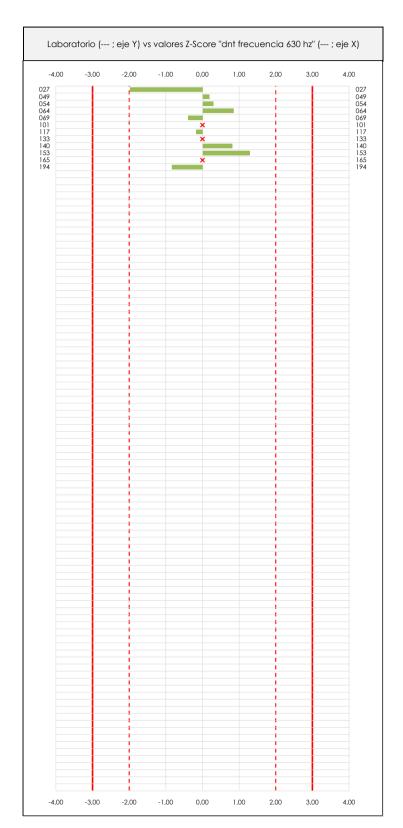
[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \text{ arift}}$ " es la media aritmética intralaboratorio calculada sin redondear.

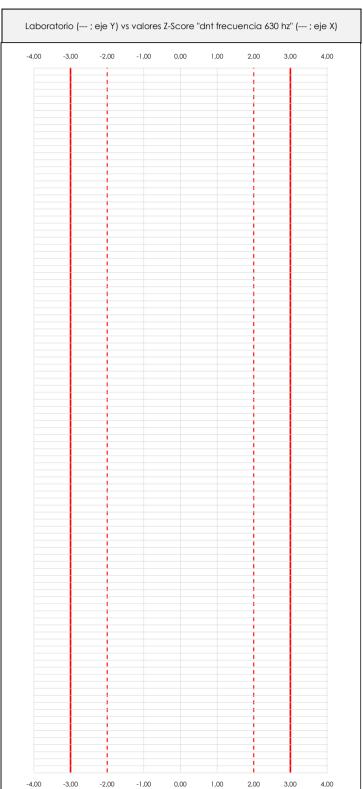
^{02 &}quot;S_Li" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ "h₁ y k," ,"C₁", "G_{Sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 630 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.1. Análisis gráfico Altman Z-Score

ANALISIS GRAFICO Z-SCORE

Diagrama Z-Score para los resultados aportados por los laboratorios. Estos se considerarán satisfactorios (S) si el valor absoluto del Z-Score es menor o igual a 2 unidades, dudoso si está comprendido entre 2 y 3 unidades e insatisfactorio si es mayor o igual a 3 unidades.

Los resultados satisfactorios quedan reflejados entre las dos líneas rojas discontinuas, líneas de referencia en la evaluación Z-Score.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 630 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{Li}	D _{i arit %}	Pasa A	Pasa B	Total	Causa	Iteración	Z-Score	Evaluación
27	32,20	30,80	31,80	31,80	31,00	31,52	0,593	-3,31	√	√	√			-1,985	S
49	32,80	33,00	32,90	32,00	32,80	32,70	0,400	0,31	√	√	√			0,184	S
54	32,80	32,60	32,90	32,40	33,10	32,76	0,270	0,49	√	√	√			0,294	S
64	33,00	34,80	32,20	33,10	32,20	33,06	1,062	1,41	√	√	√			0,846	S
69	32,70	32,70	32,70	31,80	32,00	32,38	0,444	-0,67	√	✓	✓			-0,404	S
101	31,60	32,30	32,50	32,60	35,90	32,98			✓	Х	Х	AN	0		
117	31,30	33,00	32,90	31,90	33,40	32,50	0,869	-0,31	✓	✓	✓			-0,184	S
133	32,00	30,10	33,10	33,10	33,00	32,26			✓	Х	Х	AN	0		
140	32,60	33,00	33,70	33,10	32,80	33,04	0,416	1,35	✓	✓	✓			0,809	S
153	33,90	32,40	33,80	33,00	33,40	33,30	0,616	2,15	✓	✓	✓			1,287	S
165	30,40	31,00	29,50	30,60	30,20	30,34			✓	X	X	AN	0		
194	32,70	30,90	32,70	32,50	31,90	32,14	0,767	-1,41	✓	✓	✓			-0,846	S

NOTAS:

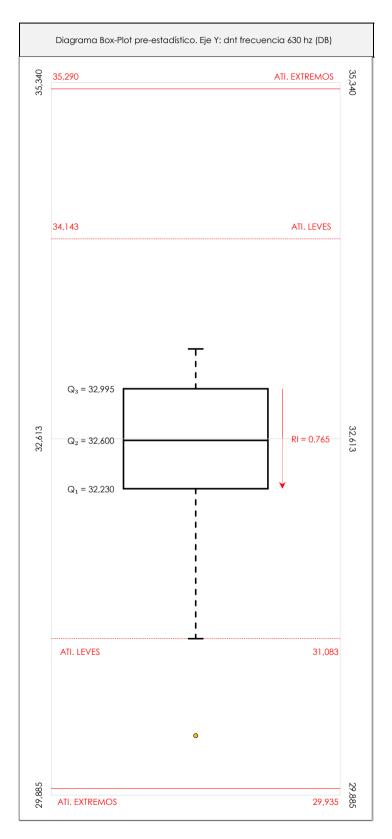
[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \text{ arit}}$ " es la media aritmética intralaboratorio calculada sin redondear.

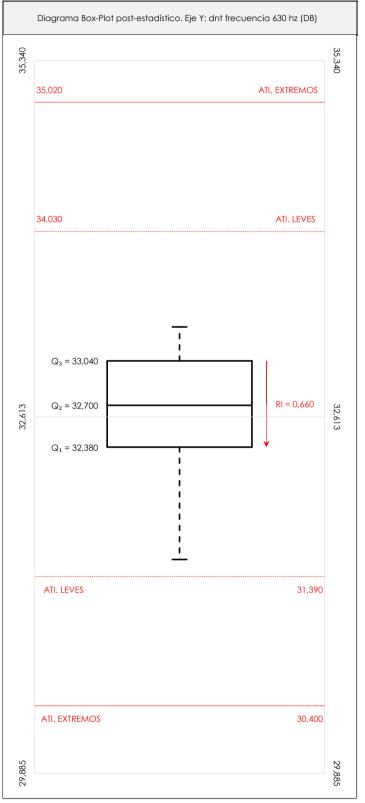
^{02 &}quot;S_Li" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

 $^{^{03}}$ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leqslant 2] [Dudoso (D) - si 2 < | ZS | \leqslant 3] [Insatisfactorio (I) - si | ZS | > 3].

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

CICEComité de infraestructuras para la Calidad de la Edificación




SACESubcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 630 HZ (DB)

Análisis D. Estudios post-estadisticos

Apartado D.3. Diagramas Box-Plot o de Caja y Bigotes

ANALISIS GRAFICO DE CAJA Y BIGOTES (ANTES Y DESPUES DE ANALISIS ESTADISTICO)

Diagramas de caja y bigotes (Box Plot) de las medias aritméticas de los resultados aportados por los laboratorios antes (diagrama de la izquierda. Este incluye valores aberrantes y anómalos) y después (diagrama de la derecha. No incluye los valores descartados a lo largo del estudio) de análisis estadístico.

En ambos se han representado: el primer cuartil (Q_1 ; 25% de los datos), el segundo cuartil o la mediana (Q_2 ; 50% de los datos), el tercer cuartil (Q_3 ; 75% de los datos), el rango intercuartílico (RI; cuartil tres menos cuartil uno) y los límites de valores atípicos leves (f_3 y f_1 para el máximo y mínimo respectivamente; líneas discontinuas de color rojo) y extremos (f_3 * y f_1 * para el máximo y mínimo respectivamente; líneas continuas de color rojo).

CICE Comité de infraestructuras para la Calidad de la Edificación

DNT FRECUENCIA 630 HZ (DB)

Conclusiones

Determinación de la repetibilidad y reproducibilidad

SACESubcomisión Administrativa para la Calidad de la Edificación

El análisis estadístico ElLA20 para el ensayo "DNT FRECUENCIA 630 HZ", ha contado con la participación de un total de 12 laboratorios, debiendo haber aportado cada uno de ellos, un total de 5 determinaciones individuales además de su valor medio.

Tras analizar los resultados podemos concluir que, para cumplir con los criterios estadísticos establecidos en el informe, un total de 3 laboratorios han sido apartados de la evaluación final: 0 en el Análisis Pre-Estadístico (por no cumplir el criterio de validación y/o el procedimiento de ejecución recogido en la norma de ensayo) y 3 en el Análisis Estadístico (por resultar anómalos o aberrantes en las técnicas gráficas de consistencia de Mandel y en los ensayos de detección de resultados numéricos de Cochran y Grubbs), al cabo de 2 iteraciones.

De cada uno de los análisis (pre-estadístico y estadístico), se obtienen las siguientes tablas:

TIPO DE ANALISIS		PRE-ESTADISTICO						ESTADISTICO					
Variables	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$	
Valor Máximo (max ; %)	33,90	34,80	33,80	33,10	35,90	33,30	33,90	34,80	33,80	33,10	33,40	33,30	
Valor Mínimo (min ; %)	30,40	30,10	29,50	30,60	30,20	30,34	31,30	30,80	31,80	31,80	31,00	31,52	
Valor Promedio (M; %)	32,33	32,22	32,56	32,33	32,64	32,42	32,67	32,58	32,84	32,40	32,51	32,60	
Desviación Típica (SDL ;)	0,91	1,30	1,11	0,75	1,41	0,82	0,69	1,20	0,63	0,56	0,80	0,54	
Coef. Variación (CV ;)	0,03	0,04	0,03	0,02	0,04	0,03	0,02	0,04	0,02	0,02	0,02	0,02	
VARIABLES	S_r^2	r		$S_L^{\ 2}$	S_R^{2}	R	S_r^2	r		S_L^2	S_R^{-2}	R	
Valor Calculado	0,717	2,34	17 (0,522	1,239	3,086	0,423	1,80	03	,211	0,634	2,207	
Valor Referencia													

Asimismo, acompañando a éstas tablas y dependiendo del análisis que se esté llevando a cabo, se introducen los indicadores estadísticos "h y k" de Mandel y los valores críticos "C" de Cochran y "G_{sim} y G_{Dob}" de Grubbs, todos ellos adimensionales, obtenidos de las tablas 4, 5, 6 y 7 de la norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios y del número de ensayos efectuados por cada uno de ellos:

TIPO DE ANALISIS		PRE	-ESTADISTI	со		ESTADISTICO					
VARIABLES	h	k	С	G_{sim}	G _{Dob}	h	k	С	G_{sim}	G_{Dob}	
Nivel de Significación 1%	2,13	1,73	0,343	2,387	0,0851	2,13	1,73	0,425	2,387	0,0851	
Nivel de Significación 5%	1,78	1,50	0,288	2,215	0,1492	1,78	1,50	0,358	2,215	0,1492	

Con los resultados de los laboratorios, que tras los dos análisis estadísticos son evaluados por Z-Score, se han obtenido: 9 resultados satisfactorios, 0 resultados dudosos y 0 resultados insatisfactorios.

Respecto a los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística recogida en la ISO 17025, sobre las dispersiones de los resultados individuales y su media, en forma de varianzas o desviaciones estándar, también conocida como ANOVA (siglas de analisys of varience).

Sabiendo que una varianza es la suma de cuadrados dividida por un número, que se llama grados de libertad, que depende del número de participantes menos 1, se puede decir que la imprecisión del ensayo se descompone en dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad (variabilidad intralaboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad debida al cambio de laboratorio).

Las condiciones de repetibilidad de este ensayo son: mismo laborante, mismo laboratorio y mismo equipo de medición utilizado dentro de un período de tiempo corto. Por ende, las condiciones de reproducibilidad para la misma muestra y ensayo, cambian en: el laboratorio, el equipo y las condiciones de uso y tiempo.

Comité de infraestructuras para la Calidad de la Edificación

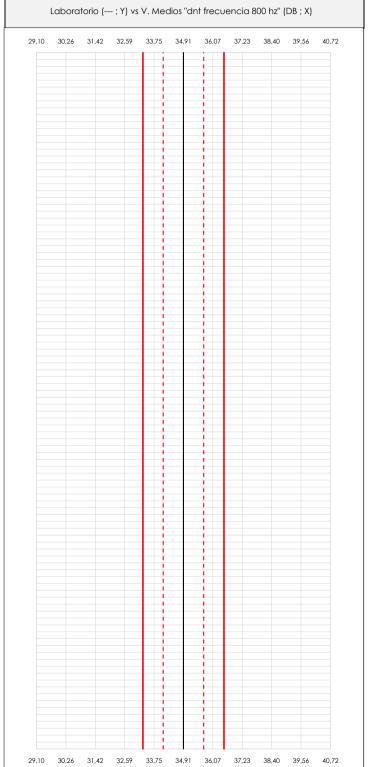
SACE

Subcomisión Administrativa para la Calidad de la Edificación

ANÁLISIS ESTADISTICO DE ACÚSTICA

DNT FRECUENCIA 800 HZ

Comité de infraestructuras para la Calidad de la Edificación


SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 800 HZ (DB) Análisis A. Estudio pre-estadístico

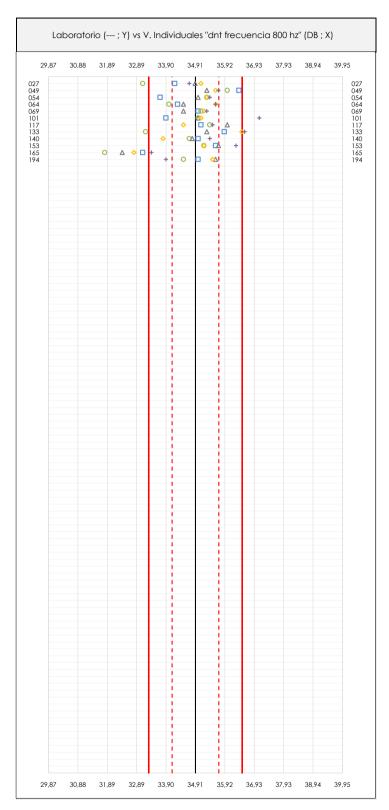
Apartado A.1. Gráficos de dispersión de valores medios

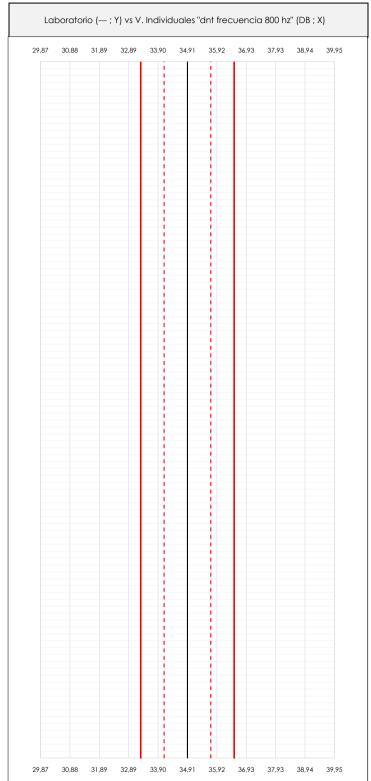
ANALISIS GRAFICO DE DISPERSION MEDIA (ANTES DE ANALISIS ESTADISTICO)

Dispersión de las medias aritméticas intra-laboratorios respecto de la media aritmética inter-laboratorios (34,91; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (35,71/34,11; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (36,51/33,31; líneas rojas de trazo continuo).

En el eje Y (adimensional) quedan reflejados los códigos de los laboratorios participantes y en el eje X (las unidades son las mismas que las del ensayo que se está analizando) las medias aritméticas intra-laboratorios representadas por punto de color negro.

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 800 HZ (DB)

Análisis A. Estudio pre-estadístico

Apartado A.2. Gráficos de dispersión de valores individuales

ANALISIS GRAFICOS DE DISPERSION INDIVIDUAL (ANTES DE ANALISIS ESTADISTICO)

Dispersión de los valores individuales respecto de la media aritmética inter-laboratorios (34,91; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (35,71/34,11; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (36,51/33,31; líneas rojas de trazo continuo).

En el eje Y (adimensional) queda reflejado el código del laboratorio participante y en el eje X (las unidades son las de los resultados del ensayo que se está analizando) los resultados individuales: el primero $(X_{i,1})$ se representa con un cuadrado azul, el segundo $(X_{i,2})$ con un círculo verde, el tercero $(X_{i,3})$ con un triángulo grís y el cuarto $(X_{i,4})$ con un rombo amarillo

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 800 HZ (DB)

Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	Х _{і 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{Li}	D _{i arit %}	Pasa A	Observaciones
27	34,20	33,10	34,90	35,10	34,70	34,40	0,800	-1,46	√	
49	36,40	36,00	35,30	35,60	35,70	35,80	0,418	2,55	√	
54	33,70	35,30	35,00	35,30	35,40	34,94	0,709	0,09	√	
64	34,30 35,00	34,00 35,10	34,50 34,50	35,60 35,20	35,60 35,30	34,80 35,02	0,752	-0,32 0,32	√	
101	33,90	35,00	35,00	35,10	37,10	35,22	1,161	0,89	→	
117	35,10	35,40	36,00	34,50	35,50	35,30	0,552	1,12	→	
133	35,90	33,20	35,30	36,50	36,60	35,50	1,387	1,69	<u>√</u>	
140	35,00	34,70	34,80	33,80	35,40	34,74	0,590	-0,49	√	
153	35,60	35,20	35,70	35,20	36,30	35,60	0,453	1,98	√	
165	33,10	31,80	32,40	32,80	33,40	32,70	0,624	-6,33	✓	
194	35,00	34,50	35,60	35,50	33,90	34,90	0,711	-0,03	✓	

NOTAS:

[máximo]

[mínimo]

[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \, arit}$ " es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación

CONSUS SUPE

SACE
Subcomisión Administrativa para la
Calidad de la Edificación

DNT FRECUENCIA 800 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

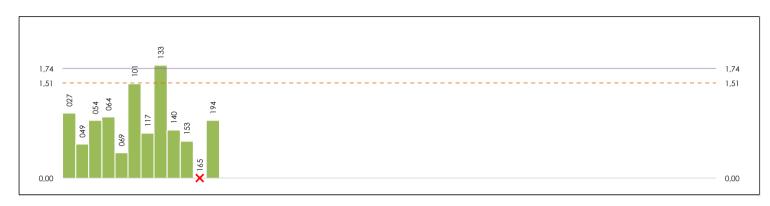
Apartado B.1. Gráfico de consistencia inter-laboratorios "h" de Mandel

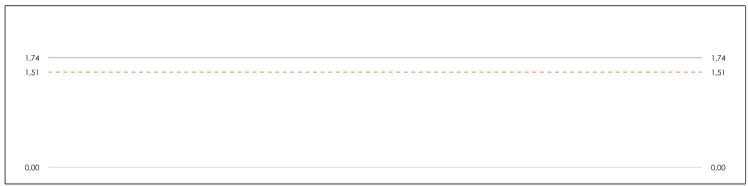
ANALISIS GRAFICO DE CONSISTENCIA INTER-LABORATORIOS

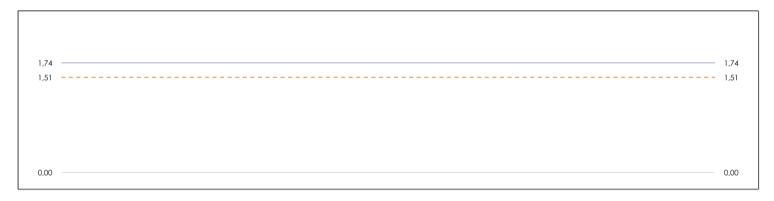
Análisis gráfico de consistencia inter-laboratorios "h" de Mandel. En él se representan las medias aritméticas inter-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes).

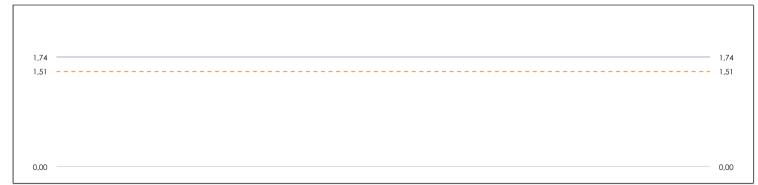
Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación


DNT FRECUENCIA 800 HZ (DB)


Análisis B. Mandel, Cochran y Grubbs

Apartado B.2. Gráfico de consistencia intra-laboratorios "k" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTRA-LABORATORIOS

Análisis gráfico de consistencia intra-laboratorios "k" de Mandel. En él se representan las medias aritméticas intra-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes y el número de ensayos efectuados).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 800 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

Lab X ₁ 1 X ₁ 2 X ₁ 3 X ₁ 4 X ₁ 5 X̄ _{1 anth} S _L 1 D _{L onth %} h _L k _L C _L G _{Sim Interval} 27 34,200 33,100 34,900 35,100 34,700 34,400 0,800 -2,02 -1,71 1,03 1,707 49 36,40 36,000 35,300 35,600 35,700 35,800 0,418 1,96 1,65 0,54 54 33,70 35,300 35,000 35,300 35,400 34,940 0,709 -0,49 -0,41 0,91 64 34,30 34,000 34,500 35,600 35,600 34,800 0,752 -0,89 -0,75 0,97 69 35,00 35,100 35,200 35,300 35,020 0,311 -0,26 -0,22 0,40 101 33,90 35,000 35,100 37,100 35,220 1,161 0,31 0,26 1,50 117 35,10 35,400 36,500 <th></th> <th>0,5544</th> <th>0,4995 0,4995</th> <th>Pasa B</th>		0,5544	0,4995 0,4995	Pasa B
49 36,40 36,000 35,300 35,600 35,700 35,800 0,418 1,96 1,65 0,54 54 33,70 35,300 35,000 35,300 35,400 34,940 0,709 -0,49 -0,41 0,91 64 34,30 34,000 34,500 35,600 35,600 34,800 0,752 -0,89 -0,75 0,97 69 35,00 35,100 34,500 35,200 35,300 35,020 0,311 -0,26 -0,22 0,40 101 33,90 35,000 35,100 37,100 35,220 1,161 0,31 0,26 1,50 117 35,10 35,400 36,000 34,500 35,500 35,300 0,552 0,54 0,45 0,71 133 35,90 33,200 35,300 36,500 36,600 35,500 1,387 1,11 0,93 1,79*** 0,291 140 35,00 34,700 34,800 35,200 <td< th=""><th>1,654</th><th>0,5544</th><th>0,4995</th><th>/ / / / / / / / X</th></td<>	1,654	0,5544	0,4995	/ / / / / / / / X
49 36,40 36,000 35,300 35,600 35,700 35,800 0,418 1,96 1,65 0,54 54 33,70 35,300 35,000 35,300 35,400 34,940 0,709 -0,49 -0,41 0,91 64 34,30 34,000 34,500 35,600 35,600 34,800 0,752 -0,89 -0,75 0,97 69 35,00 35,100 34,500 35,200 35,300 35,020 0,311 -0,26 -0,22 0,40 101 33,90 35,000 35,100 37,100 35,220 1,161 0,31 0,26 1,50 117 35,10 35,400 36,000 34,500 35,500 35,300 0,552 0,54 0,45 0,71 133 35,90 33,200 35,300 36,500 36,600 35,500 1,387 1,11 0,93 1,79*** 0,291 140 35,00 34,700 34,800 35,400 <td< td=""><td>1,654</td><td>0,5544</td><td>0,4995</td><td>/ / / / / / / / X</td></td<>	1,654	0,5544	0,4995	/ / / / / / / / X
54 33,70 35,300 35,300 35,300 35,400 34,940 0,709 -0,49 -0,41 0,91 64 34,30 34,000 34,500 35,600 35,600 34,800 0,752 -0,89 -0,75 0,97 69 35,00 35,100 34,500 35,200 35,300 35,220 0,311 -0,26 -0,22 0,40 101 33,90 35,000 35,100 37,100 35,220 1,161 0,31 0,26 1,50 117 35,10 35,400 36,000 34,500 35,500 35,300 0,552 0,54 0,45 0,71 133 35,90 33,200 35,300 36,500 36,600 35,500 1,387 1,11 0,93 1,79*** 0,291 140 35,00 34,700 34,800 33,800 35,400 34,740 0,590 -1,06 -0,89 0,76 153 35,60 35,200 35,700 36,300			0,4995	/ / / / / / / X
64 34,30 34,000 34,500 35,600 35,600 34,800 0,752 -0,89 -0,75 0,97 69 35,00 35,100 34,500 35,200 35,300 35,020 0,311 -0,26 -0,22 0,40 101 33,90 35,000 35,000 35,100 37,100 35,220 1,161 0,31 0,26 1,50 117 35,10 35,400 36,000 34,500 35,500 35,300 0,552 0,54 0,45 0,71 133 35,90 33,200 35,300 36,500 36,600 35,500 1,387 1,11 0,93 1,79*** 0,291 140 35,00 34,700 34,800 33,800 35,400 34,740 0,590 -1,06 -0,89 0,76 153 35,60 35,200 35,200 36,300 35,600 0,453 1,39 1,17 0,58 165 33,10 31,800 32,400 32,800 <				\frac{1}{\sqrt{1}}
69 35,00 35,100 34,500 35,200 35,300 35,020 0,311 -0,26 -0,22 0,40 101 33,90 35,000 35,000 35,100 37,100 35,220 1,161 0,31 0,26 1,50 117 35,10 35,400 36,000 34,500 35,500 35,300 0,552 0,54 0,45 0,71 133 35,90 33,200 35,300 36,600 35,500 1,387 1,11 0,93 1,79*** 0,291 140 35,00 34,700 34,800 33,800 35,400 34,740 0,590 -1,06 -0,89 0,76 153 35,60 35,200 35,700 35,200 36,300 35,600 0,453 1,39 1,17 0,58 165 33,10 31,800 32,400 32,800 33,400 32,700 <td< td=""><td></td><td></td><td></td><td>\frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}}</td></td<>				\frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}} \frac{1}{\sqrt{1}}
101 33,90 35,000 35,000 35,100 37,100 35,220 1,161 0,31 0,26 1,50 117 35,10 35,400 36,000 34,500 35,500 35,300 0,552 0,54 0,45 0,71 133 35,90 33,200 35,300 36,500 36,600 35,500 1,387 1,11 0,93 1,79*** 0,291 140 35,00 34,700 34,800 33,800 35,400 34,740 0,590 -1,06 -0,89 0,76 153 35,60 35,200 35,700 35,200 36,300 35,600 0,453 1,39 1,17 0,58 165 33,10 31,800 32,400 32,800 33,400 32,700				√
117 35,10 35,400 36,000 34,500 35,500 35,300 0,552 0,54 0,45 0,71 133 35,90 33,200 35,300 36,500 36,600 35,500 1,387 1,11 0,93 1,79** 0,291 140 35,00 34,700 34,800 33,800 35,400 34,740 0,590 -1,06 -0,89 0,76 153 35,60 35,200 35,700 36,300 35,600 0,453 1,39 1,17 0,58 165 33,10 31,800 32,400 32,800 33,400 32,700 <td></td> <td></td> <td></td> <td>√ √ √ X</td>				√ √ √ X
133 35,90 33,200 35,300 36,500 36,600 35,500 1,387 1,11 0,93 1,79*** 0,291 140 35,00 34,700 34,800 33,800 35,400 34,740 0,590 -1,06 -0,89 0,76 153 35,60 35,200 35,200 36,300 35,600 0,453 1,39 1,17 0,58 165 33,10 31,800 32,400 32,800 33,400 32,700				√ ✓ X
140 35,00 34,700 34,800 33,800 35,400 34,740 0,590 -1,06 -0,89 0,76 153 35,60 35,200 35,200 36,300 35,600 0,453 1,39 1,17 0,58 165 33,10 31,800 32,400 32,800 33,400 32,700				×
153 35,60 35,200 35,700 35,200 36,300 35,600 0,453 1,39 1,17 0,58 165 33,10 31,800 32,400 32,800 33,400 32,700				X
165 33,10 31,800 32,400 32,800 33,400 32,700				X
				

NOTAS:

[aberrante]

[anómalo]

[máximo]

[mínimo]

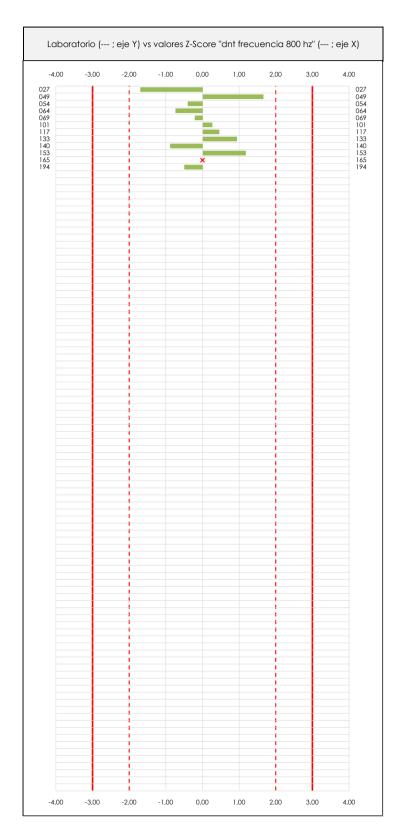
[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \text{ arit}}$ " es la media aritmética intralaboratorio calculada sin redondear.

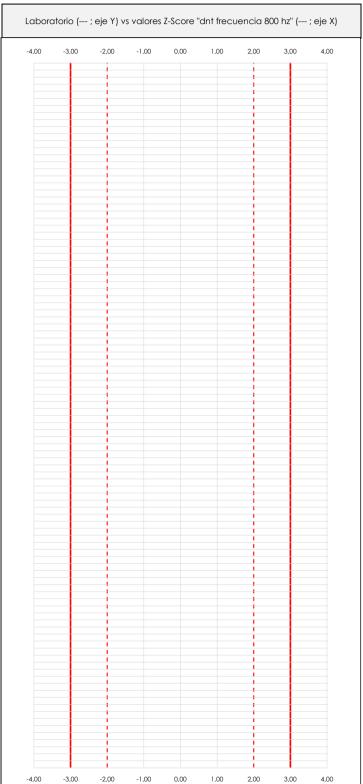
^{02 &}quot;S_Li" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ "h₁ y k," ,"C₁", "G_{Sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 800 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.1. Análisis gráfico Altman Z-Score

ANALISIS GRAFICO Z-SCORE

Diagrama Z-Score para los resultados aportados por los laboratorios. Estos se considerarán satisfactorios (S) si el valor absoluto del Z-Score es menor o igual a 2 unidades, dudoso si está comprendido entre 2 y 3 unidades e insatisfactorio si es mayor o igual a 3 unidades.

Los resultados satisfactorios quedan reflejados entre las dos líneas rojas discontinuas, líneas de referencia en la evaluación Z-Score.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 800 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

						_									
Lab	X _{i 1}	X _{i 2}	Х _{і 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{Li}	D _{i arit %}	Pasa A	Pasa B	Total	Causa	Iteración	Z-Score	Evaluación
27	34,20	33,10	34,90	35,10	34,70	34,40	0,800	-2,02	√	√	√			-1,707	S
49	36,40	36,00	35,30	35,60	35,70	35,80	0,418	1,96	√	√	√			1,654	S
54	33,70	35,30	35,00	35,30	35,40	34,94	0,709	-0,49	√	√	√			-0,410	S
64	34,30	34,00	34,50	35,60	35,60	34,80	0,752	-0,89	✓	√	✓			-0,746	S
69	35,00	35,10	34,50	35,20	35,30	35,02	0,311	-0,26	✓	✓	✓			-0,218	S
101	33,90	35,00	35,00	35,10	37,10	35,22	1,161	0,31	✓	✓	✓			0,262	S
117	35,10	35,40	36,00	34,50	35,50	35,30	0,552	0,54	✓	✓	✓			0,454	S
133	35,90	33,20	35,30	36,50	36,60	35,50	1,387	1,11	✓	✓	✓			0,934	S
140	35,00	34,70	34,80	33,80	35,40	34,74	0,590	-1,06	✓	✓	✓			-0,891	S
153	35,60	35,20	35,70	35,20	36,30	35,60	0,453	1,39	✓	✓	✓			1,174	S
165	33,10	31,80	32,40	32,80	33,40	32,70			✓	X	X	AB	0		
194	35,00	34,50	35,60	35,50	33,90	34,90	0,711	-0,60	✓	✓	✓			-0,506	S

NOTAS:

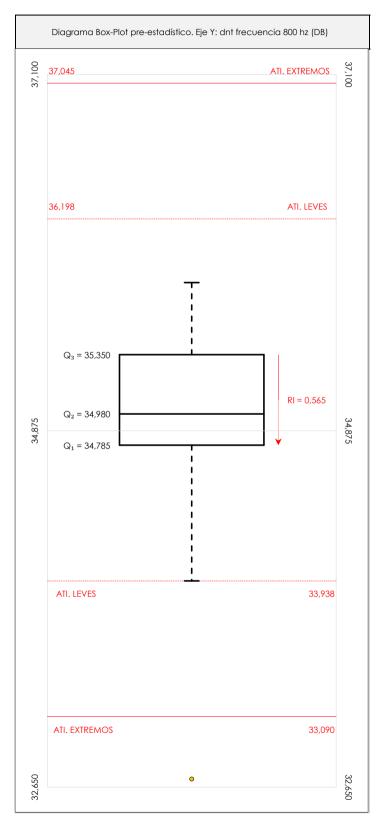
[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \text{ arit}}$ " es la media aritmética intralaboratorio calculada sin redondear.

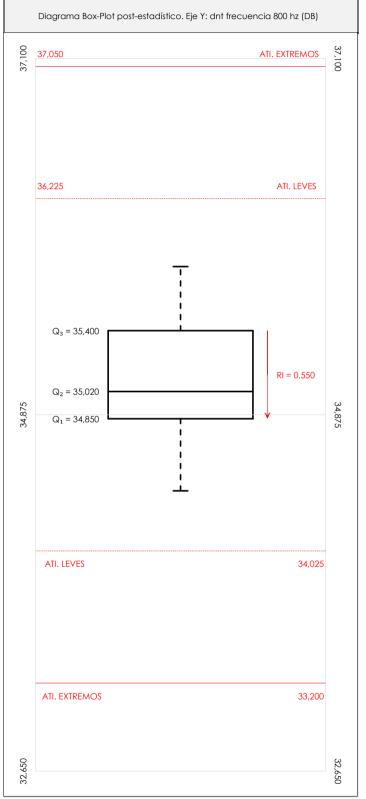
^{02 &}quot;S_Li" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

 $^{^{03}}$ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leqslant 2] [Dudoso (D) - si 2 < | ZS | \leqslant 3] [Insatisfactorio (I) - si | ZS | > 3].

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

CICEComité de infraestructuras para la Calidad de la Edificación




SACE
Subcomisión Administrativa para la
Calidad de la Edificación

DNT FRECUENCIA 800 HZ (DB)

Análisis D. Estudios post-estadisticos

Apartado D.3. Diagramas Box-Plot o de Caja y Bigotes

ANALISIS GRAFICO DE CAJA Y BIGOTES (ANTES Y DESPUES DE ANALISIS ESTADISTICO)

Diagramas de caja y bigotes (Box Plot) de las medias aritméticas de los resultados aportados por los laboratorios antes (diagrama de la izquierda. Este incluye valores aberrantes y anómalos) y después (diagrama de la derecha. No incluye los valores descartados a lo largo del estudio) de análisis estadístico.

En ambos se han representado: el primer cuartil (Q_1 ; 25% de los datos), el segundo cuartil o la mediana (Q_2 ; 50% de los datos), el tercer cuartil (Q_3 ; 75% de los datos), el rango intercuartílico (RI; cuartil tres menos cuartil uno) y los límites de valores atípicos leves (f_3 y f_1 para el máximo y mínimo respectivamente; líneas discontinuas de color rojo) y extremos (f_3 * y f_1 * para el máximo y mínimo respectivamente; líneas continuas de color rojo).

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 800 HZ (DB)

Conclusiones

Determinación de la repetibilidad y reproducibilidad

El análisis estadístico ElLA20 para el ensayo "DNT FRECUENCIA 800 HZ", ha contado con la participación de un total de 12 laboratorios, debiendo haber aportado cada uno de ellos, un total de 5 determinaciones individuales además de su valor medio.

Tras analizar los resultados podemos concluir que, para cumplir con los criterios estadísticos establecidos en el informe, un total de 1 laboratorios han sido apartados de la evaluación final: O en el Análisis Pre-Estadístico (por no cumplir el criterio de validación y/o el procedimiento de ejecución recogido en la norma de ensayo) y 1 en el Análisis Estadístico (por resultar anómalos o aberrantes en las técnicas gráficas de consistencia de Mandel y en los ensayos de detección de resultados numéricos de Cochran y Grubbs), al cabo de 2 iteraciones.

De cada uno de los análisis (pre-estadístico y estadístico), se obtienen las siguientes tablas:

TIPO DE ANALISIS			PRE-ES	TADISTIC	0				ESTA	DISTICO		
Variables	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$
Valor Máximo (max ; %)	36,40	36,00	36,00	36,50	37,10	35,80	36,40	36,00	36,00	36,50	37,10	35,80
Valor Mínimo (min ; %)	33,10	31,80	32,40	32,80	33,40	32,70	33,70	33,10	34,50	33,80	33,90	34,40
Valor Promedio (M; %)	34,77	34,44	34,92	35,02	35,41	34,91	34,92	34,68	35,15	35,22	35,59	35,11
Desviación Típica (SDL ;)	0,96	1,21	0,92	0,95	1,05	0,80	0,84	0,92	0,48	0,68	0,87	0,42
Coef. Variación (CV ;)	0,03	0,04	0,03	0,03	0,03	0,02	0,02	0,03	0,01	0,02	0,02	0,01
VARIABLES	S_r^2	r		$S_L^{\ 2}$	S_R^{2}	R	S_r^2	r		S_L^2	S_R^{2}	R
Valor Calculado	0,584	2,11	8 (),525	1,109	2,919	0,601	2,15	50 0	,053	0,655	2,243
Valor Referencia												

Asimismo, acompañando a éstas tablas y dependiendo del análisis que se esté llevando a cabo, se introducen los indicadores estadísticos "h y k" de Mandel y los valores críticos "C" de Cochran y "G_{Sim} y G_{Dob}" de Grubbs, todos ellos adimensionales, obtenidos de las tablas 4, 5, 6 y 7 de la norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios y del número de ensayos efectuados por cada uno de ellos:

TIPO DE ANALISIS		PRI	-ESTADISTI	со			E	STADISTIC)	
VARIABLES	h	k	С	G_{sim}	G_{Dob}	h	k	С	G_{sim}	G_{Dob}
Nivel de Significación 1%	2,22	1,74	0,343	2,564	0,1448	2,22	1,74	0,366	2,564	0,1448
Nivel de Significación 5%	1,82	1,51	0,288	2,355	0,2213	1,82	1,51	0,308	2,355	0,2213

Con los resultados de los laboratorios, que tras los dos análisis estadísticos son evaluados por Z-Score, se han obtenido: 11 resultados satisfactorios, 0 resultados dudosos y 0 resultados insatisfactorios.

Respecto a los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística recogida en la ISO 17025, sobre las dispersiones de los resultados individuales y su media, en forma de varianzas o desviaciones estándar, también conocida como ANOVA (siglas de analisys of varience).

Sabiendo que una varianza es la suma de cuadrados dividida por un número, que se llama grados de libertad, que depende del número de participantes menos 1, se puede decir que la imprecisión del ensayo se descompone en dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad (variabilidad intralaboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad debida al cambio de laboratorio).

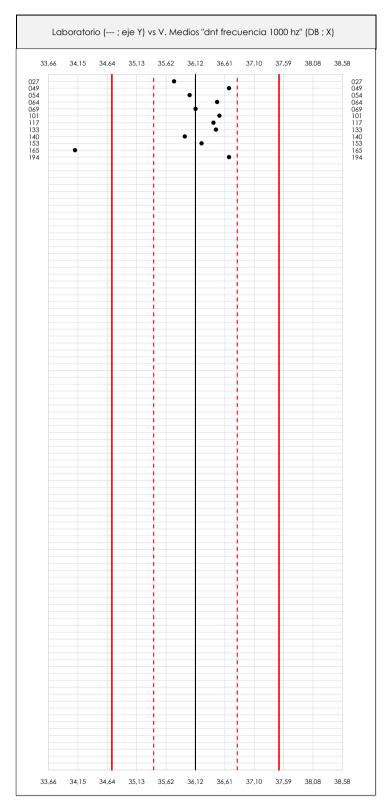
Las condiciones de repetibilidad de este ensayo son: mismo laborante, mismo laboratorio y mismo equipo de medición utilizado dentro de un período de tiempo corto. Por ende, las condiciones de reproducibilidad para la misma muestra y ensayo, cambian en: el laborante, el laboratorio, el equipo y las condiciones de uso y tiempo.

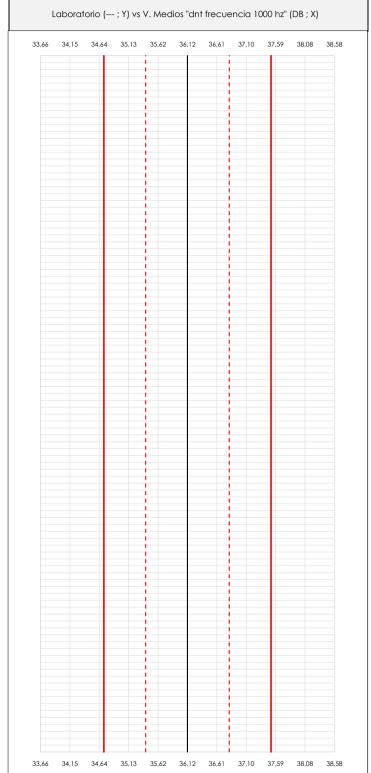
Comité de infraestructuras para la Calidad de la Edificación

Subcomisión Administrativa para la Calidad de la Edificación

ANÁLISIS ESTADISTICO DE ACÚSTICA DNT FRECUENCIA 1000 HZ

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 1000 HZ (DB)

Análisis A. Estudio pre-estadístico

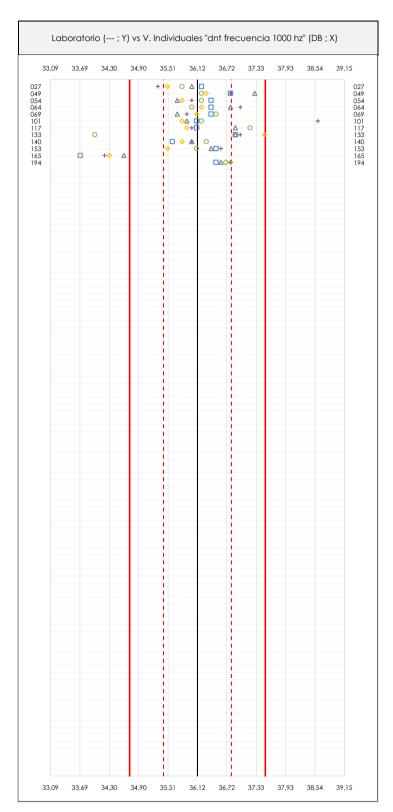
Apartado A.1. Gráficos de dispersión de valores medios

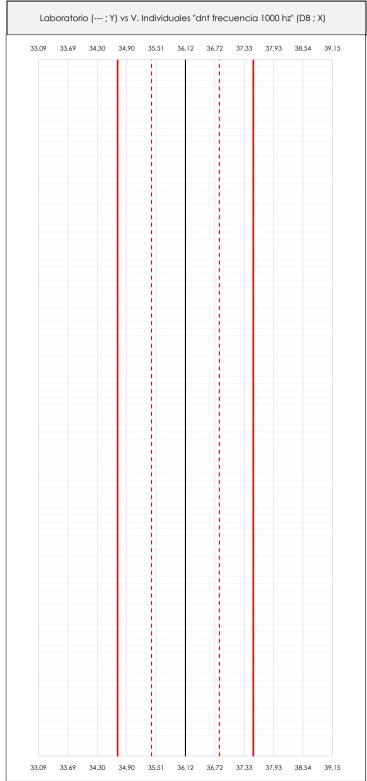
ANALISIS GRAFICO DE DISPERSION MEDIA (ANTES DE ANALISIS ESTADISTICO)

Dispersión de las medias aritméticas intra-laboratorios respecto de la media aritmética inter-laboratorios (36,12; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (36,82/35,42; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (37,52/34,72; líneas rojas de trazo continuo).

En el eje Y (adimensional) quedan reflejados los códigos de los laboratorios participantes y en el eje X (las unidades son las mismas que las del ensayo que se está analizando) las medias aritméticas intra-laboratorios representadas por punto de color negro.

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 1000 HZ (DB)

Análisis A. Estudio pre-estadístico

Apartado A.2. Gráficos de dispersión de valores individuales

ANALISIS GRAFICOS DE DISPERSION INDIVIDUAL (ANTES DE ANALISIS ESTADISTICO)

Dispersión de los valores individuales respecto de la media aritmética inter-laboratorios (36,12; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (36,82/35,42; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (37,52/34,72; líneas rojas de trazo continuo).

En el eje Y (adimensional) queda reflejado el código del laboratorio participante y en el eje X (las unidades son las de los resultados del ensayo que se está analizando) los resultados individuales: el primero $(X_{i,1})$ se representa con un cuadrado azul, el segundo $(X_{i,2})$ con un círculo verde, el tercero $(X_{i,3})$ con un triángulo grís y el cuarto $(X_{i,4})$ con un rombo amarillo

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 1000 HZ (DB)

Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	Pasa A	Observaciones
0.7	27.00	25.00	27.00	25.50	25.20	25.77	0.245	0.00		
27 49	36,20 36,80	35,80 36,20	36,00 37,30	35,50 36,30	35,30 36,80	35,76 36,68	0,365	-0,99 1,56	√	
54	36,40	36,20	35,70	35,80	36,00	36,02	0,286	-0,27	→	
64	36,40	36,00	36,80	36,20	37,00	36,48	0,415	1,01	→	
69	36,40	36,50	35,70	36,10	35,90	36,12	0,335	0,01	<u>√</u>	
101	36,10	36,20	35,90	35,80	38,60	36,52	1,173	1,12	√	
117	36,10	37,20	36,90	35,90	36,00	36,42	0,589	0,84	√	
133	36,90	34,00	36,90	37,50	37,00	36,46	1,397	0,95	√	
140	35,60	36,30	36,00	35,80	36,00	35,94	0,261	-0,49	✓	
153	36,50	36,10	36,40	35,50	36,60	36,22	0,444	0,29	✓	
165	33,70	33,70	34,60	34,30	34,20	34,10	0,394	-5,58	✓	
194	36,50	36,70	36,60	36,80	36,80	36,68	0,130	1,56	✓	

NOTAS:

[máximo]

[mínimo]

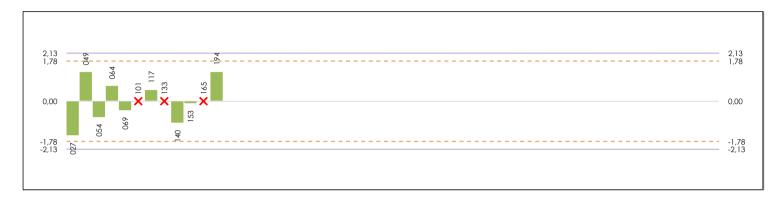
[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \, arit}$ " es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación


SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 1000 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

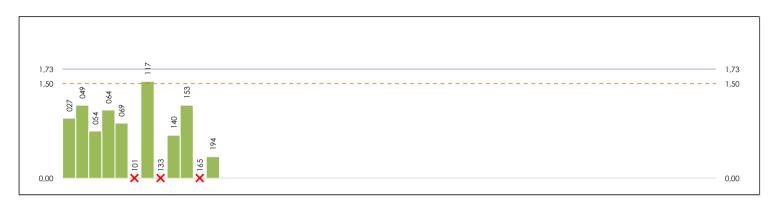
Apartado B.1. Gráfico de consistencia inter-laboratorios "h" de Mandel

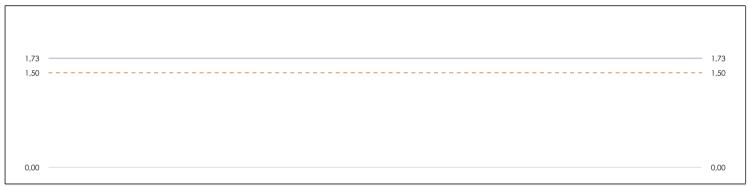
ANALISIS GRAFICO DE CONSISTENCIA INTER-LABORATORIOS

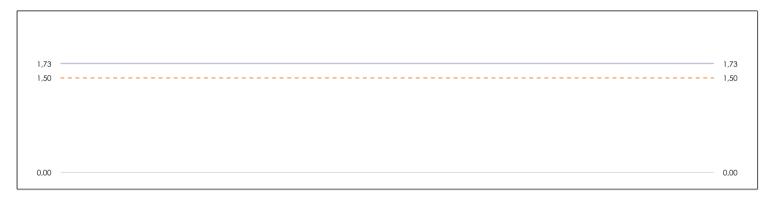
Análisis gráfico de consistencia inter-laboratorios "h" de Mandel. En él se representan las medias aritméticas inter-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación


DNT FRECUENCIA 1000 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.2. Gráfico de consistencia intra-laboratorios "k" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTRA-LABORATORIOS

Análisis gráfico de consistencia intra-laboratorios "k" de Mandel. En él se representan las medias aritméticas intra-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes y el número de ensayos efectuados).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 1000 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S _{L i}	D _{i arit %}	h _i	k _i	Ci	G _{Sim Inf}	G _{Sim Sup}	G _{Dob Inf}	G _{Dob Sup}	Pasa B
27	36,200	35,800	36,000	35,500	35,300	35,760	0,365	-1,37	-1,52	0,95		1,520	1 000	0,4827	0.4457	
49	36,80	36,200	37,300	36,300	36,800	36,680	0,444	1,16	1,29	1,16			1,289		0,4657	
54	36,40	36,200	35,700	35,800	36,000	36,020	0,286	-0,66	-0,73	0,75						√
64	36,40 36,40	36,000 36,500	36,800 35,700	36,200 36,100	37,000 35,900	36,480 36,120	0,415	0,61 -0,38	0,68 -0,42	1,08 0,87						
101	36,10	36,200	35,900	35,800	38,600	36,520		-0,30	-0,42							X
117	36,10	37,200	36,900	35,900	36,000	36,420	0,589	0,45	0,50	1,54*	0,262					
133	36,90	34,000	36,900	37,500	37,000	36,460										X
140	35,60	36,300	36,000	35,800	36,000	35,940	0,261	-0,88	-0,97	0,68				0,4827		<u> </u>
153	36,50	36,100	36,400	35,500	36,600	36,220	0,444	-0,10	-0,12	1,16				0,1027		<u> </u>
165	33,70	33,700	34,600	34,300	34,200	34,100										X
194	36,50	36,700	36,600	36,800	36,800	36,680	0,130	1,16	1,29	0,34			1,289		0,4657	
							-,	.,		-,			.,		-,	
:																

NOTAS:

[aberrante]

[anómalo]

[máximo]

[mínimo]

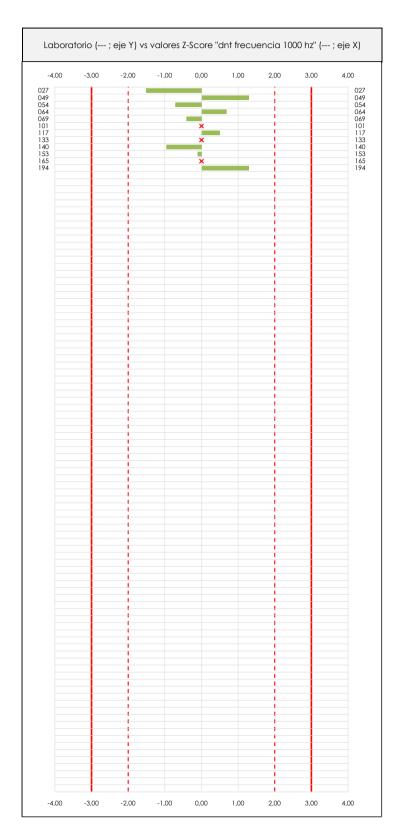
[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \text{ arit}}$ " es la media aritmética intralaboratorio calculada sin redondear.

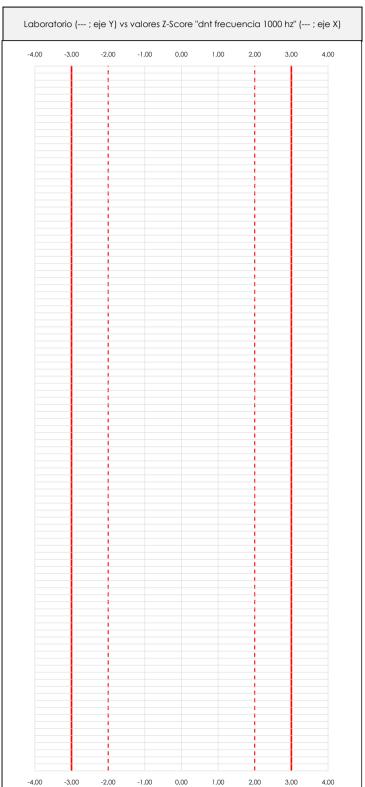
^{02 &}quot;S_Li" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

^{03 &}quot;h₁ y k," ,"C₁", "G_{Sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 1000 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.1. Análisis gráfico Altman Z-Score

ANALISIS GRAFICO Z-SCORE

Diagrama Z-Score para los resultados aportados por los laboratorios. Estos se considerarán satisfactorios (S) si el valor absoluto del Z-Score es menor o igual a 2 unidades, dudoso si está comprendido entre 2 y 3 unidades e insatisfactorio si es mayor o igual a 3 unidades.

Los resultados satisfactorios quedan reflejados entre las dos líneas rojas discontinuas, líneas de referencia en la evaluación Z-Score.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 1000 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

Lab	X _{i 1}	X _{i2}	X _{i 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{Li}	D _{i arit %}	Pasa A	Pasa B	Total	Causa	Iteración	Z-Score	Evaluación
27	36,20	35,80	36,00	35,50	35,30	35,76	0,365	-1,37	√	√	√			-1,520	S
49	36,80	36,20	37,30	36,30	36,80	36,68	0,444	1,16	√	√	√			1,289	S
54	36,40	36,20	35,70	35,80	36,00	36,02	0,286	-0,66	√	✓	√			-0,726	S
64	36,40	36,00	36,80	36,20	37,00	36,48	0,415	0,61	√	√	√			0,679	S
69	36,40	36,50	35,70	36,10	35,90	36,12	0,335	-0,38	√	✓	✓			-0,421	S
101	36,10	36,20	35,90	35,80	38,60	36,52			✓	Х	X	AB	0		
117	36,10	37,20	36,90	35,90	36,00	36,42	0,589	0,45	✓	✓	✓			0,495	S
133	36,90	34,00	36,90	37,50	37,00	36,46			✓	X	X	AB	0		
140	35,60	36,30	36,00	35,80	36,00	35,94	0,261	-0,88	✓	✓	✓			-0,970	S
153	36,50	36,10	36,40	35,50	36,60	36,22	0,444	-0,10	✓	✓	✓			-0,115	S
165	33,70	33,70	34,60	34,30	34,20	34,10			✓	Х	X	AB	0		
194	36,50	36,70	36,60	36,80	36,80	36,68	0,130	1,16	✓	✓	✓			1,289	S

NOTAS:

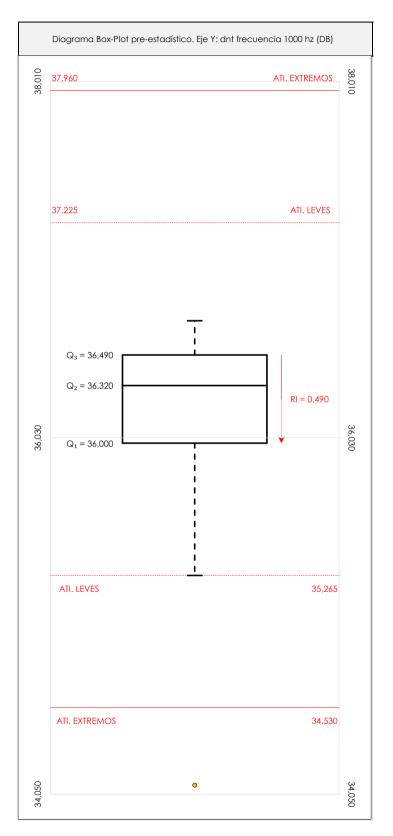
[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \text{ arit}}$ " es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_Li" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

 $^{^{03}}$ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leqslant 2] [Dudoso (D) - si 2 < | ZS | \leqslant 3] [Insatisfactorio (I) - si | ZS | > 3].

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

CICE Comité de infraestructuras para la Calidad de la Edificación



SACE
Subcomisión Administrativa para la
Calidad de la Edificación

DNT FRECUENCIA 1000 HZ (DB)

Análisis D. Estudios post-estadisticos

Apartado D.3. Diagramas Box-Plot o de Caja y Bigotes

ANALISIS GRAFICO DE CAJA Y BIGOTES (ANTES Y DESPUES DE ANALISIS ESTADISTICO)

Diagramas de caja y bigotes (Box Plot) de las medias aritméticas de los resultados aportados por los laboratorios antes (diagrama de la izquierda. Este incluye valores aberrantes y anómalos) y después (diagrama de la derecha. No incluye los valores descartados a lo largo del estudio) de análisis estadístico.

En ambos se han representado: el primer cuartil (Q_1 ; 25% de los datos), el segundo cuartil o la mediana (Q_2 ; 50% de los datos), el tercer cuartil (Q_3 ; 75% de los datos), el rango intercuartílico (RI; cuartil tres menos cuartil uno) y los límites de valores atípicos leves (f_3 y f_1 para el máximo y mínimo respectivamente; líneas discontinuas de color rojo) y extremos (f_3 * y f_1 * para el máximo y mínimo respectivamente; líneas continuas de color rojo).

CICE Comité de infraestructuras para la Calidad de la Edificación

DNT FRECUENCIA 1000 HZ (DB)

Conclusiones

Determinación de la repetibilidad y reproducibilidad

SACESubcomisión Administrativa para la Calidad de la Edificación

El análisis estadístico ElLA20 para el ensayo "DNT FRECUENCIA 1000 HZ", ha contado con la participación de un total de 12 laboratorios, debiendo haber aportado cada uno de ellos, un total de 5 determinaciones individuales además de su valor medio.

Tras analizar los resultados podemos concluir que, para cumplir con los criterios estadísticos establecidos en el informe, un total de 3 laboratorios han sido apartados de la evaluación final: 0 en el Análisis Pre-Estadístico (por no cumplir el criterio de validación y/o el procedimiento de ejecución recogido en la norma de ensayo) y 3 en el Análisis Estadístico (por resultar anómalos o aberrantes en las técnicas gráficas de consistencia de Mandel y en los ensayos de detección de resultados numéricos de Cochran y Grubbs), al cabo de 2 iteraciones.

De cada uno de los análisis (pre-estadístico y estadístico), se obtienen las siguientes tablas:

TIPO DE ANALISIS			PRE-ES	TADISTIC	0				ESTA	DISTICO		
Variables	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$
Valor Máximo (max ; %)	36,90	37,20	37,30	37,50	38,60	36,68	36,80	37,20	37,30	36,80	37,00	36,68
Valor Mínimo (min ; %)	33,70	33,70	34,60	34,30	34,20	34,10	35,60	35,80	35,70	35,50	35,30	35,76
Valor Promedio (M; %)	36,13	35,91	36,23	35,96	36,35	36,12	36,32	36,33	36,38	35,99	36,27	36,26
Desviación Típica (SDL ;)	0,84	1,03	0,74	0,77	1,07	0,70	0,33	0,42	0,57	0,41	0,56	0,33
Coef. Variación (CV ;)	0,02	0,03	0,02	0,02	0,03	0,02	0,01	0,01	0,02	0,01	0,02	0,01
VARIABLES	S_r^2	r		$S_L^{\ 2}$	$S_R^{\ 2}$	R	S_r^2	r		S_L^2	S_R^{-2}	R
Valor Calculado	0,401	1,75	55 (),409	0,810	2,495	0,147	1,06	34 0	,078	0,225	1,315
Valor Referencia												

Asimismo, acompañando a éstas tablas y dependiendo del análisis que se esté llevando a cabo, se introducen los indicadores estadísticos "h y k" de Mandel y los valores críticos "C" de Cochran y "G_{sim} y G_{Dob}" de Grubbs, todos ellos adimensionales, obtenidos de las tablas 4, 5, 6 y 7 de la norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios y del número de ensayos efectuados por cada uno de ellos:

TIPO DE ANALISIS		PRI	-ESTADISTI	со			E	STADISTIC)	
VARIABLES	h	k	С	G_{sim}	G _{Dob}	h	k	С	G_{sim}	G_{Dob}
Nivel de Significación 1%	2,13	1,73	0,343	2,387	0,0851	2,13	1,73	0,425	2,387	0,0851
Nivel de Significación 5%	1,78	1,50	0,288	2,215	0,1492	1,78	1,50	0,358	2,215	0,1492

Con los resultados de los laboratorios, que tras los dos análisis estadísticos son evaluados por Z-Score, se han obtenido: 9 resultados satisfactorios, 0 resultados dudosos y 0 resultados insatisfactorios.

Respecto a los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística recogida en la ISO 17025, sobre las dispersiones de los resultados individuales y su media, en forma de varianzas o desviaciones estándar, también conocida como ANOVA (siglas de analisys of varience).

Sabiendo que una varianza es la suma de cuadrados dividida por un número, que se llama grados de libertad, que depende del número de participantes menos 1, se puede decir que la imprecisión del ensayo se descompone en dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad (variabilidad intralaboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad debida al cambio de laboratorio).

Las condiciones de repetibilidad de este ensayo son: mismo laborante, mismo laboratorio y mismo equipo de medición utilizado dentro de un período de tiempo corto. Por ende, las condiciones de reproducibilidad para la misma muestra y ensayo, cambian en: el laboratorio, el equipo y las condiciones de uso y tiempo.

Comité de infraestructuras para la Calidad de la Edificación

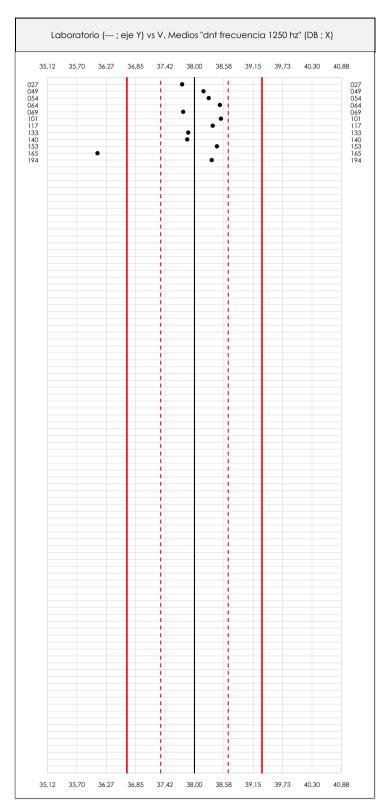
SACE

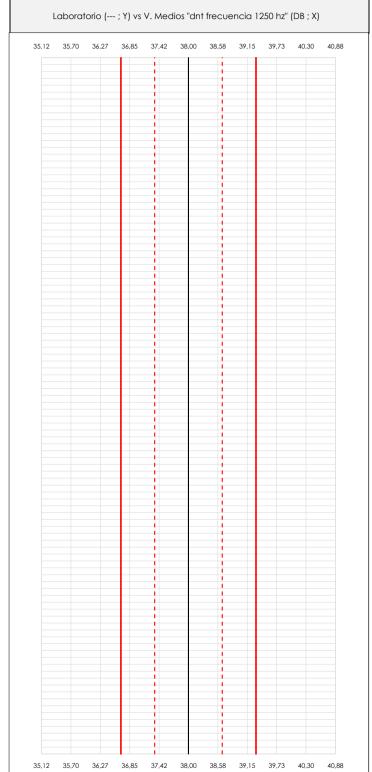
Subcomisión Administrativa para la Calidad de la Edificación

ANÁLISIS ESTADISTICO DE ACÚSTICA

DNT FRECUENCIA 1250 HZ

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 1250 HZ (DB)

Análisis A. Estudio pre-estadístico

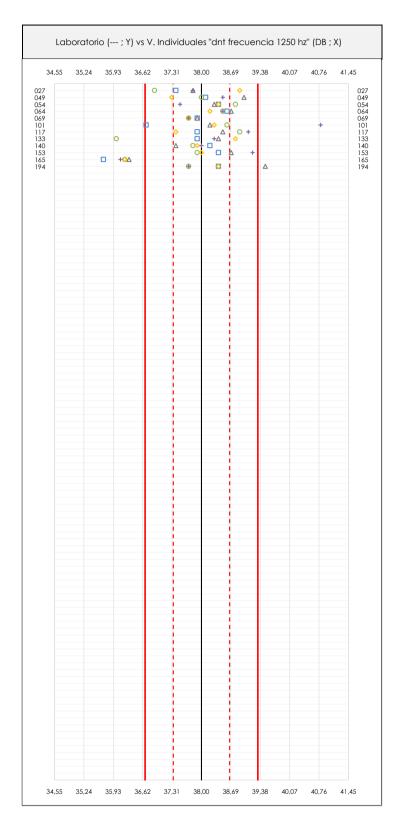
Apartado A.1. Gráficos de dispersión de valores medios

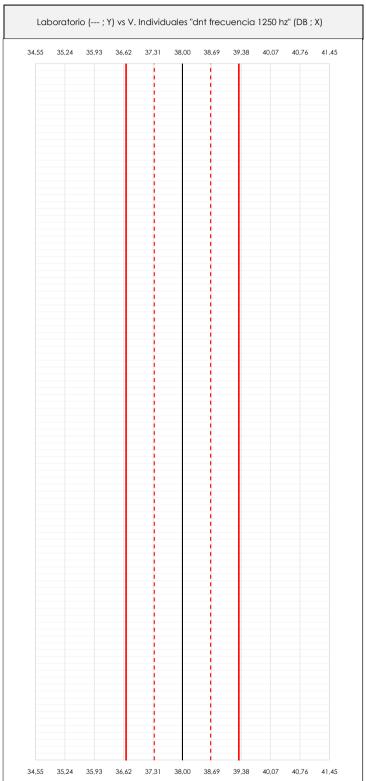
ANALISIS GRAFICO DE DISPERSION MEDIA (ANTES DE ANALISIS ESTADISTICO)

Dispersión de las medias aritméticas intra-laboratorios respecto de la media aritmética inter-laboratorios (38,00 ; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (38,66/37,34 ; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (39,32/36,68 ; líneas rojas de trazo continuo).

En el eje Y (adimensional) quedan reflejados los códigos de los laboratorios participantes y en el eje X (las unidades son las mismas que las del ensayo que se está analizando) las medias aritméticas intra-laboratorios representadas por punto de color negro.

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 1250 HZ (DB)

Análisis A. Estudio pre-estadístico

Apartado A.2. Gráficos de dispersión de valores individuales

ANALISIS GRAFICOS DE DISPERSION INDIVIDUAL (ANTES DE ANALISIS ESTADISTICO)

Dispersión de los valores individuales respecto de la media aritmética inter-laboratorios (38,00; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (38,66/37,34; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (39,32/36,68; líneas rojas de trazo continuo).

En el eje Y (adimensional) queda reflejado el código del laboratorio participante y en el eje X (las unidades son las de los resultados del ensayo que se está analizando) los resultados individuales: el primero $(X_{i,1})$ se representa con un cuadrado azul, el segundo $(X_{i,2})$ con un círculo verde, el tercero $(X_{i,3})$ con un triángulo grís y el cuarto $(X_{i,4})$ con un rombo amarillo

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 1250 HZ (DB)

Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i2}	Х _{і 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	Pasa A	Observaciones
27	37,40	36,90	37,80	38,90	37,80	37,76	0,737	-0,63	√	
49	38,10	38,00	39,00	37,30	38,50	38,18	0,630	0,47	√	
54 64	38,40 38,60	38,80 38,50	38,30 38,70	38,40 38,20	37,50 38,50	38,28 38,50	0,476 0,187	0,74 1,32	√	
69	37,90	37,70	37,90	37,70	37,70	37,78	0,110	-0,58	→	
101	36,70	38,60	38,20	38,30	40,80	38,52	1,472	1,37	→	
117	37,90	38,90	38,50	37,40	39,10	38,36	0,706	0,95	<u>√</u>	
133	37,90	36,00	38,40	38,80	38,30	37,88	1,099	-0,32	√	
140	38,20	37,80	37,40	37,90	38,00	37,86	0,297	-0,37	✓	
153	38,40	37,90	38,70	38,00	39,20	38,44	0,532	1,16	✓	
165	35,70	36,20	36,30	36,20	36,10	36,10	0,235	-5,00	✓	
194	38,40	37,70	39,50	38,40	37,70	38,34	0,737	0,89	✓	

NOTAS:

[máximo]

[mínimo]

[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \, arit}$ " es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 1250 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

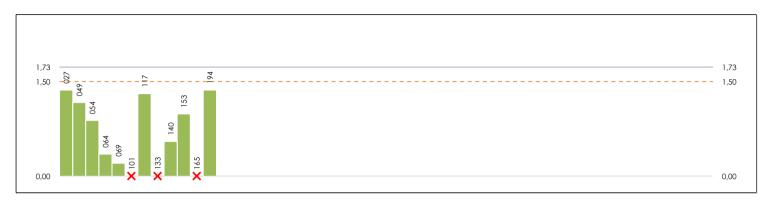
Apartado B.1. Gráfico de consistencia inter-laboratorios "h" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTER-LABORATORIOS

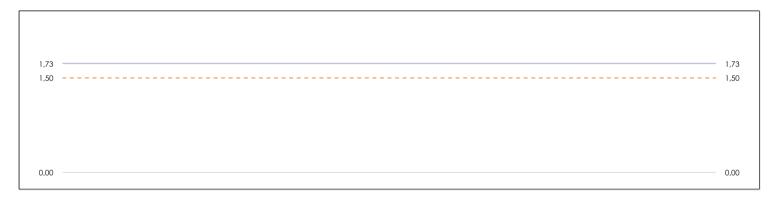
Análisis gráfico de consistencia inter-laboratorios "h" de Mandel. En él se representan las medias aritméticas inter-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes).

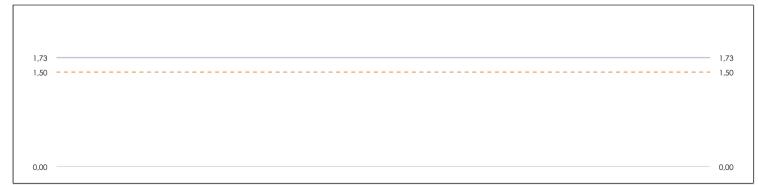
Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación


SACE

Subcomisión Administrativa para la Calidad de la Edificación


DNT FRECUENCIA 1250 HZ (DB)


Análisis B. Mandel, Cochran y Grubbs

Apartado B.2. Gráfico de consistencia intra-laboratorios "k" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTRA-LABORATORIOS

Análisis gráfico de consistencia intra-laboratorios "k" de Mandel. En él se representan las medias aritméticas intra-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes y el número de ensayos efectuados).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 1250 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i2}	X _{i 3}	X _{i 4}	X _{i5}	₹ arit	S _{Li}	D _{i arit %}	h _i	k _i	C _i	G _{Sim Inf}	G _{Sim Sup}	G _{Dob Inf}	G _{Dob Sup}	Pasa B
27	37,400	36,900	37,800	38,900	37,800	37,760	0,737	-1,07	-1,40	1,36		1,400		0,4005		√
49	38,10	38,000	39,000	37,300	38,500	38,180	0,630	0,03	0,05	1,17						√
54	38,40	38,800	38,300	38,400	37,500	38,280	0,476	0,30	0,39	0,88						√
64	38,60	38,500	38,700	38,200	38,500	38,500	0,187	0,87	1,15	0,35			1,147		0,6469	√
69	37,90	37,700	37,900	37,700	37,700	37,780	0,110	-1,01	-1,33	0,20				0,4005		√
101	36,70	38,600	38,200	38,300	40,800	38,520										X
117	37,90	38,900	38,500	37,400	39,100	38,360	0,706	0,51	0,67	1,31						√
133	37,90	36,000	38,400	38,800	38,300	37,880										X
140	38,20	37,800	37,400	37,900	38,000	37,860	0,297	-0,80	-1,06	0,55						√
153	38,40	37,900	38,700	38,000	39,200	38,440	0,532	0,72	0,94	0,98					0,6469	√
165	35,70	36,200	36,300	36,200	36,100	36,100										X
194	38,40	37,700	39,500	38,400	37,700	38,340	0,737	0,45	0,60	1,36						✓

NOTAS:

[aberrante]

[anómalo]

[máximo]

[mínimo]

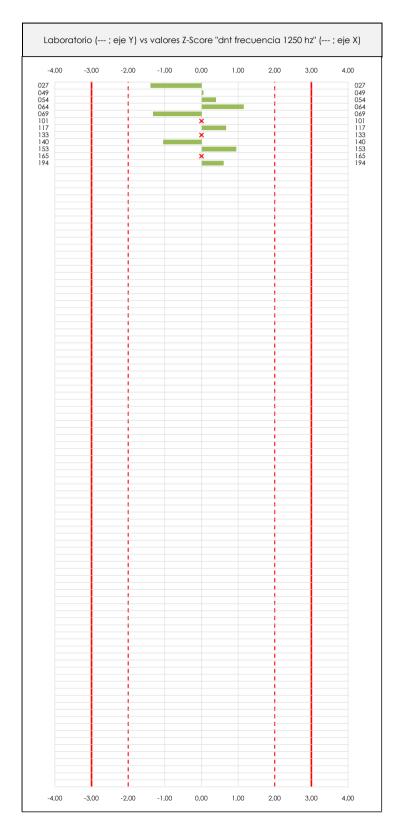
[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \text{ arift}}$ " es la media aritmética intralaboratorio calculada sin redondear.

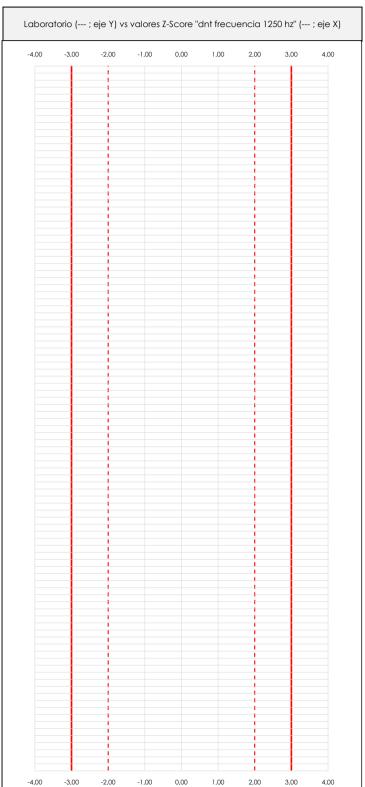
^{02 &}quot;S_Li" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

^{03 &}quot;h₁ y k," ,"C₁", "G_{Sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 1250 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.1. Análisis gráfico Altman Z-Score

ANALISIS GRAFICO Z-SCORE

Diagrama Z-Score para los resultados aportados por los laboratorios. Estos se considerarán satisfactorios (S) si el valor absoluto del Z-Score es menor o igual a 2 unidades, dudoso si está comprendido entre 2 y 3 unidades e insatisfactorio si es mayor o igual a 3 unidades.

Los resultados satisfactorios quedan reflejados entre las dos líneas rojas discontinuas, líneas de referencia en la evaluación Z-Score.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 1250 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

-																
	Lab	X _{i 1}	X _{i2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	Pasa A	Pasa B	Total	Causa	Iteración	Z-Score	Evaluación
	27	37,40	36,90	37,80	38,90	37,80	37,76	0,737	-1,07	✓	✓	√			-1,400	S
	49	38,10	38,00	39,00	37,30	38,50	38,18	0,630	0,03	✓	✓	✓			0,046	S
	54	38,40	38,80	38,30	38,40	37,50	38,28	0,476	0,30	✓	✓	√			0,390	S
	64	38,60	38,50	38,70	38,20	38,50	38,50	0,187	0,87	√	✓	✓			1,147	S
	69	37,90	37,70	37,90	37,70	37,70	37,78	0,110	-1,01	✓	✓	✓			-1,331	S
	101	36,70	38,60	38,20	38,30	40,80	38,52			√	X	X	AB	0		
	117	37,90	38,90	38,50	37,40	39,10	38,36	0,706	0,51	✓	✓	✓			0,665	S
	133	37,90	36,00	38,40	38,80	38,30	37,88			✓	X	Х	AB	0		
	140	38,20	37,80	37,40	37,90	38,00	37,86	0,297	-0,80	✓	✓	✓			-1,056	S
	153	38,40	37,90	38,70	38,00	39,20	38,44	0,532	0,72	✓	✓	✓			0,941	S
	165	35,70	36,20	36,30	36,20	36,10	36,10			✓	X	Х	AB	0		
	194	38,40	37,70	39,50	38,40	37,70	38,34	0,737	0,45	✓	✓	✓			0,597	S

NOTAS:

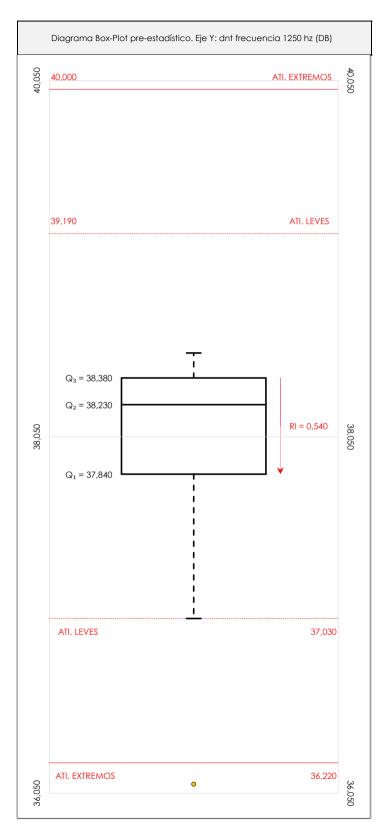
[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \text{ arit}}$ " es la media aritmética intralaboratorio calculada sin redondear.

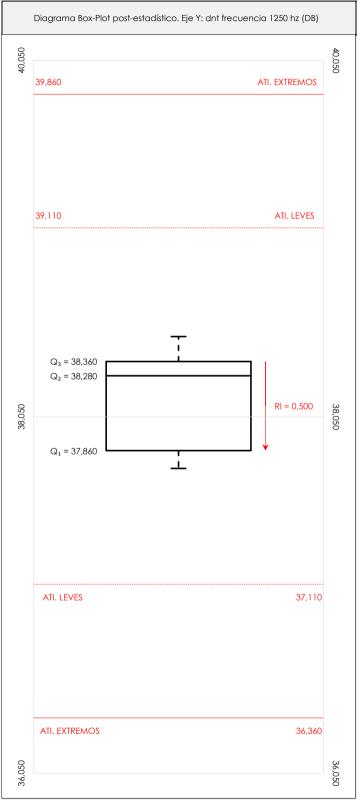
^{02 &}quot;S_Li" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

 $^{^{03}}$ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leqslant 2] [Dudoso (D) - si 2 < | ZS | \leqslant 3] [Insatisfactorio (I) - si | ZS | > 3].

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

CICE Comité de infraestructuras para la Calidad de la Edificación




SACESubcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 1250 HZ (DB)

Análisis D. Estudios post-estadisticos

Apartado D.3. Diagramas Box-Plot o de Caja y Bigotes

ANALISIS GRAFICO DE CAJA Y BIGOTES (ANTES Y DESPUES DE ANALISIS ESTADISTICO)

Diagramas de caja y bigotes (Box Plot) de las medias aritméticas de los resultados aportados por los laboratorios antes (diagrama de la izquierda. Este incluye valores aberrantes y anómalos) y después (diagrama de la derecha. No incluye los valores descartados a lo largo del estudio) de análisis estadístico.

En ambos se han representado: el primer cuartil (Q_1 ; 25% de los datos), el segundo cuartil o la mediana (Q_2 ; 50% de los datos), el tercer cuartil (Q_3 ; 75% de los datos), el rango intercuartílico (RI ; cuartil tres menos cuartil uno) y los límites de valores atípicos leves (f_3 y f_1 para el máximo y mínimo respectivamente ; líneas discontinuas de color rojo) y extremos (f_3 y f_1 * para el máximo y mínimo respectivamente ; líneas continuas de color rojo).

CICE Comité de infraestructuras para la Calidad de la Edificación

DNT FRECUENCIA 1250 HZ (DB)

Conclusiones

Determinación de la repetibilidad y reproducibilidad

SACE Subcomisión Administrativa para la Calidad de la Edificación

El análisis estadístico ElLA20 para el ensayo "DNT FRECUENCIA 1250 HZ", ha contado con la participación de un total de 12 laboratorios, debiendo haber aportado cada uno de ellos, un total de 5 determinaciones individuales además de su valor medio.

Tras analizar los resultados podemos concluir que, para cumplir con los criterios estadísticos establecidos en el informe, un total de 3 laboratorios han sido apartados de la evaluación final: 0 en el Análisis Pre-Estadístico (por no cumplir el criterio de validación y/o el procedimiento de ejecución recogido en la norma de ensayo) y 3 en el Análisis Estadístico (por resultar anómalos o aberrantes en las técnicas gráficas de consistencia de Mandel y en los ensayos de detección de resultados numéricos de Cochran y Grubbs), al cabo de 2 iteraciones.

De cada uno de los análisis (pre-estadístico y estadístico), se obtienen las siguientes tablas:

TIPO DE ANALISIS			PRE-ES	TADISTIC	0				ESTA	DISTICO		
Variables	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i5}	$\overline{X}_{i arit}$	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$
Valor Máximo (max ; %)	38,60	38,90	39,50	38,90	40,80	38,52	38,60	38,90	39,50	38,90	39,20	38,50
Valor Mínimo (min ; %)	35,70	36,00	36,30	36,20	36,10	36,10	37,40	36,90	37,40	37,30	37,50	37,76
Valor Promedio (M; %)	37,80	37,75	38,23	37,96	38,27	38,00	38,14	38,02	38,42	38,02	38,22	38,17
Desviación Típica (SDL ;)	0,84	0,95	0,82	0,74	1,14	0,66	0,37	0,63	0,65	0,51	0,63	0,29
Coef. Variación (CV ;)	0,02	0,03	0,02	0,02	0,03	0,02	0,01	0,02	0,02	0,01	0,02	0,01
VARIABLES	S_r^2	r		$S_L^{\ 2}$	$S_R^{\ 2}$	R	S_r^2	r		S_L^2	S_R^{-2}	R
Valor Calculado	0,505	1,90	39 (),337	0,842	2,543	0,292	1,49	77 0	,026	0,318	1,563
Valor Referencia												

Asimismo, acompañando a éstas tablas y dependiendo del análisis que se esté llevando a cabo, se introducen los indicadores estadísticos "h y k" de Mandel y los valores críticos "C" de Cochran y "G_{sim} y G_{Dob}" de Grubbs, todos ellos adimensionales, obtenidos de las tablas 4, 5, 6 y 7 de la norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios y del número de ensayos efectuados por cada uno de ellos:

TIPO DE ANALISIS		PRE	-ESTADISTI	со	ESTADISTICO						
VARIABLES	h	k	С	G_{sim}	G _{Dob}	h	k	С	G_{sim}	G_{Dob}	
Nivel de Significación 1%	2,13	1,73	0,343	2,387	0,0851	2,13	1,73	0,425	2,387	0,0851	
Nivel de Significación 5%	1,78	1,50	0,288	2,215	0,1492	1,78	1,50	0,358	2,215	0,1492	

Con los resultados de los laboratorios, que tras los dos análisis estadísticos son evaluados por Z-Score, se han obtenido: 9 resultados satisfactorios, 0 resultados dudosos y 0 resultados insatisfactorios.

Respecto a los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística recogida en la ISO 17025, sobre las dispersiones de los resultados individuales y su media, en forma de varianzas o desviaciones estándar, también conocida como ANOVA (siglas de analisys of varience).

Sabiendo que una varianza es la suma de cuadrados dividida por un número, que se llama grados de libertad, que depende del número de participantes menos 1, se puede decir que la imprecisión del ensayo se descompone en dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad (variabilidad intralaboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad debida al cambio de laboratorio).

Las condiciones de repetibilidad de este ensayo son: mismo laborante, mismo laboratorio y mismo equipo de medición utilizado dentro de un período de tiempo corto. Por ende, las condiciones de reproducibilidad para la misma muestra y ensayo, cambian en: el laboratorio, el equipo y las condiciones de uso y tiempo.

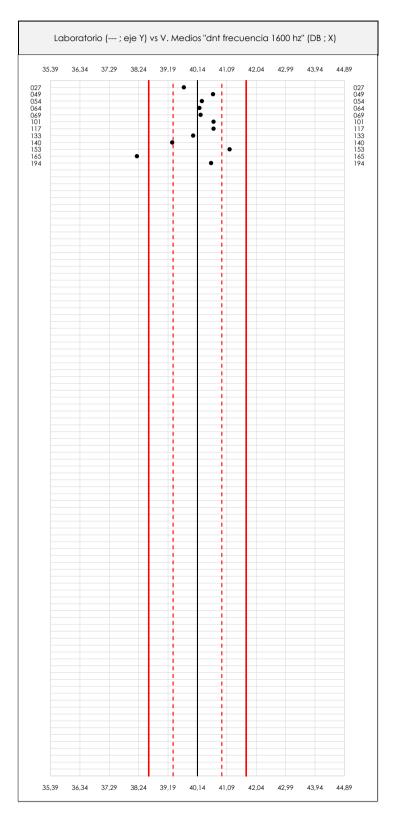
Comité de infraestructuras para la Calidad de la Edificación

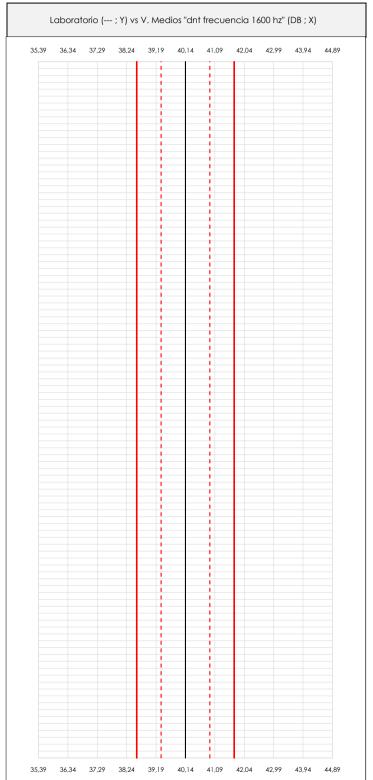
Subcomisión Administrativa para la Calidad de la Edificación

ANÁLISIS ESTADISTICO DE ACÚSTICA

DNT FRECUENCIA 1600 HZ

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 1600 HZ (DB)

Análisis A. Estudio pre-estadístico

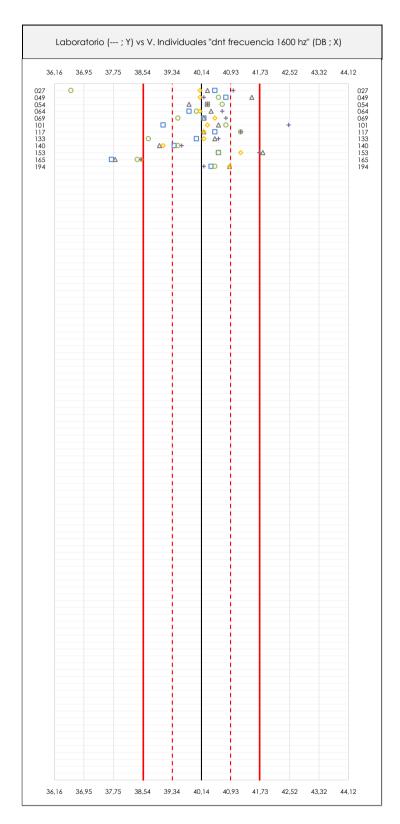
Apartado A.1. Gráficos de dispersión de valores medios

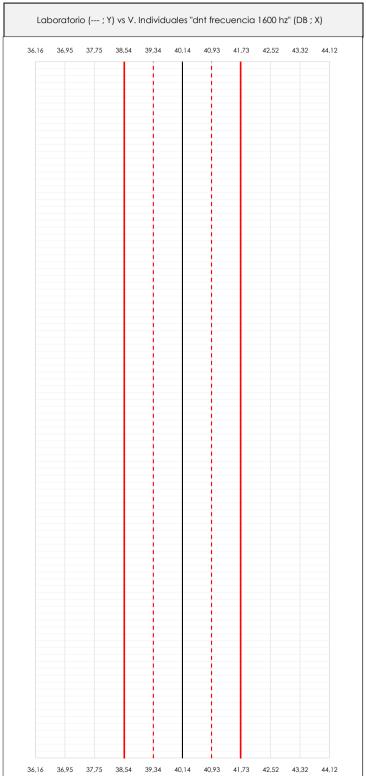
ANALISIS GRAFICO DE DISPERSION MEDIA (ANTES DE ANALISIS ESTADISTICO)

Dispersión de las medias aritméticas intra-laboratorios respecto de la media aritmética inter-laboratorios (40,14; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (40,92/39,35; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (41,71/38,56; líneas rojas de trazo continuo).

En el eje Y (adimensional) quedan reflejados los códigos de los laboratorios participantes y en el eje X (las unidades son las mismas que las del ensayo que se está analizando) las medias aritméticas intra-laboratorios representadas por punto de color negro.

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 1600 HZ (DB)

Análisis A. Estudio pre-estadístico

Apartado A.2. Gráficos de dispersión de valores individuales

ANALISIS GRAFICOS DE DISPERSION INDIVIDUAL (ANTES DE ANALISIS ESTADISTICO)

Dispersión de los valores individuales respecto de la media aritmética inter-laboratorios (40,14; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (40,92/39,35; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (41,71/38,56; líneas rojas de trazo continuo).

En el eje Y (adimensional) queda reflejado el código del laboratorio participante y en el eje X (las unidades son las de los resultados del ensayo que se está analizando) los resultados individuales: el primero $(X_{i,1})$ se representa con un cuadrado azul, el segundo $(X_{i,2})$ con un círculo verde, el tercero $(X_{i,3})$ con un triángulo grís y el cuarto $(X_{i,4})$ con un rombo amarillo

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 1600 HZ (DB)

Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	Pasa A	Observaciones
27	40,50	36,60	40,30	40,10	41,00	39,70	1,765	-1,09	✓	
49	40,80	40,60	41,50	40,10	40,20	40,64	0,559	1,25	√	
54	40,30	40,70	39,80	40,30	40,30	40,28	0,319	0,36	√	
64	39,80	40,00	40,40	40,10	40,70	40,20	0,354	0,16	√	
69	40,20	39,50	40,20	40,50	40,80	40,24	0,483	0,26	√	
101	39,10	40,80	40,60	40,30	42,50	40,66	1,222	1,30	√	
117	40,50 40,00	41,20 38,70	40,20 40,50	40,20 40,20	41,20	40,66	0,508	1,30 -0,34	√	
133	39,40	39,50	39,00	39,10	40,60 39,60	40,00 39,32	0,763	-2,03	√	
153	40,60	40,60	41,80	41,20	41,70	41,18	0,576	2,60		
165	37,70	38,40	37,80	38,50	38,50	38,18	0,396	-4,88	→	
194	40,40	40,50	40,90	40,90	40,20	40,58	0,311	1,10		
.,,	.5,-10	.0,00	.5,75	.5,70	.0,20	.0,00	0,011	.,10		

NOTAS:

[máximo]

[mínimo]

[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \, arit}$ " es la media aritmética intralaboratorio calculada sin redondear.

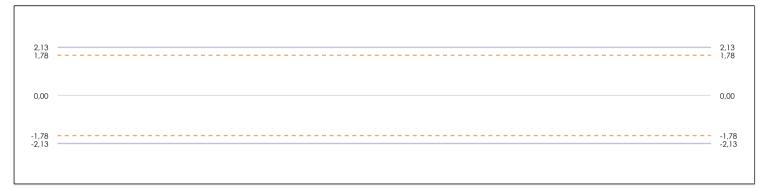
^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma

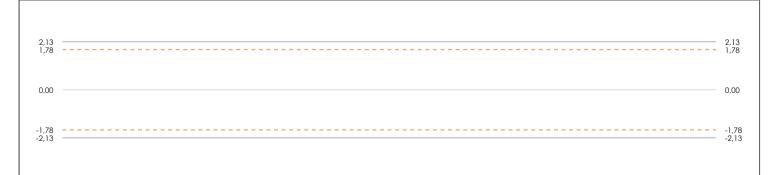
 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación

SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 1600 HZ (DB)


Análisis B. Mandel, Cochran y Grubbs

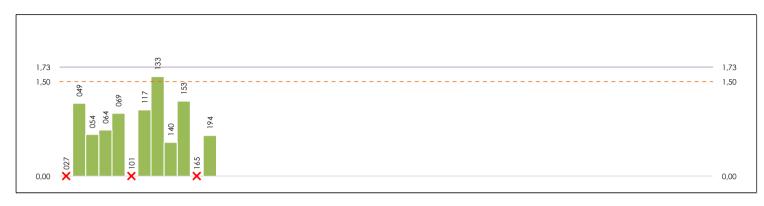
Apartado B.1. Gráfico de consistencia inter-laboratorios "h" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTER-LABORATORIOS

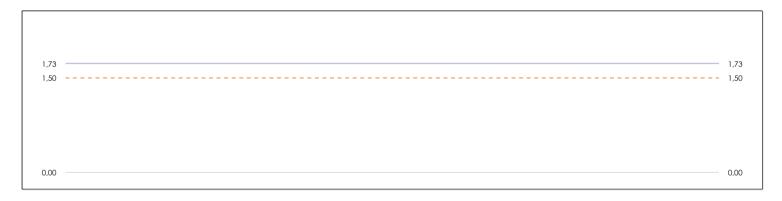
Análisis gráfico de consistencia inter-laboratorios "h" de Mandel. En él se representan las medias aritméticas inter-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes).

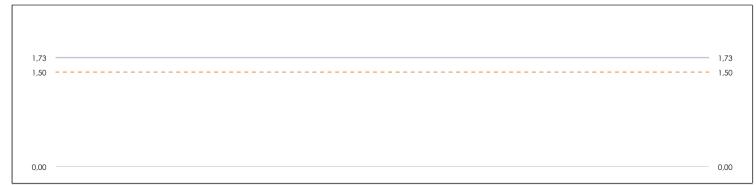
Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación



SACE Subcomisión Administrativa para la Calidad de la Edificación


DNT FRECUENCIA 1600 HZ (DB)


Análisis B. Mandel, Cochran y Grubbs

Apartado B.2. Gráfico de consistencia intra-laboratorios "k" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTRA-LABORATORIOS

Análisis gráfico de consistencia intra-laboratorios "k" de Mandel. En él se representan las medias aritméticas intra-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes y el número de ensayos efectuados).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 1600 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{Li}	D _{i arit %}	h _i	k _i	C _i	G _{Sim Inf}	G _{Sim Sup}	G _{Dob Inf}	G _{Dob Sup}	Pasa B
07	40.500	27.700	40.200	40.100	41,000	20.700										
27 49	40,500	36,600 40,600	40,300 41,500	40,100	41,000	39,700	0,559	0,73	0,57	1.15						X
54	40,30	40,700	39,800	40,300	40,300	40,640	0,339	-0,16	-0,12	0,66						→
64	39,80	40,000	40,400	40,100	40,700	40,200	0,317	-0,16	-0,12	0,73						
69	40,20	39,500	40,200	40,100	40,800	40,240	0,483	-0,26	-0,20	1,00						<u> </u>
101	39,10	40,800	40,600	40,300	42,500	40,660										X
117	40,50	41,200	40,200	40,200	41,200	40,660	0,508	0,78	0,61	1,05					0,5398	<u> </u>
133	40,00	38,700	40,500	40,200	40,600	40,000	0,765	-0,85	-0,67	1,58*	0,277			0,3305	0,0070	
140	39,40	39,500	39,000	39,100	39,600	39,320	0,259	-2,54	-1,98*	0,53	0,277	1,979		0,3305		<u> </u>
153	40,60	40,600	41,800	41,200	41,700	41,180	0,576	2,07	1,61	1,19		,,,,,,	1,614		0,5398	√
165	37,70	38,400	37,800	38,500	38,500	38,180										Х
194	40,40	40,500	40,900	40,900	40,200	40,580	0,311	0,58	0,45	0,64						

NOTAS:

[aberrante]

[anómalo]

[máximo]

[mínimo]

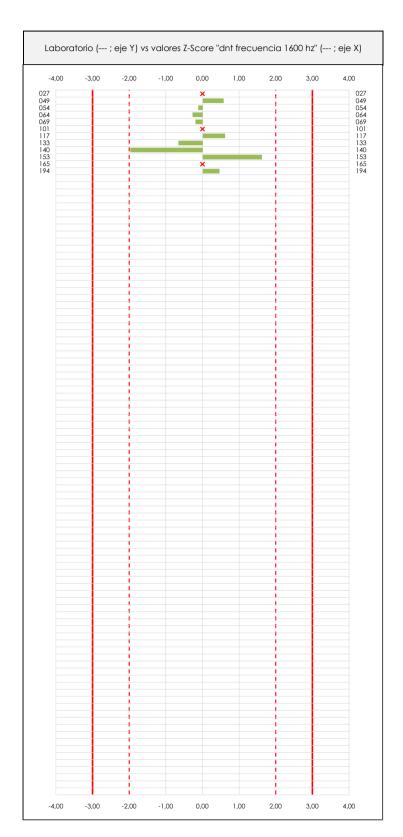
[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \text{ arit}}$ " es la media aritmética intralaboratorio calculada sin redondear.

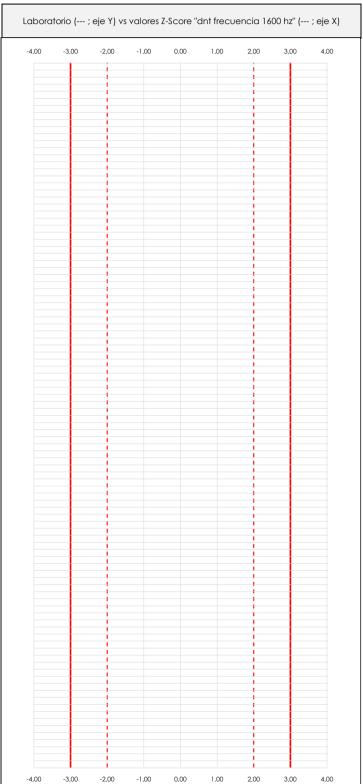
^{02 &}quot;S_Li" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ "h₁ y k," ,"C₁", "G_{Sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 1600 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.1. Análisis gráfico Altman Z-Score

ANALISIS GRAFICO Z-SCORE

Diagrama Z-Score para los resultados aportados por los laboratorios. Estos se considerarán satisfactorios (S) si el valor absoluto del Z-Score es menor o igual a 2 unidades, dudoso si está comprendido entre 2 y 3 unidades e insatisfactorio si es mayor o igual a 3 unidades.

Los resultados satisfactorios quedan reflejados entre las dos líneas rojas discontinuas, líneas de referencia en la evaluación Z-Score.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 1600 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

							_									
l	.ab	X _{i 1}	X _{i2}	X _{i 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{Li}	D _{i arit %}	Pasa A	Pasa B	Total	Causa	Iteración	Z-Score	Evaluación
	07	40,50	36,60	40,30	40.10	41.00	39,70			√			AB	0		
	27 49	40,80	40,60	41,50	40,10	41,00 40,20	40,64	0,559	0,73	→	X	X	Ab		0,571	 S
	54	40,30	40,70	39,80	40,30	40,30	40,28	0,319	-0,16			<u> </u>			-0,124	s
	64	39,80	40,00	40,40	40,10	40,70	40,20	0,354	-0,36	<u> </u>	<u> </u>				-0,279	S
	69	40,20	39,50	40,20	40,50	40,80	40,24	0,483	-0,26		→	<u> </u>			-0,202	S
	101	39,10	40,80	40,60	40,30	42,50	40,66				X	Х	AB	0		
	117	40,50	41,20	40,20	40,20	41,20	40,66	0,508	0,78						0,609	S
	133	40,00	38,70	40,50	40,20	40,60	40,00	0,765	-0,85	√	√	√			-0,665	S
	140	39,40	39,50	39,00	39,10	39,60	39,32	0,259	-2,54	√	√	√			-1,979	S
	153	40,60	40,60	41,80	41,20	41,70	41,18	0,576	2,07	√	√	√			1,614	S
	165	37,70	38,40	37,80	38,50	38,50	38,18			√	Х	Х	AB	0		
	194	40,40	40,50	40,90	40,90	40,20	40,58	0,311	0,58	√	✓	<u>√</u>			0,455	S

NOTAS:

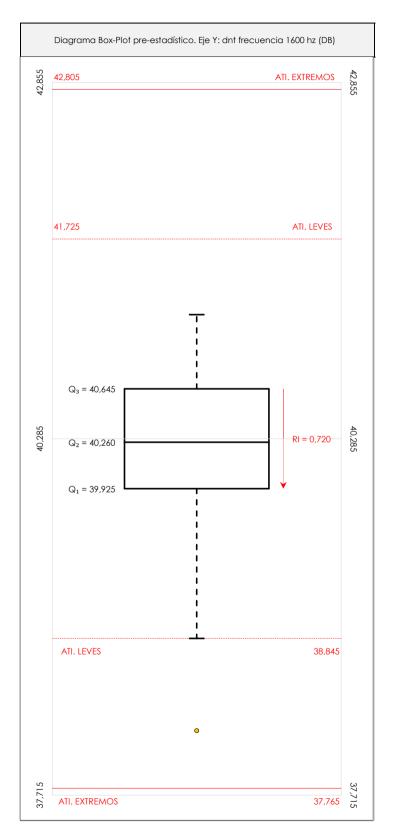
[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \text{ arit}}$ " es la media aritmética intralaboratorio calculada sin redondear.

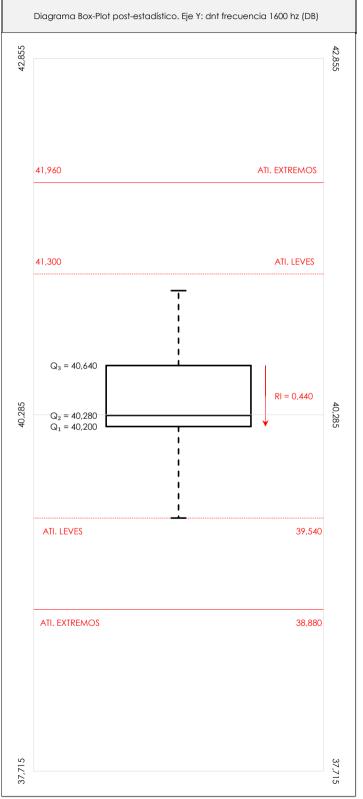
^{02 &}quot;S_Li" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

 $^{^{03}}$ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leqslant 2] [Dudoso (D) - si 2 < | ZS | \leqslant 3] [Insatisfactorio (I) - si | ZS | > 3].

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

CICE Comité de infraestructuras para la Calidad de la Edificación




SACE
Subcomisión Administrativa para la
Calidad de la Edificación

DNT FRECUENCIA 1600 HZ (DB)

Análisis D. Estudios post-estadisticos

Apartado D.3. Diagramas Box-Plot o de Caja y Bigotes

ANALISIS GRAFICO DE CAJA Y BIGOTES (ANTES Y DESPUES DE ANALISIS ESTADISTICO)

Diagramas de caja y bigotes (Box Plot) de las medias aritméticas de los resultados aportados por los laboratorios antes (diagrama de la izquierda. Este incluye valores aberrantes y anómalos) y después (diagrama de la derecha. No incluye los valores descartados a lo largo del estudio) de análisis estadístico.

En ambos se han representado: el primer cuartil (Q_1 ; 25% de los datos), el segundo cuartil o la mediana (Q_2 ; 50% de los datos), el tercer cuartil (Q_3 ; 75% de los datos), el rango intercuartílico (RI; cuartil tres menos cuartil uno) y los límites de valores atípicos leves (f_3 y f_1 para el máximo y mínimo respectivamente; líneas discontinuas de color rojo) y extremos (f_3 * y f_1 * para el máximo y mínimo respectivamente; líneas continuas de color rojo).

CICE Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 1600 HZ (DB)

Conclusiones

Determinación de la repetibilidad y reproducibilidad

El análisis estadístico ElLA20 para el ensayo "DNT FRECUENCIA 1600 HZ", ha contado con la participación de un total de 12 laboratorios, debiendo haber aportado cada uno de ellos, un total de 5 determinaciones individuales además de su valor medio.

Tras analizar los resultados podemos concluir que, para cumplir con los criterios estadísticos establecidos en el informe, un total de 3 laboratorios han sido apartados de la evaluación final: 0 en el Análisis Pre-Estadístico (por no cumplir el criterio de validación y/o el procedimiento de ejecución recogido en la norma de ensayo) y 3 en el Análisis Estadístico (por resultar anómalos o aberrantes en las técnicas gráficas de consistencia de Mandel y en los ensayos de detección de resultados numéricos de Cochran y Grubbs), al cabo de 2 iteraciones.

De cada uno de los análisis (pre-estadístico y estadístico), se obtienen las siguientes tablas:

TIPO DE ANALISIS		PRE-ESTADISTICO							ESTADISTICO						
Variables	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$			
Valor Máximo (max ; %)	40,80	41,20	41,80	41,20	42,50	41,18	40,80	41,20	41,80	41,20	41,70	41,18			
Valor Mínimo (min ; %)	37,70	36,60	37,80	38,50	38,50	38,18	39,40	38,70	39,00	39,10	39,60	39,32			
Valor Promedio (M; %)	39,94	39,76	40,25	40,13	40,61	40,14	40,22	40,14	40,48	40,29	40,59	40,34			
Desviación Típica (SDL ;)	0,87	1,32	1,06	0,72	1,01	0,79	0,43	0,78	0,85	0,59	0,62	0,52			
Coef. Variación (CV ;)	0,02	0,03	0,03	0,02	0,02	0,02	0,01	0,02	0,02	0,01	0,02	0,01			
VARIABLES	S_r^2	r		$S_L^{\ 2}$	S_R^{2}	R	S_r^2	r		S_L^2	S_R^{2}	R			
Valor Calculado	0,573	2,09	98 (0,506	1,079	2,879	0,235	1,34	13 0	,221	0,456	1,871			
Valor Referencia															

Asimismo, acompañando a éstas tablas y dependiendo del análisis que se esté llevando a cabo, se introducen los indicadores estadísticos "h y k" de Mandel y los valores críticos "C" de Cochran y "G_{sim} y G_{Dob}" de Grubbs, todos ellos adimensionales, obtenidos de las tablas 4, 5, 6 y 7 de la norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios y del número de ensayos efectuados por cada uno de ellos:

TIPO DE ANALISIS	ESTADISTICO									
VARIABLES	h	k	С	G_{sim}	G _{Dob}	h	k	С	G_{sim}	G_{Dob}
Nivel de Significación 1%	2,13	1,73	0,343	2,387	0,0851	2,13	1,73	0,425	2,387	0,0851
Nivel de Significación 5%	1,78	1,50	0,288	2,215	0,1492	1,78	1,50	0,358	2,215	0,1492

Con los resultados de los laboratorios, que tras los dos análisis estadísticos son evaluados por Z-Score, se han obtenido: 9 resultados satisfactorios, 0 resultados dudosos y 0 resultados insatisfactorios.

Respecto a los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística recogida en la ISO 17025, sobre las dispersiones de los resultados individuales y su media, en forma de varianzas o desviaciones estándar, también conocida como ANOVA (siglas de analisys of varience).

Sabiendo que una varianza es la suma de cuadrados dividida por un número, que se llama grados de libertad, que depende del número de participantes menos 1, se puede decir que la imprecisión del ensayo se descompone en dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad (variabilidad intralaboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad debida al cambio de laboratorio).

Las condiciones de repetibilidad de este ensayo son: mismo laborante, mismo laboratorio y mismo equipo de medición utilizado dentro de un período de tiempo corto. Por ende, las condiciones de reproducibilidad para la misma muestra y ensayo, cambian en: el laboratorio, el equipo y las condiciones de uso y tiempo.

Comité de infraestructuras para la Calidad de la Edificación

SACE

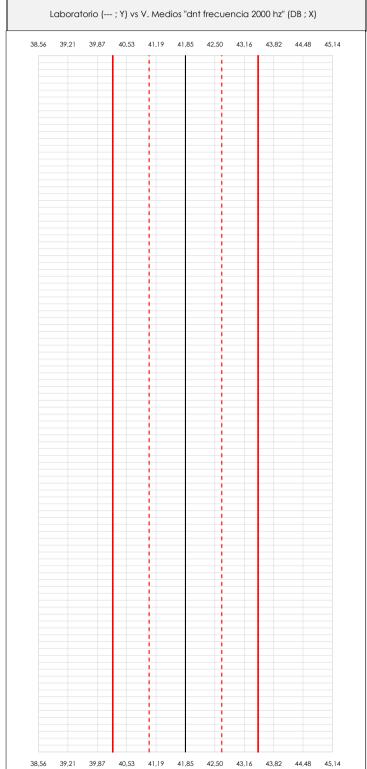
Subcomisión Administrativa para la Calidad de la Edificación

ANÁLISIS ESTADISTICO DE ACÚSTICA

DNT FRECUENCIA 2000 HZ

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 2000 HZ (DB)

Análisis A. Estudio pre-estadístico

Apartado A.1. Gráficos de dispersión de valores medios

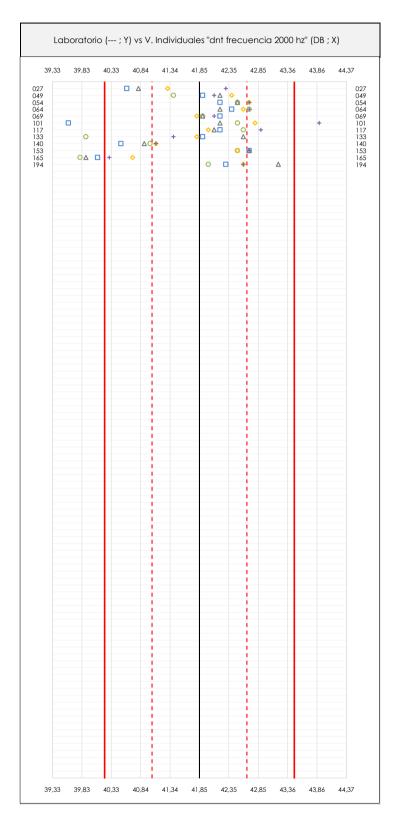
ANALISIS GRAFICO DE DISPERSION MEDIA (ANTES DE ANALISIS ESTADISTICO)

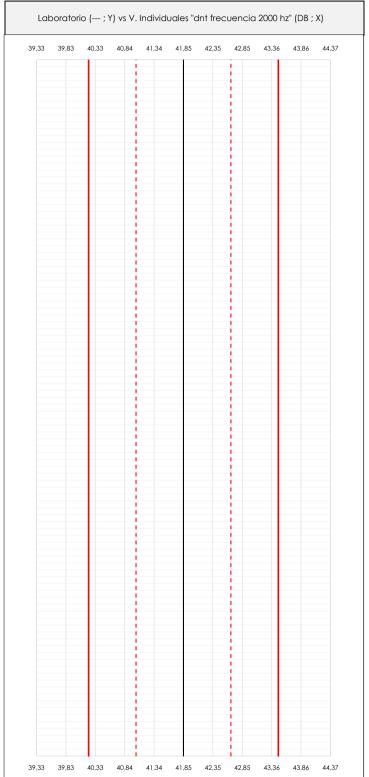
Dispersión de las medias aritméticas intra-laboratorios respecto de la media aritmética inter-laboratorios (41,85; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (42,66/41,03; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (43,47/40,22; líneas rojas de trazo continuo).

En el eje Y (adimensional) quedan reflejados los códigos de los laboratorios participantes y en el eje X (las unidades son las mismas que las del ensayo que se está analizando) las medias aritméticas intra-laboratorios representadas por punto de color negro.

CICE nité de infraestructuras para l

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 2000 HZ (DB)

Análisis A. Estudio pre-estadístico

Apartado A.2. Gráficos de dispersión de valores individuales

ANALISIS GRAFICOS DE DISPERSION INDIVIDUAL (ANTES DE ANALISIS ESTADISTICO)

Dispersión de los valores individuales respecto de la media aritmética inter-laboratorios (41,85; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (42,66/41,03; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (43,47/40,22; líneas rojas de trazo continuo).

En el eje Y (adimensional) queda reflejado el código del laboratorio participante y en el eje X (las unidades son las de los resultados del ensayo que se está analizando) los resultados individuales: el primero $(X_{i,1})$ se representa con un cuadrado azul, el segundo $(X_{i,2})$ con un círculo verde, el tercero $(X_{i,3})$ con un triángulo grís y el cuarto $(X_{i,4})$ con un rombo amarillo

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 2000 HZ (DB)

Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i2}	Х _{і 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	Pasa A	Observaciones
27	40,60	39,10	40,80	41,30	42,30	40,82	1,165	-2,45	√	
49 54	41,90 42,20	41,40 42,50	42,20 42,50	42,40 42,70	42,10 42,70	42,00 42,52	0,381	0,37	√	
64	42,40	42,70	42,20	42,60	42,70	42,52	0,203	1,61	→	
69	42,20	41,90	41,90	41,80	42,10	41,98	0,164	0,32	<u> </u>	
101	39,60	42,50	42,20	42,80	43,90	42,20	1,589	0,84	<u>√</u>	
117	42,20	42,60	42,10	42,00	42,90	42,36	0,378	1,23	√	
133	41,90	39,90	42,60	41,80	41,40	41,52	1,003	-0,78	√	
140	40,50	41,00	40,90	41,10	41,10	40,92	0,249	-2,21	✓	
153	42,70	42,50	42,70	42,50	42,70	42,62	0,110	1,85	✓	
165	40,10	39,80	39,90	40,70	40,30	40,16	0,358	-4,03	✓	
194	42,30	42,00	43,20	42,60	42,60	42,54	0,445	1,66	✓	

NOTAS:

[máximo]

[mínimo]

[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \, arit}$ " es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación

SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 2000 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.1. Gráfico de consistencia inter-laboratorios "h" de Mandel

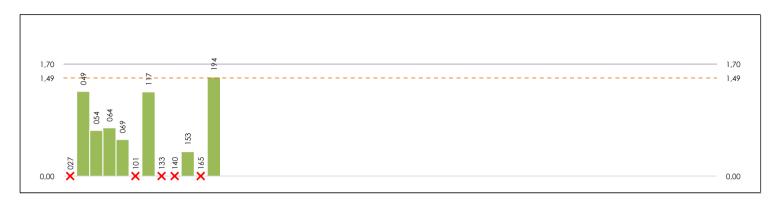
ANALISIS GRAFICO DE CONSISTENCIA INTER-LABORATORIOS

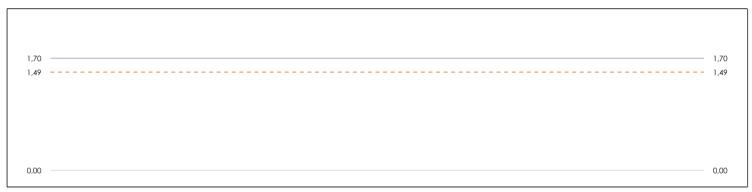
Análisis gráfico de consistencia inter-laboratorios "h" de Mandel. En él se representan las medias aritméticas inter-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes).

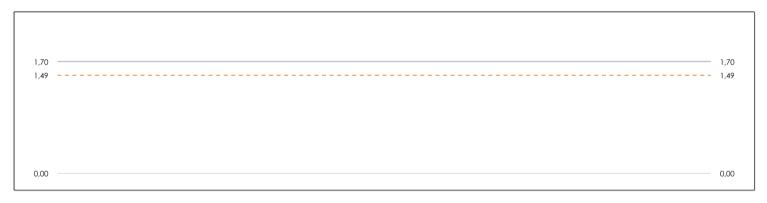
Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación

SACE Subcomisión Administrativa para la


Calidad de la Edificación




DNT FRECUENCIA 2000 HZ (DB)


Análisis B. Mandel, Cochran y Grubbs

Apartado B.2. Gráfico de consistencia intra-laboratorios "k" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTRA-LABORATORIOS

Análisis gráfico de consistencia intra-laboratorios "k" de Mandel. En él se representan las medias aritméticas intra-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes y el número de ensayos efectuados).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 2000 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i2}	X _{i 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{Li}	D _{i arit %}	h _i	k _i	Ci	G _{Sim Inf}	G _{Sim Sup}	G _{Dob Inf}	G _{Dob Sup}	Pasa B
27	40,600	39,100	40,800	41,300	42,300	40,820										Х
49	41,90	41,400	42,200	42,400	42,100	42,000	0,381	-0,86	-1,36	1,29				0,0839		✓
54	42,20	42,500	42,500	42,700	42,700	42,520	0,205	0,37	0,59	0,69						✓
64	42,40	42,700	42,200	42,600	42,700	42,520	0,217	0,37	0,59	0,73						✓
69	42,20	41,900	41,900	41,800	42,100	41,980	0,164	-0,90	-1,44	0,55		1,438		0,0839		✓
101	39,60	42,500	42,200	42,800	43,900	42,200										X
117	42,20	42,600	42,100	42,000	42,900	42,360	0,378	-0,01	-0,01	1,28						✓
133	41,90	39,900	42,600	41,800	41,400	41,520										X
140	40,50	41,000	40,900	41,100	41,100	40,920										X
153	42,70	42,500	42,700	42,500	42,700	42,620	0,110	0,61	0,97	0,37			0,966		0,6819	✓
165	40,10	39,800	39,900	40,700	40,300	40,160										X
194	42,30	42,000	43,200	42,600	42,600	42,540	0,445	0,42	0,67	1,50*	0,322				0,6819	✓
							· · · · · ·									

NOTAS:

[aberrante]

[anómalo]

[máximo]

[mínimo]

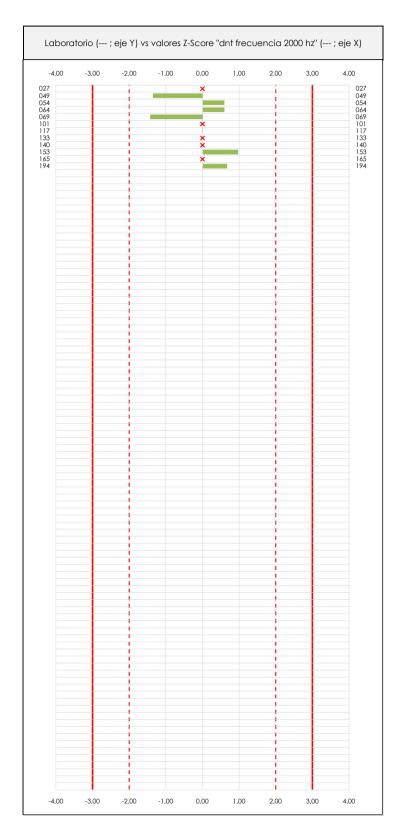
[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \text{ arit}}$ " es la media aritmética intralaboratorio calculada sin redondear.

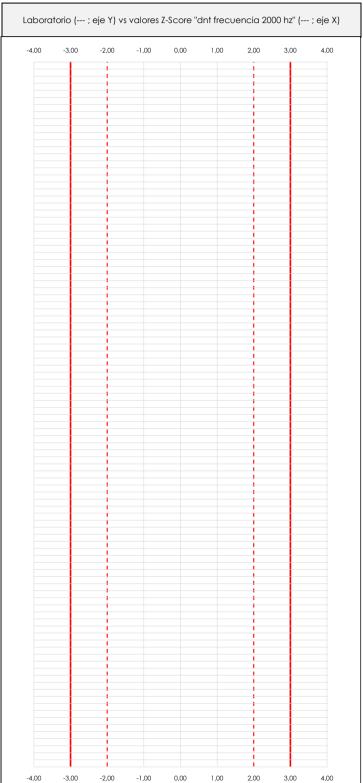
^{02 &}quot;S_Li" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

^{03 &}quot;h₁ y k," ,"C₁", "G_{Sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 2000 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.1. Análisis gráfico Altman Z-Score

ANALISIS GRAFICO Z-SCORE

Diagrama Z-Score para los resultados aportados por los laboratorios. Estos se considerarán satisfactorios (S) si el valor absoluto del Z-Score es menor o igual a 2 unidades, dudoso si está comprendido entre 2 y 3 unidades e insatisfactorio si es mayor o igual a 3 unidades.

Los resultados satisfactorios quedan reflejados entre las dos líneas rojas discontinuas, líneas de referencia en la evaluación Z-Score.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 2000 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	Х _{і 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{L i}	D _{i arit %}	Pasa A	Pasa B	Total	Causa	Iteración	Z-Score	Evaluación
27	40,60	39,10	40,80	41,30	42,30	40,82			√	X	Х	AB	0		
49	41,90	41,40	42,20	42,40	42,10	42,00	0,381	-0,86	√	<u>√</u>	<u>√</u>			-1,363	S
54	42,20	42,50	42,50	42,70	42,70	42,52	0,205	0,37	√	√	√			0,590	S
64	42,40	42,70	42,20	42,60	42,70	42,52	0,217	0,37	√	√	√			0,590	S
69	42,20	41,90	41,90	41,80	42,10	41,98	0,164	-0,90	√	√	√			-1,438	S
101	39,60	42,50	42,20	42,80	43,90	42,20			√	Х	Х	AB	0		
117	42,20	42,60	42,10	42,00	42,90	42,36	0,378	-0,01	✓	✓	✓			-0,011	S
133	41,90	39,90	42,60	41,80	41,40	41,52			✓	Х	Х	AB	1		
140	40,50	41,00	40,90	41,10	41,10	40,92			✓	Х	X	AB	1		
153	42,70	42,50	42,70	42,50	42,70	42,62	0,110	0,61	✓	✓	✓			0,966	S
165	40,10	39,80	39,90	40,70	40,30	40,16			✓	X	X	AB	0		
194	42,30	42,00	43,20	42,60	42,60	42,54	0,445	0,42	✓	✓	✓			0,665	S

NOTAS:

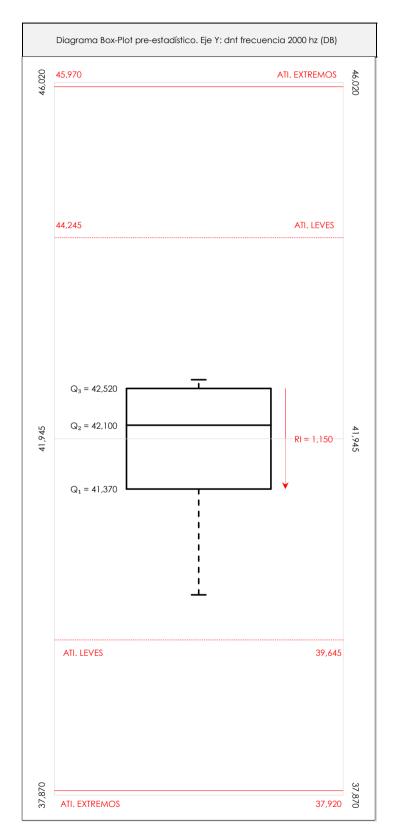
[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \text{ arit}}$ " es la media aritmética intralaboratorio calculada sin redondear.

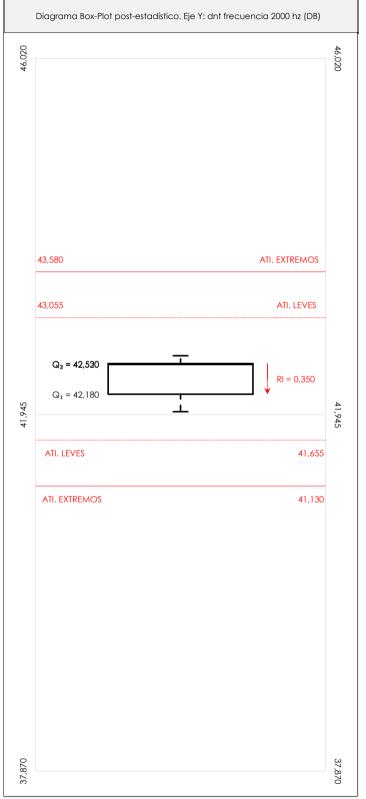
^{02 &}quot;S_Li" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

 $^{^{03}}$ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leqslant 2] [Dudoso (D) - si 2 < | ZS | \leqslant 3] [Insatisfactorio (I) - si | ZS | > 3].

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

CICEComité de infraestructuras para la Calidad de la Edificación


SACESubcomisión Administrativa para la Calidad de la Edificación


CONSULO SUPERIOR DE INVESTIGACIONES CENTRICA

DNT FRECUENCIA 2000 HZ (DB)

Análisis D. Estudios post-estadisticos

Apartado D.3. Diagramas Box-Plot o de Caja y Bigotes

ANALISIS GRAFICO DE CAJA Y BIGOTES (ANTES Y DESPUES DE ANALISIS ESTADISTICO)

Diagramas de caja y bigotes (Box Plot) de las medias aritméticas de los resultados aportados por los laboratorios antes (diagrama de la izquierda. Este incluye valores aberrantes y anómalos) y después (diagrama de la derecha. No incluye los valores descartados a lo largo del estudio) de análisis estadístico.

En ambos se han representado: el primer cuartil (Q_1 ; 25% de los datos), el segundo cuartil o la mediana (Q_2 ; 50% de los datos), el tercer cuartil (Q_3 ; 75% de los datos), el rango intercuartílico (RI ; cuartil tres menos cuartil uno) y los límites de valores atípicos leves (f_3 y f_1 para el máximo y mínimo respectivamente ; líneas discontinuas de color rojo) y extremos (f_3 y f_1 * para el máximo y mínimo respectivamente ; líneas continuas de color rojo).

CICE Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 2000 HZ (DB)

Conclusiones

Determinación de la repetibilidad y reproducibilidad

El análisis estadístico ElLA20 para el ensayo "DNT FRECUENCIA 2000 HZ", ha contado con la participación de un total de 12 laboratorios, debiendo haber aportado cada uno de ellos, un total de 5 determinaciones individuales además de su valor medio.

Tras analizar los resultados podemos concluir que, para cumplir con los criterios estadísticos establecidos en el informe, un total de 5 laboratorios han sido apartados de la evaluación final: 0 en el Análisis Pre-Estadístico (por no cumplir el criterio de validación y/o el procedimiento de ejecución recogido en la norma de ensayo) y 5 en el Análisis Estadístico (por resultar anómalos o aberrantes en las técnicas gráficas de consistencia de Mandel y en los ensayos de detección de resultados numéricos de Cochran y Grubbs), al cabo de 3 iteraciones.

De cada uno de los análisis (pre-estadístico y estadístico), se obtienen las siguientes tablas:

TIPO DE ANALISIS			PRE-ES	TADISTIC	0				ESTA	DISTICO		
Variables	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i5}	$\overline{X}_{i arit}$	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$
Valor Máximo (max ; %)	42,70	42,70	43,20	42,80	43,90	42,62	42,70	42,70	43,20	42,70	42,90	42,62
Valor Mínimo (min ; %)	39,60	39,10	39,90	40,70	40,30	40,16	41,90	41,40	41,90	41,80	42,10	41,98
Valor Promedio (M; %)	41,55	41,49	41,93	42,03	42,23	41,85	42,27	42,23	42,40	42,37	42,54	42,36
Desviación Típica (SDL ;)	1,05	1,26	0,94	0,70	0,94	0,81	0,24	0,48	0,44	0,34	0,32	0,27
Coef. Variación (CV ;)	0,03	0,03	0,02	0,02	0,02	0,02	0,01	0,01	0,01	0,01	0,01	0,01
VARIABLES	S_r^2	r		$S_L^{\ 2}$	$S_R^{\ 2}$	R	S_r^2	r		S_L^2	S_R^{2}	R
Valor Calculado	0,474	1,90)9 (),567	1,041	2,829	0,088	0,82	21 0	,053	0,141	1,041
Valor Referencia												

Asimismo, acompañando a éstas tablas y dependiendo del análisis que se esté llevando a cabo, se introducen los indicadores estadísticos "h y k" de Mandel y los valores críticos "C" de Cochran y "G_{sim} y G_{Dob}" de Grubbs, todos ellos adimensionales, obtenidos de las tablas 4, 5, 6 y 7 de la norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios y del número de ensayos efectuados por cada uno de ellos:

TIPO DE ANALISIS		PRI	E-ESTADISTI	со			E	STADISTIC)	
VARIABLES	h	k	С	G_{sim}	G_{Dob}	h	k	С	G_{sim}	G_{Dob}
Nivel de Significación 1%	1,98	1,70	0,343	2,139	0,0308	1,98	1,70	0,508	2,139	0,0308
Nivel de Significación 5%	1,71	1,49	0,288	2,020	0,0708	1,71	1,49	0,431	2,020	0,0708

Con los resultados de los laboratorios, que tras los dos análisis estadísticos son evaluados por Z-Score, se han obtenido: 7 resultados satisfactorios, 0 resultados dudosos y 0 resultados insatisfactorios.

Respecto a los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística recogida en la ISO 17025, sobre las dispersiones de los resultados individuales y su media, en forma de varianzas o desviaciones estándar, también conocida como ANOVA (siglas de analisys of varience).

Sabiendo que una varianza es la suma de cuadrados dividida por un número, que se llama grados de libertad, que depende del número de participantes menos 1, se puede decir que la imprecisión del ensayo se descompone en dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad (variabilidad intralaboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad debida al cambio de laboratorio).

Las condiciones de repetibilidad de este ensayo son: mismo laborante, mismo laboratorio y mismo equipo de medición utilizado dentro de un período de tiempo corto. Por ende, las condiciones de reproducibilidad para la misma muestra y ensayo, cambian en: el laboratorio, el equipo y las condiciones de uso y tiempo.

Comité de infraestructuras para la Calidad de la Edificación

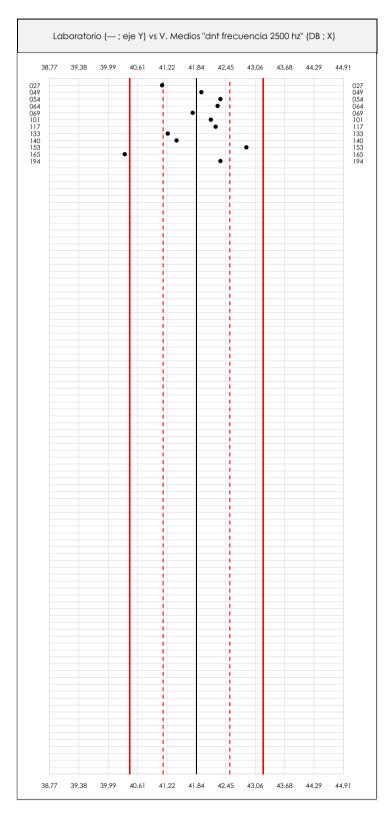
SACE

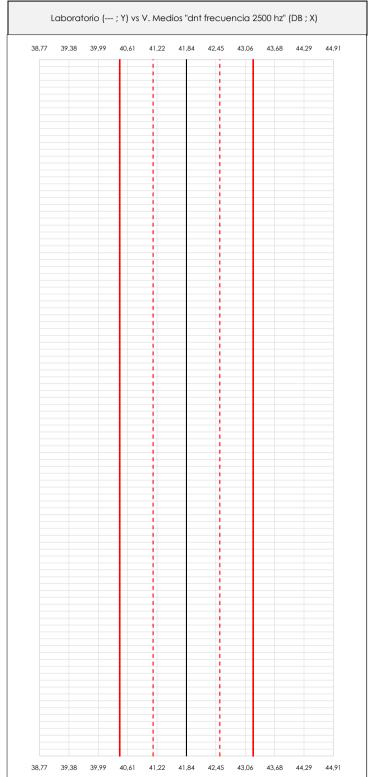
Subcomisión Administrativa para la Calidad de la Edificación

ANÁLISIS ESTADISTICO DE ACÚSTICA

DNT FRECUENCIA 2500 HZ

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 2500 HZ (DB)

Análisis A. Estudio pre-estadístico

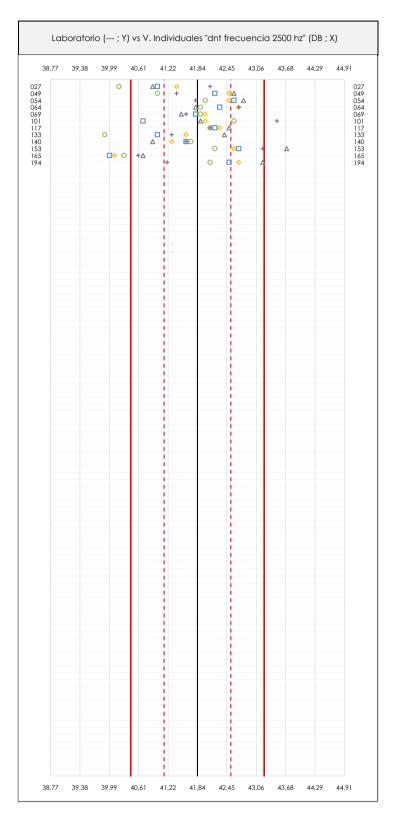
Apartado A.1. Gráficos de dispersión de valores medios

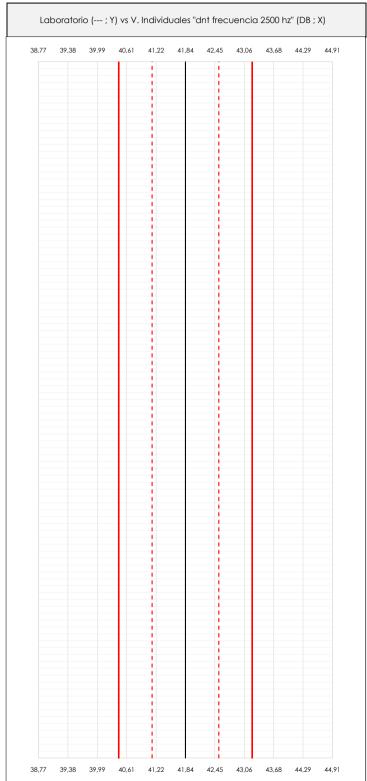
ANALISIS GRAFICO DE DISPERSION MEDIA (ANTES DE ANALISIS ESTADISTICO)

Dispersión de las medias aritméticas intra-laboratorios respecto de la media aritmética inter-laboratorios (41,84; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (42,53/41,14; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (43,23/40,44; líneas rojas de trazo continuo).

En el eje Y (adimensional) quedan reflejados los códigos de los laboratorios participantes y en el eje X (las unidades son las mismas que las del ensayo que se está analizando) las medias aritméticas intra-laboratorios representadas por punto de color negro.

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 2500 HZ (DB)

Análisis A. Estudio pre-estadístico

Apartado A.2. Gráficos de dispersión de valores individuales

ANALISIS GRAFICOS DE DISPERSION INDIVIDUAL (ANTES DE ANALISIS ESTADISTICO)

Dispersión de los valores individuales respecto de la media aritmética inter-laboratorios (41,84; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (42,53/41,14; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (43,23/40,44; líneas rojas de trazo continuo).

En el eje Y (adimensional) queda reflejado el código del laboratorio participante y en el eje X (las unidades son las de los resultados del ensayo que se está analizando) los resultados individuales: el primero $(X_{i,1})$ se representa con un cuadrado azul, el segundo $(X_{i,2})$ con un círculo verde, el tercero $(X_{i,3})$ con un triángulo grís y el cuarto $(X_{i,4})$ con un rombo amarillo

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 2500 HZ (DB)

Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	Х _{і 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	Pasa A	Observaciones
27	41,00	40,20	40,90	41,40	42,10	41,12	0,698	-1,71	√	
49	42,20	41,00	42,60	42,50	41,40	41,94	0,706	0,25	√	
54 64	42,60 42,30	42,00 41,90	42,80 41,80	42,50 42,70	41,80	42,34 42,28	0,422	1,20	✓	
69	41,80	41,90	41,50	42,00	41,60	41,76	0,207	-0,18		
101	40,70	42,60	41,90	42,00	43,50	42,14	1,026	0,73	→	
117	42,20	42,10	42,50	42,30	42,10	42,24	0,167	0,96	√	
133	41,00	39,90	42,40	41,60	41,30	41,24	0,913	-1,43	√	
140	41,60	41,70	40,90	41,30	41,60	41,42	0,327	-1,00	✓	
153	42,70	42,20	43,70	42,60	43,20	42,88	0,581	2,49	√	
165	40,00	40,30	40,70	40,10	40,60	40,34	0,305	-3,58	√	
194	42,50	42,10	43,20	42,70	41,20	42,34	0,750	1,20	✓	

NOTAS:

[máximo]

[mínimo]

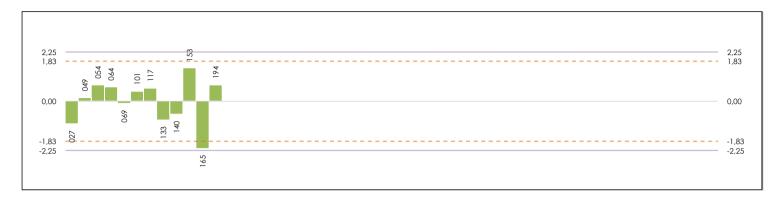
[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \, arit}$ " es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación


SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 2500 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.1. Gráfico de consistencia inter-laboratorios "h" de Mandel

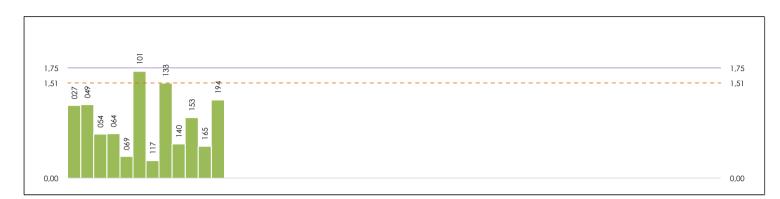
ANALISIS GRAFICO DE CONSISTENCIA INTER-LABORATORIOS

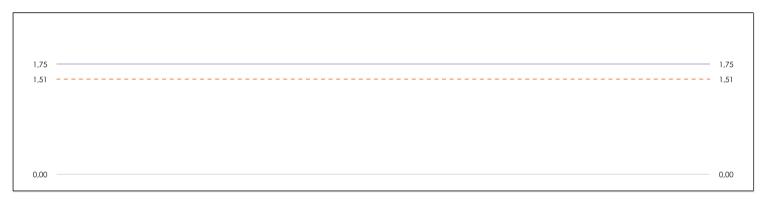
Análisis gráfico de consistencia inter-laboratorios "h" de Mandel. En él se representan las medias aritméticas inter-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes).

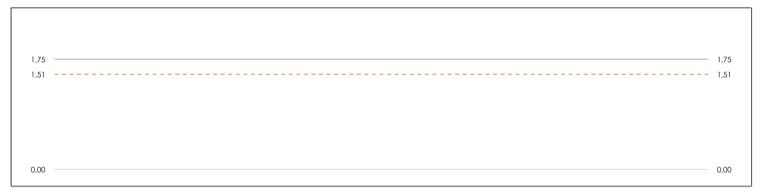
Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

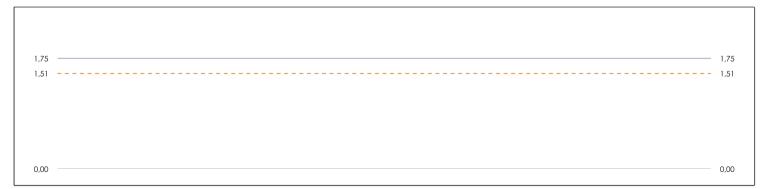
Comité de infraestructuras para la Calidad de la Edificación

SACE Subcomisión Administrativa para la


Calidad de la Edificación




DNT FRECUENCIA 2500 HZ (DB)


Análisis B. Mandel, Cochran y Grubbs

Apartado B.2. Gráfico de consistencia intra-laboratorios "k" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTRA-LABORATORIOS

Análisis gráfico de consistencia intra-laboratorios "k" de Mandel. En él se representan las medias aritméticas intra-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes y el número de ensayos efectuados).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 2500 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	h _i	k _i	Ci	$G_{\text{Sim Inf}}$	$G_{\text{Sim Sup}}$	G _{Dob Inf}	G _{Dob Sup}	Pasa B
07	41,000	10.000	10.000	41, 400	40.100	41 100	0.400	1.71	1.00	1.15				0.0000		
27	41,000	40,200	40,900	41,400	42,100	41,120	0,698	-1,71	-1,03	1,15				0,3933		√
49	42,20	41,000 42,000	42,600	42,500	41,400	41,940	0,706	0,25	0,15	1,17					0,7043	→
54 64	42,60 42,30	41,900	42,800 41,800	42,500 42,700	41,800 42,700	42,340 42,280	0,422	1,20	0,72	0,70					0,7043	
69	41,80	41,900	41,500	42,000	41,600	41,760	0,427	-0,18	-0,11	0,70						
101	40,70	42,600	41,900	42,000	43,500	42,140	1,026	0,73	0,44	1,69*	0,239					
117	42,20	42,100	42,500	42,300	42,100	42,240	0,167	0,96	0,58	0,28	0,207					<u> </u>
133	41,00	39,900	42,400	41,600	41,300	41,240	0,913	-1,43	-0,86	1,51						<u> </u>
140	41,60	41,700	40,900	41,300	41,600	41,420	0,327	-1,00	-0,60	0,54						
153	42,70	42,200	43,700	42,600	43,200	42,880	0,581	2,49	1,50	0,96			1,497		0,7043	
165	40,00	40,300	40,700	40,100	40,600	40,340	0,305	-3,58	-2,15*	0,50	0,239	2,147	.,	0,3933	-,, -, -,	→
194	42,50	42,100	43,200	42,700	41,200	42,340	0,750	1,20	0,72	1,24	-,	_,		-,	0,7043	√
	,,,,	,			,	,	-,	, -		· · · · · · · · · · · · · · · · · · ·						

NOTAS:

[aberrante]

[anómalo]

[máximo]

[mínimo]

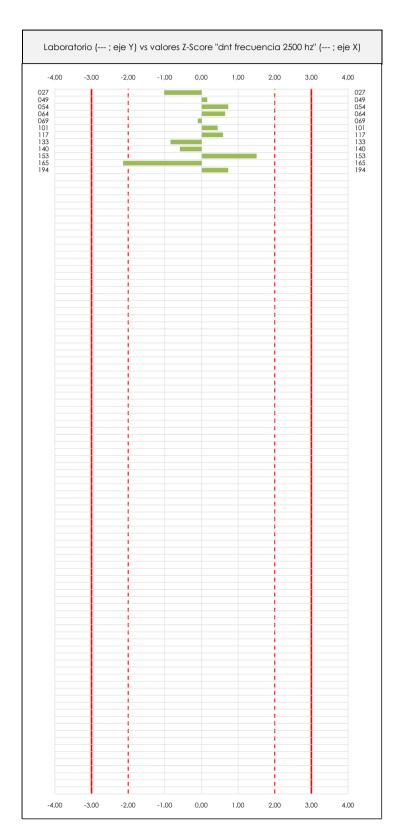
[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \text{ arit}}$ " es la media aritmética intralaboratorio calculada sin redondear.

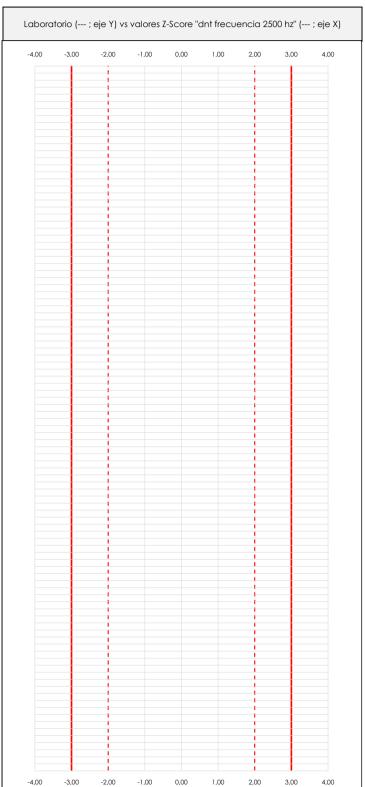
^{02 &}quot;S_Li" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ "h₁ y k," ,"C₁", "G_{Sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 2500 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.1. Análisis gráfico Altman Z-Score

ANALISIS GRAFICO Z-SCORE

Diagrama Z-Score para los resultados aportados por los laboratorios. Estos se considerarán satisfactorios (S) si el valor absoluto del Z-Score es menor o igual a 2 unidades, dudoso si está comprendido entre 2 y 3 unidades e insatisfactorio si es mayor o igual a 3 unidades.

Los resultados satisfactorios quedan reflejados entre las dos líneas rojas discontinuas, líneas de referencia en la evaluación Z-Score.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 2500 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

Lab	X _{i 1}	X_{i2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S_{Li}	D _{i arit %}	Pasa A	Pasa B	Total	Causa	Iteración	Z-Score	Evaluación
27	41,00	40,20	40,90	41,40	42,10	41,12	0,698	-1,71	✓	✓	✓			-1,028	S
49	42,20	41,00	42,60	42,50	41,40	41,94	0,706	0,25	✓	✓	✓			0,148	S
54	42,60	42,00	42,80	42,50	41,80	42,34	0,422	1,20	✓	✓	✓			0,722	S
64	42,30	41,90	41,80	42,70	42,70	42,28	0,427	1,06	✓	✓	✓			0,636	S
69	41,80	41,90	41,50	42,00	41,60	41,76	0,207	-0,18	✓	✓	✓			-0,110	S
101	40,70	42,60	41,90	42,00	43,50	42,14	1,026	0,73	✓	✓	✓			0,435	S
117	42,20	42,10	42,50	42,30	42,10	42,24	0,167	0,96	✓	✓	✓			0,579	S
133	41,00	39,90	42,40	41,60	41,30	41,24	0,913	-1,43	✓	✓	✓			-0,856	S
140	41,60	41,70	40,90	41,30	41,60	41,42	0,327	-1,00	✓	✓	✓			-0,598	S
153	42,70	42,20	43,70	42,60	43,20	42,88	0,581	2,49	✓	✓	✓			1,497	S
165	40,00	40,30	40,70	40,10	40,60	40,34	0,305	-3,58	✓	√	✓			-2,147	D
194	42,50	42,10	43,20	42,70	41,20	42,34	0,750	1,20	✓	✓	✓			0,722	S

NOTAS:

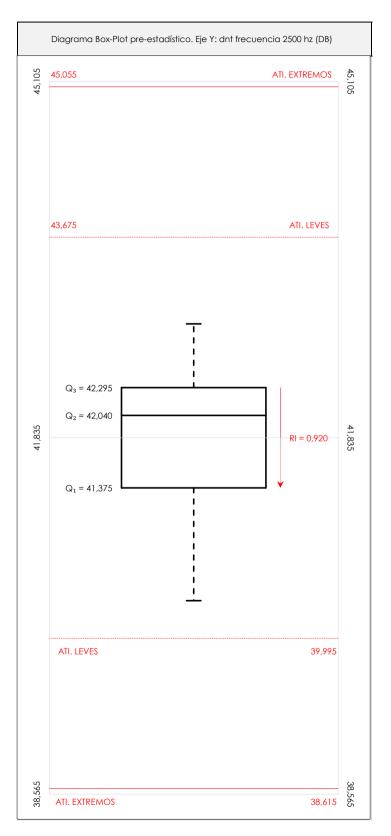
[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \text{ arit}}$ " es la media aritmética intralaboratorio calculada sin redondear.

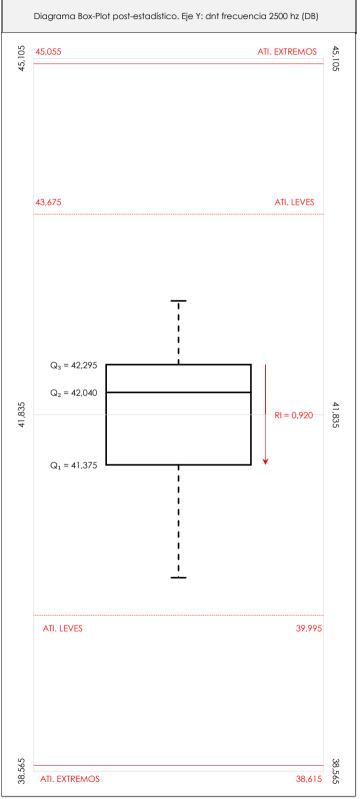
^{02 &}quot;S_Li" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

 $^{^{03}}$ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leqslant 2] [Dudoso (D) - si 2 < | ZS | \leqslant 3] [Insatisfactorio (I) - si | ZS | > 3].

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

CICE Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 2500 HZ (DB)

Análisis D. Estudios post-estadisticos

Apartado D.3. Diagramas Box-Plot o de Caja y Bigotes

ANALISIS GRAFICO DE CAJA Y BIGOTES (ANTES Y DESPUES DE ANALISIS ESTADISTICO)

Diagramas de caja y bigotes (Box Plot) de las medias aritméticas de los resultados aportados por los laboratorios antes (diagrama de la izquierda. Este incluye valores $aberrantes \ y \ anómalos) \ y \ \underline{despu\'es} \ (diagrama \ de \ la \ derecha. \ No incluye \ los \ valores \ descartados \ a \ lo \ largo \ del \ estudio) \ de \ análisis \ estadístico.$

En ambos se han representado: el primer cuartil (Q1; 25% de los datos), el segundo cuartil o la mediana (Q2; 50% de los datos), el tercer cuartil (Q3; 75% d intercuartílico (RI; cuartil tres menos cuartil uno) y los límites de valores atípicos leves (f3 y f1 para el máximo y mínimo respectivamente; líneas discontinuas de color rojo) y extremos (f_3^+ y f_1^+ para el máximo y mínimo respectivamente ; líneas continuas de color rojo).

CICE Comité de infraestructuras para la Calidad de la Edificación

DNT FRECUENCIA 2500 HZ (DB)

Conclusiones

Determinación de la repetibilidad y reproducibilidad

SACE Subcomisión Administrativa para la Calidad de la Edificación

El análisis estadístico ElLA20 para el ensayo "DNT FRECUENCIA 2500 HZ", ha contado con la participación de un total de 12 laboratorios, debiendo haber aportado cada uno de ellos, un total de 5 determinaciones individuales además de su valor medio.

Tras analizar los resultados podemos concluir que, para cumplir con los criterios estadísticos establecidos en el informe, un total de 0 laboratorios han sido apartados de la evaluación final: 0 en el Análisis Pre-Estadístico (por no cumplir el criterio de validación y/o el procedimiento de ejecución recogido en la norma de ensayo) y 0 en el Análisis Estadístico (por resultar anómalos o aberrantes en las técnicas gráficas de consistencia de Mandel y en los ensayos de detección de resultados numéricos de Cochran y Grubbs), al cabo de 1 iteraciones.

De cada uno de los análisis (pre-estadístico y estadístico), se obtienen las siguientes tablas:

TIPO DE ANALISIS			PRE-ES	TADISTIC	0				ESTA	DISTICO		
Variables	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$
Valor Máximo (max ; %)	42,70	42,60	43,70	42,70	43,50	42,88	42,70	42,60	43,70	42,70	43,50	42,88
Valor Mínimo (min ; %)	40,00	39,90	40,70	40,10	40,60	40,34	40,00	39,90	40,70	40,10	40,60	40,34
Valor Promedio (M; %)	41,72	41,49	42,08	41,98	41,93	41,84	41,72	41,49	42,08	41,98	41,93	41,84
Desviación Típica (SDL ;)	0,86	0,90	0,96	0,77	0,85	0,70	0,86	0,90	0,96	0,77	0,85	0,70
Coef. Variación (CV ;)	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02	0,02
VARIABLES	S_r^2	r		S_L^2	S_R^{2}	R	S_r^2	r		S_L^2	S_R^{-2}	R
Valor Calculado	0,367	1,67	'9 C),413	0,779	2,447	0,367	1,67	79 0	,413	0,779	2,447
Valor Referencia												

Asimismo, acompañando a éstas tablas y dependiendo del análisis que se esté llevando a cabo, se introducen los indicadores estadísticos "h y k" de Mandel y los valores críticos "C" de Cochran y "G_{sim} y G_{Dob}" de Grubbs, todos ellos adimensionales, obtenidos de las tablas 4, 5, 6 y 7 de la norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios y del número de ensayos efectuados por cada uno de ellos:

TIPO DE ANALISIS		PRI	E-ESTADISTI	со			E	STADISTIC)	
VARIABLES	h	k	С	G_{sim}	G_{Dob}	h	k	С	G_{sim}	G_{Dob}
Nivel de Significación 1%	2,25	1,75	0,343	2,636	0,1738	2,25	1,75	0,343	2,636	0,1738
Nivel de Significación 5%	1,83	1,51	0,288	2,412	0,2537	1,83	1,51	0,288	2,412	0,2537

Con los resultados de los laboratorios, que tras los dos análisis estadísticos son evaluados por Z-Score, se han obtenido: 11 resultados satisfactorios, 1 resultados dudosos y 0 resultados insatisfactorios.

Respecto a los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística recogida en la ISO 17025, sobre las dispersiones de los resultados individuales y su media, en forma de varianzas o desviaciones estándar, también conocida como ANOVA (siglas de analisys of varience).

Sabiendo que una varianza es la suma de cuadrados dividida por un número, que se llama grados de libertad, que depende del número de participantes menos 1, se puede decir que la imprecisión del ensayo se descompone en dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad (variabilidad intralaboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad debida al cambio de laboratorio).

Las condiciones de repetibilidad de este ensayo son: mismo laborante, mismo laboratorio y mismo equipo de medición utilizado dentro de un período de tiempo corto. Por ende, las condiciones de reproducibilidad para la misma muestra y ensayo, cambian en: el laboratorio, el equipo y las condiciones de uso y tiempo.

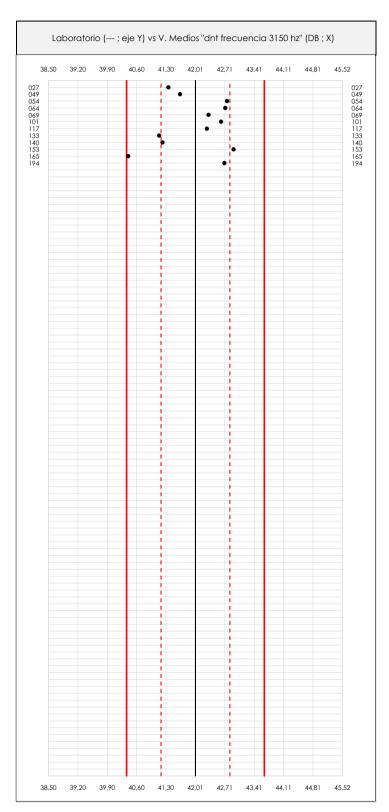
Comité de infraestructuras para la Calidad de la Edificación

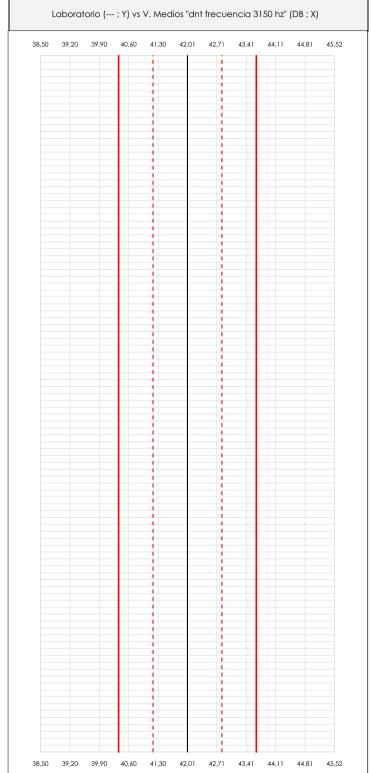
Subcomisión Administrativa para la Calidad de la Edificación

ANÁLISIS ESTADISTICO DE ACÚSTICA

DNT FRECUENCIA 3150 HZ

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 3150 HZ (DB)

Análisis A. Estudio pre-estadístico

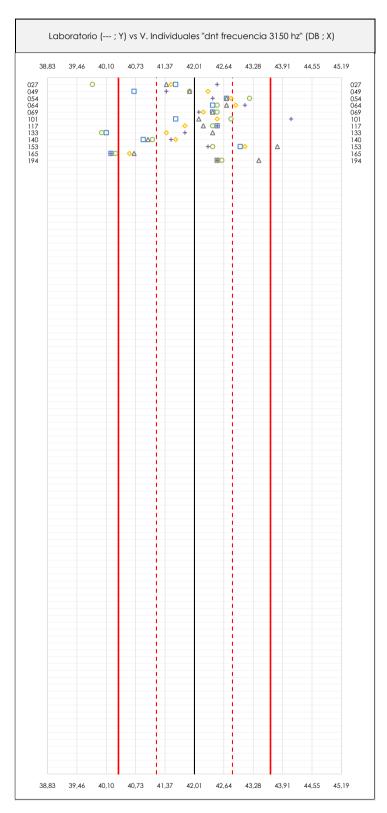
Apartado A.1. Gráficos de dispersión de valores medios

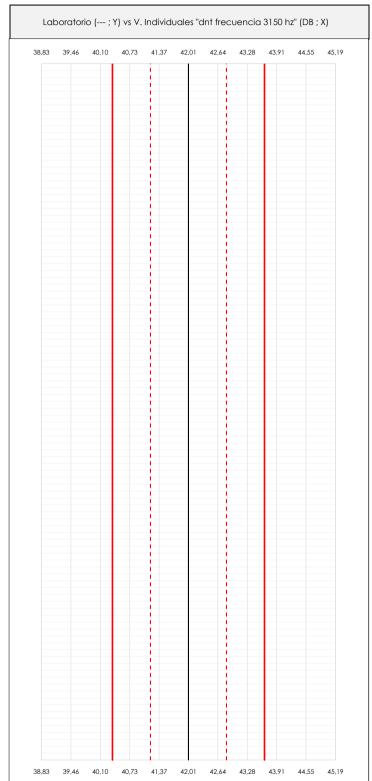
ANALISIS GRAFICO DE DISPERSION MEDIA (ANTES DE ANALISIS ESTADISTICO)

Dispersión de las medias aritméticas intra-laboratorios respecto de la media aritmética inter-laboratorios (42,01; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (42,83/41,18; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (43,65/40,36; líneas rojas de trazo continuo).

En el eje Y (adimensional) quedan reflejados los códigos de los laboratorios participantes y en el eje X (las unidades son las mismas que las del ensayo que se está analizando) las medias aritméticas intra-laboratorios representadas por punto de color negro.

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 3150 HZ (DB)

Análisis A. Estudio pre-estadístico

Apartado A.2. Gráficos de dispersión de valores individuales

ANALISIS GRAFICOS DE DISPERSION INDIVIDUAL (ANTES DE ANALISIS ESTADISTICO)

Dispersión de los valores individuales respecto de la media aritmética inter-laboratorios (42,01; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (42,83/41,18; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (43,65/40,36; líneas rojas de trazo continuo).

En el eje Y (adimensional) queda reflejado el código del laboratorio participante y en el eje X (las unidades son las de los resultados del ensayo que se está analizando) los resultados individuales: el primero $(X_{i,1})$ se representa con un cuadrado azul, el segundo $(X_{i,2})$ con un círculo verde, el tercero $(X_{i,3})$ con un triángulo grís y el cuarto $(X_{i,4})$ con un rombo amarillo

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 3150 HZ (DB)

Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	Х _{і 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	Pasa A	Observaciones
27	41,60	39,80	41,40	41,50	42,50	41,36	0,976	-1,54	√	
49 54	40,70 42,70	41,90 43,20	41,90	42,30	41,40	41,64	0,615	-0,87 1,79	√	
64	42,40	42,50	42,70 42,70	42,80 42,90	42,40 43,10	42,76 42,72	0,288	1,79	√	
69	42,40	42,50	42,40	42,20	42,10	42,32	0,164	0,75	√	
101	41,60	42,80	42,10	42,50	44,10	42,62	0,942	1,46	<u> </u>	
117	42,50	42,40	42,20	41,80	42,50	42,28	0,295	0,65	√	
133	40,10	40,00	42,40	41,40	41,80	41,14	1,057	-2,06	✓	
140	40,90	41,10	41,00	41,60	41,50	41,22	0,311	-1,87	√	
153	43,00	42,40	43,80	43,10	42,30	42,92	0,606	2,17	✓	
165	40,20	40,30	40,70	40,60	40,20	40,40	0,235	-3,82	✓	
194	42,50	42,60	43,40	42,50	42,50	42,70	0,394	1,65	✓	

NOTAS:

[máximo]

[mínimo]

[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \, arit}$ " es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 3150 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

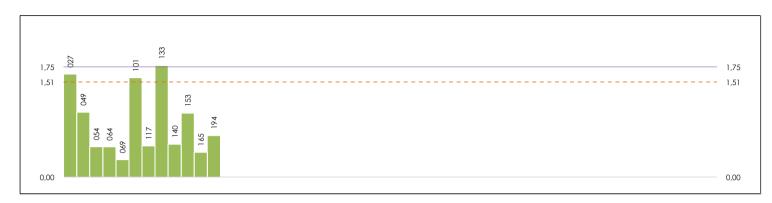
Apartado B.1. Gráfico de consistencia inter-laboratorios "h" de Mandel

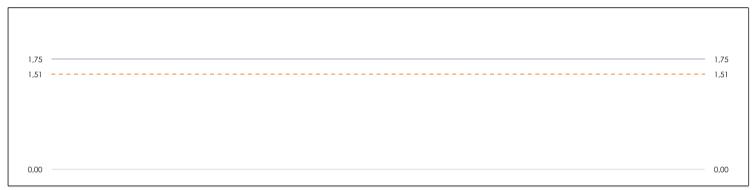
ANALISIS GRAFICO DE CONSISTENCIA INTER-LABORATORIOS

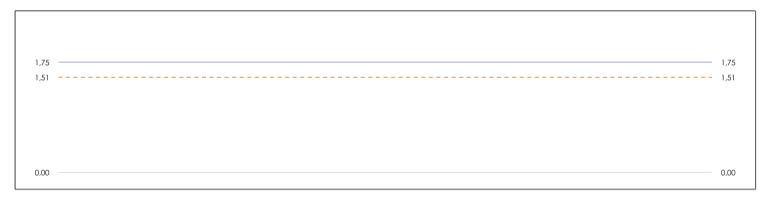
Análisis gráfico de consistencia inter-laboratorios "h" de Mandel. En él se representan las medias aritméticas inter-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes).

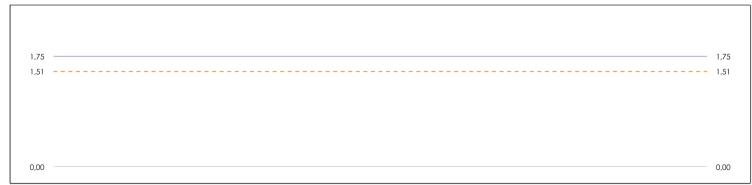
Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación


DNT FRECUENCIA 3150 HZ (DB)


Análisis B. Mandel, Cochran y Grubbs

Apartado B.2. Gráfico de consistencia intra-laboratorios "k" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTRA-LABORATORIOS

Análisis gráfico de consistencia intra-laboratorios "k" de Mandel. En él se representan las medias aritméticas intra-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes y el número de ensayos efectuados).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 3150 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

		· · · · · · · · · · · · · · · · · · ·														
Lab	X _{i 1}	X _{i 2}	Х _{і 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{Li}	D _{i arit %}	h _i	k _i	Ci	G _{Sim Inf}	G _{Sim Sup}	G _{Dob Inf}	G _{Dob Sup}	Pasa B
27	41,600	39,800	41,400	41,500	42,500	41,360	0,976	-1,54	-0,79	1,63*	0,261					─ ✓
49	40,70	41,900	41,900	42,300	41,400	41,640	0,615	-0,87	-0,45	1,03	0,20.					<u> </u>
54	42,70	43,200	42,700	42,800	42,400	42,760	0,288	1,79	0,92	0,48					0,7744	√
64	42,40	42,500	42,700	42,900	43,100	42,720	0,286	1,70	0,87	0,48						√
69	42,40	42,500	42,400	42,200	42,100	42,320	0,164	0,75	0,38	0,27						√
101	41,60	42,800	42,100	42,500	44,100	42,620	0,942	1,46	0,75	1,58*	0,261					✓
117	42,50	42,400	42,200	41,800	42,500	42,280	0,295	0,65	0,33	0,49						✓
133	40,10	40,000	42,400	41,400	41,800	41,140	1,057	-2,06	-1,05	1,77**	0,261			0,4702		✓
140	40,90	41,100	41,000	41,600	41,500	41,220	0,311	-1,87	-0,96	0,52						✓
153	43,00	42,400	43,800	43,100	42,300	42,920	0,606	2,17	1,11	1,01			1,110		0,7744	✓
165	40,20	40,300	40,700	40,600	40,200	40,400	0,235	-3,82	-1,95*	0,39	0,261	1,953		0,4702		✓
194	42,50	42,600	43,400	42,500	42,500	42,700	0,394	1,65	0,84	0,66						✓

NOTAS:

[aberrante]

[anómalo]

[máximo]

[mínimo]

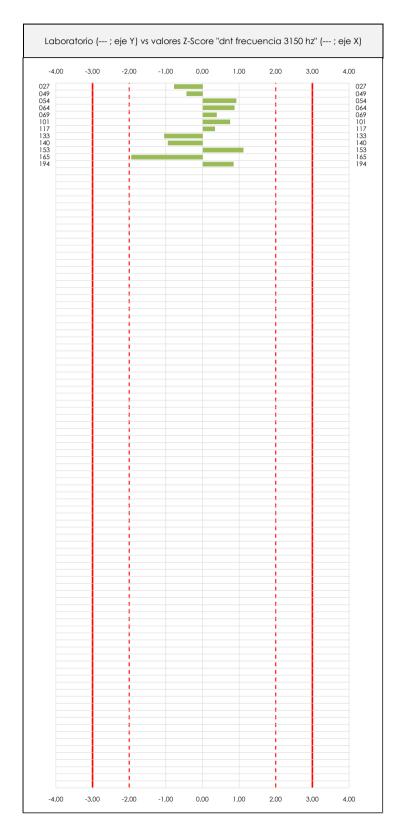
[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \text{ arit}}$ " es la media aritmética intralaboratorio calculada sin redondear.

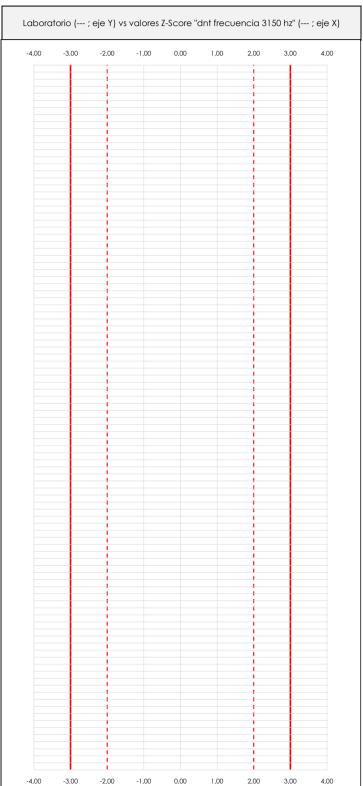
⁰² "S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ "h₁ y k," ,"C₁", "G_{Sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 3150 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.1. Análisis gráfico Altman Z-Score

ANALISIS GRAFICO Z-SCORE

Diagrama Z-Score para los resultados aportados por los laboratorios. Estos se considerarán satisfactorios (S) si el valor absoluto del Z-Score es menor o igual a 2 unidades, dudoso si está comprendido entre 2 y 3 unidades e insatisfactorio si es mayor o igual a 3 unidades.

Los resultados satisfactorios quedan reflejados entre las dos líneas rojas discontinuas, líneas de referencia en la evaluación Z-Score.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 3150 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	Pasa A	Pasa B	Total	Causa	Iteración	Z-Score	Evaluación
27	41,60	39,80	41,40	41,50	42,50	41,36	0,976	-1,54	√	√	√			-0,786	S
49	40,70	41,90	41,90	42,30	41,40	41,64	0,615	-0,87		<u> </u>	<u> </u>			-0,446	S
54	42,70	43,20	42,70	42,80	42,40	42,76	0,288	1,79	√	√	√			0,916	S
64	42,40	42,50	42,70	42,90	43,10	42,72	0,286	1,70	√	√	√			0,867	S
69	42,40	42,50	42,40	42,20	42,10	42,32	0,164	0,75	✓	√	✓			0,381	S
101	41,60	42,80	42,10	42,50	44,10	42,62	0,942	1,46	√	✓	✓			0,746	S
117	42,50	42,40	42,20	41,80	42,50	42,28	0,295	0,65	✓	✓	✓			0,332	S
133	40,10	40,00	42,40	41,40	41,80	41,14	1,057	-2,06	✓	✓	✓			-1,054	S
140	40,90	41,10	41,00	41,60	41,50	41,22	0,311	-1,87	✓	✓	✓			-0,956	S
153	43,00	42,40	43,80	43,10	42,30	42,92	0,606	2,17	✓	✓	✓			1,110	S
165	40,20	40,30	40,70	40,60	40,20	40,40	0,235	-3,82	✓	✓	✓			-1,953	S
194	42,50	42,60	43,40	42,50	42,50	42,70	0,394	1,65	✓	✓	✓			0,843	S

NOTAS:

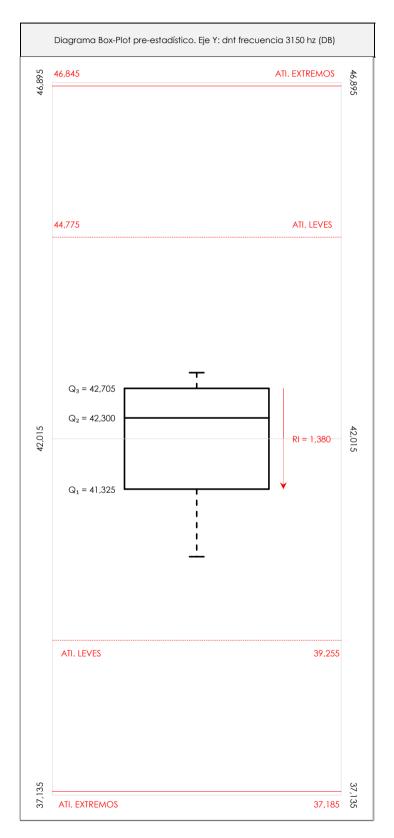
[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \text{ arit}}$ " es la media aritmética intralaboratorio calculada sin redondear.

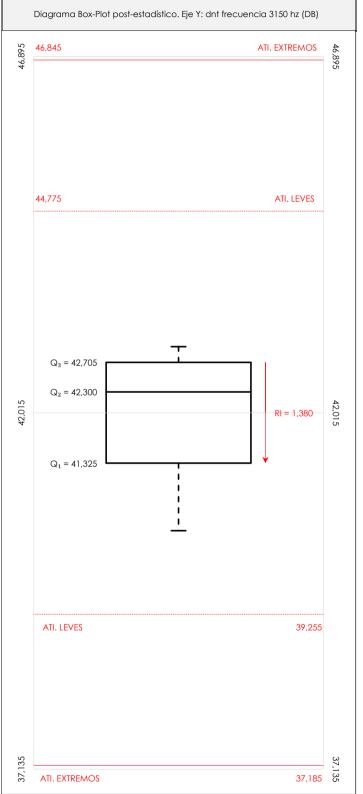
^{02 &}quot;S_Li" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

 $^{^{03}}$ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leq 2] [Dudoso (D) - si 2 < | ZS | \leq 3] [Insatisfactorio (I) - si | ZS | \geq 3].

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

CICE Comité de infraestructuras para la Calidad de la Edificación




SACE
Subcomisión Administrativa para la
Calidad de la Edificación

DNT FRECUENCIA 3150 HZ (DB)

Análisis D. Estudios post-estadisticos

Apartado D.3. Diagramas Box-Plot o de Caja y Bigotes

ANALISIS GRAFICO DE CAJA Y BIGOTES (ANTES Y DESPUES DE ANALISIS ESTADISTICO)

Diagramas de caja y bigotes (Box Plot) de las medias aritméticas de los resultados aportados por los laboratorios antes (diagrama de la izquierda. Este incluye valores aberrantes y anómalos) y después (diagrama de la derecha. No incluye los valores descartados a lo largo del estudio) de análisis estadístico.

En ambos se han representado: el primer cuartil (Q_1 ; 25% de los datos), el segundo cuartil o la mediana (Q_2 ; 50% de los datos), el tercer cuartil (Q_3 ; 75% de los datos), el rango intercuartílico (RI ; cuartil tres menos cuartil uno) y los límites de valores atípicos leves (f_3 y f_1 para el máximo y mínimo respectivamente ; líneas discontinuas de color rojo) y extremos (f_3 y f_1 * para el máximo y mínimo respectivamente ; líneas continuas de color rojo).

CICE Comité de infraestructuras para la Calidad de la Edificación

DNT FRECUENCIA 3150 HZ (DB)

Conclusiones

Determinación de la repetibilidad y reproducibilidad

SACE Subcomisión Administrativa para la Calidad de la Edificación

El análisis estadístico ElLA20 para el ensayo "DNT FRECUENCIA 3150 HZ", ha contado con la participación de un total de 12 laboratorios, debiendo haber aportado cada uno de ellos, un total de 5 determinaciones individuales además de su valor medio.

Tras analizar los resultados podemos concluir que, para cumplir con los criterios estadísticos establecidos en el informe, un total de 0 laboratorios han sido apartados de la evaluación final: 0 en el Análisis Pre-Estadístico (por no cumplir el criterio de validación y/o el procedimiento de ejecución recogido en la norma de ensayo) y 0 en el Análisis Estadístico (por resultar anómalos o aberrantes en las técnicas gráficas de consistencia de Mandel y en los ensayos de detección de resultados numéricos de Cochran y Grubbs), al cabo de 1 iteraciones.

De cada uno de los análisis (pre-estadístico y estadístico), se obtienen las siguientes tablas:

TIPO DE ANALISIS	PRE-ESTADISTICO							ESTADISTICO					
Variables	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i5}	$\overline{X}_{i arit}$	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$	
Valor Máximo (max ; %)	43,00	43,20	43,80	43,10	44,10	42,92	43,00	43,20	43,80	43,10	44,10	42,92	
Valor Mínimo (min ; %)	40,10	39,80	40,70	40,60	40,20	40,40	40,10	39,80	40,70	40,60	40,20	40,40	
Valor Promedio (M; %)	41,72	41,79	42,23	42,10	42,20	42,01	41,72	41,79	42,23	42,10	42,20	42,01	
Desviación Típica (SDL ;)	1,02	1,18	0,90	0,73	0,96	0,82	1,02	1,18	0,90	0,73	0,96	0,82	
Coef. Variación (CV ;)	0,02	0,03	0,02	0,02	0,02	0,02	0,02	0,03	0,02	0,02	0,02	0,02	
VARIABLES	S_r^2	r		$S_L^{\ 2}$	$S_R^{\ 2}$	R	S_r^2	r		S_L^2	S_R^{-2}	R	
Valor Calculado	0,357	1,65	57 (0,605	0,963	2,720	0,357	1,65	57 0	,605	0,963	2,720	
Valor Referencia													

Asimismo, acompañando a éstas tablas y dependiendo del análisis que se esté llevando a cabo, se introducen los indicadores estadísticos "h y k" de Mandel y los valores críticos "C" de Cochran y "G_{sim} y G_{Dob}" de Grubbs, todos ellos adimensionales, obtenidos de las tablas 4, 5, 6 y 7 de la norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios y del número de ensayos efectuados por cada uno de ellos:

TIPO DE ANALISIS		PRI	E-ESTADISTI	со		ESTADISTICO					
VARIABLES	h	k	С	G_{sim}	G_Dob	h	k	С	G_{sim}	G_{Dob}	
Nivel de Significación 1%	2,25	1,75	0,343	2,636	0,1738	2,25	1,75	0,343	2,636	0,1738	
Nivel de Significación 5%	1,83	1,51	0,288	2,412	0,2537	1,83	1,51	0,288	2,412	0,2537	

Con los resultados de los laboratorios, que tras los dos análisis estadísticos son evaluados por Z-Score, se han obtenido: 12 resultados satisfactorios, 0 resultados dudosos y 0 resultados insatisfactorios.

Respecto a los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística recogida en la ISO 17025, sobre las dispersiones de los resultados individuales y su media, en forma de varianzas o desviaciones estándar, también conocida como ANOVA (siglas de analisys of varience).

Sabiendo que una varianza es la suma de cuadrados dividida por un número, que se llama grados de libertad, que depende del número de participantes menos 1, se puede decir que la imprecisión del ensayo se descompone en dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad (variabilidad intralaboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad debida al cambio de laboratorio).

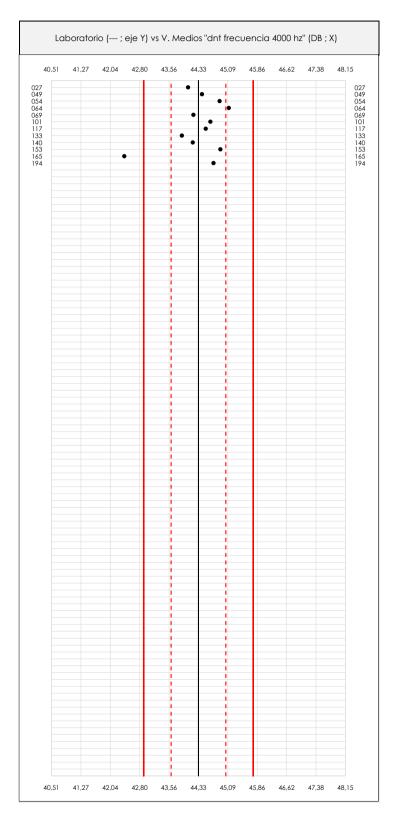
Las condiciones de repetibilidad de este ensayo son: mismo laborante, mismo laboratorio y mismo equipo de medición utilizado dentro de un período de tiempo corto. Por ende, las condiciones de reproducibilidad para la misma muestra y ensayo, cambian en: el laboratorio, el equipo y las condiciones de uso y tiempo.

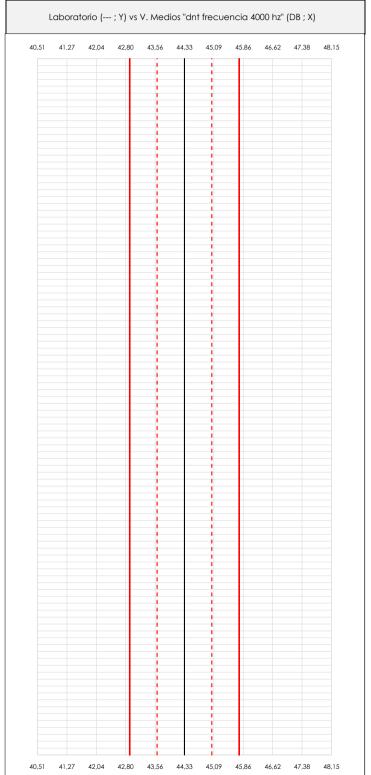
Comité de infraestructuras para la Calidad de la Edificación

Subcomisión Administrativa para la Calidad de la Edificación

ANÁLISIS ESTADISTICO DE ACÚSTICA DNT FRECUENCIA 4000 HZ

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 4000 HZ (DB)

Análisis A. Estudio pre-estadístico

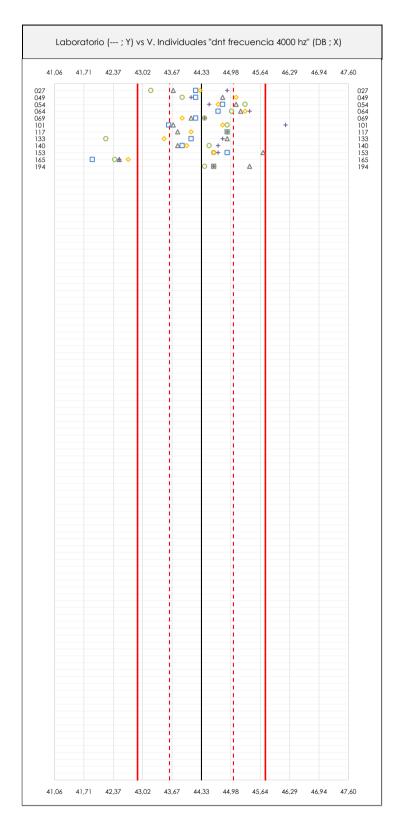
Apartado A.1. Gráficos de dispersión de valores medios

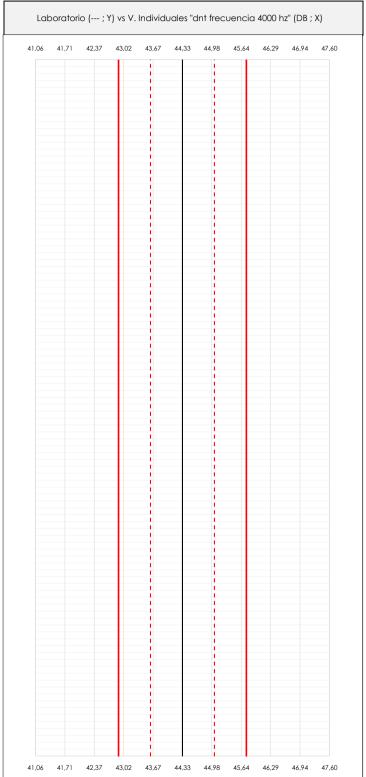
ANALISIS GRAFICO DE DISPERSION MEDIA (ANTES DE ANALISIS ESTADISTICO)

Dispersión de las medias aritméticas intra-laboratorios respecto de la media aritmética inter-laboratorios (44,33; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (45,04/43,62; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (45,75/42,91; líneas rojas de trazo continuo).

En el eje Y (adimensional) quedan reflejados los códigos de los laboratorios participantes y en el eje X (las unidades son las mismas que las del ensayo que se está analizando) las medias aritméticas intra-laboratorios representadas por punto de color negro.

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 4000 HZ (DB)

Análisis A. Estudio pre-estadístico

Apartado A.2. Gráficos de dispersión de valores individuales

ANALISIS GRAFICOS DE DISPERSION INDIVIDUAL (ANTES DE ANALISIS ESTADISTICO)

Dispersión de los valores individuales respecto de la media aritmética inter-laboratorios (44,33; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (45,04/43,62; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (45,75/42,91; líneas rojas de trazo continuo).

En el eje Y (adimensional) queda reflejado el código del laboratorio participante y en el eje X (las unidades son las de los resultados del ensayo que se está analizando) los resultados individuales: el primero $(X_{i,1})$ se representa con un cuadrado azul, el segundo $(X_{i,2})$ con un círculo verde, el tercero $(X_{i,3})$ con un triángulo grís y el cuarto $(X_{i,4})$ con un rombo amarillo

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 4000 HZ (DB)

Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

Lab	$X_{i \; 1}$	X_{i2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	Pasa A	Observaciones
27	44,20	43,20	43,70	44,30	44,90	44,06	0,643	-0,61	✓	
49	44,20	43,90	44,80	45,10	44,10	44,42	0,507	0,21	✓	
54	44,80	45,30	45,10	44,70	44,50	44,88	0,319	1,24	√	
64	44,70	45,00	45,20	45,30	45,40	45,12	0,277	1,79	√	
69	44,20	44,40	44,10	43,90	44,40	44,20	0,212	-0,29	√	
101	43,60 44,90	44,90 44,90	43,70	44,80 44,10	46,20 44,90	44,64 44,52	1,060 0,531	0,70	√	
133	44,70	42,20	44,90	43,50	44,90	43,90	1,107	-0,97	- ✓	
140	43,90	44,50	43,80	44,00	44,70	44,18	0,396	-0,33	<u> </u>	
153	44,90	44,60	45,70	44,60	44,70	44,90	0,464	1,29	-	
165	41,90	42,40	42,50	42,70	42,50	42,40	0,300	-4,35	√	
194	44,60	44,40	45,40	44,60	44,60	44,72	0,390	0,88	√	

NOTAS:

[máximo]

[mínimo]

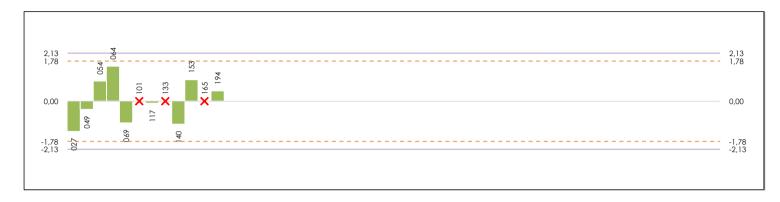
[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \, arit}$ " es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación


SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 4000 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

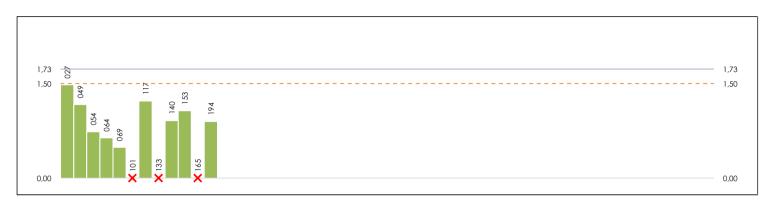
Apartado B.1. Gráfico de consistencia inter-laboratorios "h" de Mandel

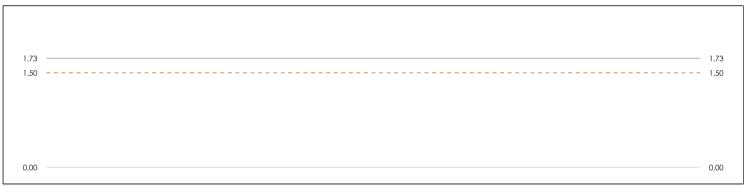
ANALISIS GRAFICO DE CONSISTENCIA INTER-LABORATORIOS

Análisis gráfico de consistencia inter-laboratorios "h" de Mandel. En él se representan las medias aritméticas inter-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes).

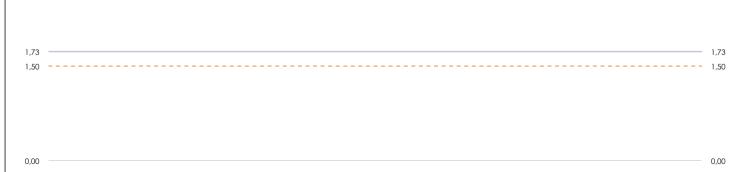
Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 4000 HZ (DB)


Análisis B. Mandel, Cochran y Grubbs

Apartado B.2. Gráfico de consistencia intra-laboratorios "k" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTRA-LABORATORIOS

Análisis gráfico de consistencia intra-laboratorios "k" de Mandel. En él se representan las medias aritméticas intra-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes y el número de ensayos efectuados).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 4000 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{Li}	D _{i arit %}	h _i	k _i	Ci	G _{Sim Inf}	G _{Sim Sup}	Gooblef	G _{Dob Sup}	Pasa B
		- 12	- 13	-14	- 13	7 dili		- Tulii /6				- 31111111	- 3iiii 30p	- 505 III	- DOD 30P	
27	44,200	43,200	43,700	44,300	44,900	44,060	0,643	-1,11	-1,34	1,48		1,335		0,5509		√
49	44,20	43,900	44,800	45,100	44,100	44,420	0,507	-0,30	-0,37	1,17						√
54	44,80	45,300	45,100	44,700	44,500	44,880	0,319	0,73	0,87	0,73						✓
64	44,70	45,000	45,200	45,300	45,400	45,120	0,277	1,27	1,52	0,64			1,521		0,4962	✓
69	44,20	44,400	44,100	43,900	44,400	44,200	0,212	-0,80	-0,96	0,49						✓
101	43,60	44,900	43,700	44,800	46,200	44,640										X
117	44,90	44,900	43,800	44,100	44,900	44,520	0,531	-0,08	-0,10	1,22						✓
133	44,10	42,200	44,900	43,500	44,800	43,900										X
140	43,90	44,500	43,800	44,000	44,700	44,180	0,396	-0,84	-1,01	0,91				0,5509		√
153	44,90	44,600	45,700	44,600	44,700	44,900	0,464	0,77	0,93	1,07					0,4962	√
165	41,90	42,400	42,500	42,700	42,500	42,400										X
194	44,60	44,400	45,400	44,600	44,600	44,720	0,390	0,37	0,44	0,90						√
-																

NOTAS:

[aberrante]

[anómalo]

[máximo]

[mínimo]

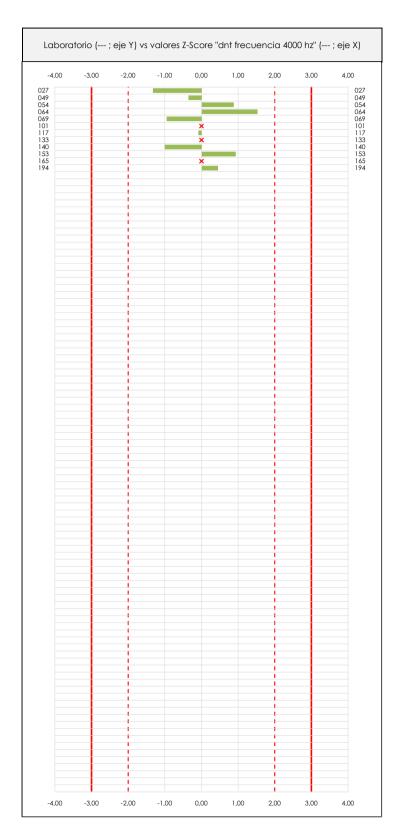
[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \text{ arit}}$ " es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_Li" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ "h₁ y k," ,"C₁", "G_{Sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación



SACE Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 4000 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.1. Análisis gráfico Altman Z-Score

ANALISIS GRAFICO Z-SCORE

Diagrama Z-Score para los resultados aportados por los laboratorios. Estos se considerarán satisfactorios (S) si el valor absoluto del Z-Score es menor o igual a 2 unidades, dudoso si está comprendido entre 2 y 3 unidades e insatisfactorio si es mayor o igual a 3 unidades.

Los resultados satisfactorios quedan reflejados entre las dos líneas rojas discontinuas, líneas de referencia en la evaluación Z-Score.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 4000 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

Lab	X _{i 1}	X _{i2}	X _{i 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{L i}	D _{i arit %}	Pasa A	Pasa B	Total	Causa	Iteración	Z-Score	Evaluación
27	44,20	43,20	43,70	44,30	44,90	44,06	0,643	-1,11	√	✓	√			-1,335	S
49	44,20	43,90	44,80	45,10	44,10	44,42	0,507	-0,30		<u> </u>	<u> </u>			-0,365	S
54	44,80	45,30	45,10	44,70	44,50	44,88	0,319	0,73	<u> </u>					0,874	S
64	44,70	45,00	45,20	45,30	45,40	45,12	0,277	1,27	√	-	√			1,521	S
69	44,20	44,40	44,10	43,90	44,40	44,20	0,212	-0,80	√	V	√			-0,958	S
101	43,60	44,90	43,70	44,80	46,20	44,64			√	Х	Х	AN	0		
117	44,90	44,90	43,80	44,10	44,90	44,52	0,531	-0,08	√	√	√			-0,096	S
133	44,10	42,20	44,90	43,50	44,80	43,90			√	Х	Х	AN	0		
140	43,90	44,50	43,80	44,00	44,70	44,18	0,396	-0,84	√	√	√			-1,012	S
153	44,90	44,60	45,70	44,60	44,70	44,90	0,464	0,77	√	√	√			0,928	S
165	41,90	42,40	42,50	42,70	42,50	42,40			✓	Х	Х	AB	0		
194	44,60	44,40	45,40	44,60	44,60	44,72	0,390	0,37	✓	✓	✓			0,443	S

NOTAS:

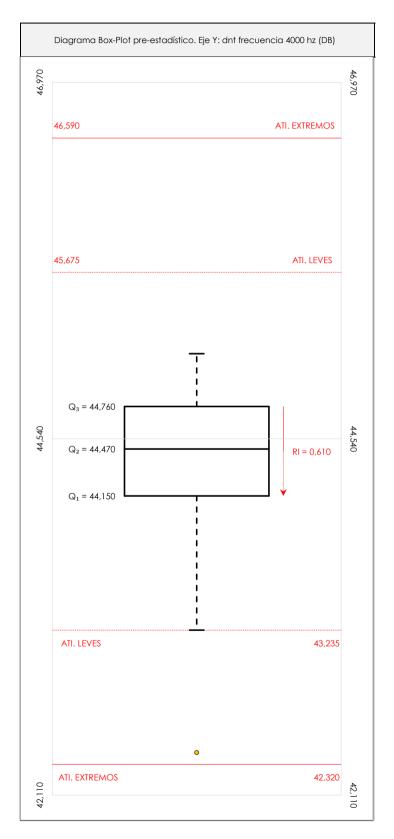
[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \text{ arit}}$ " es la media aritmética intralaboratorio calculada sin redondear.

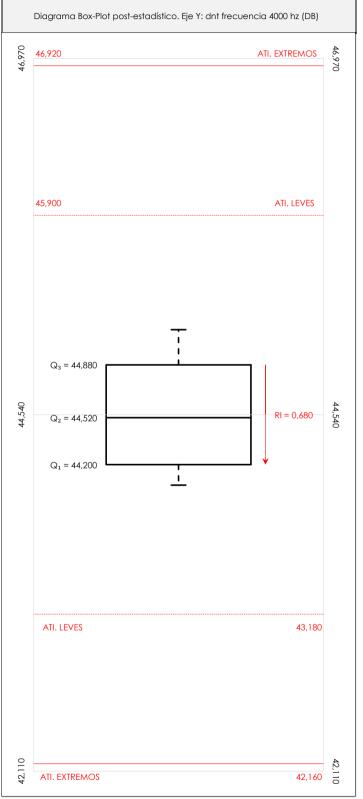
^{02 &}quot;S_Li" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

 $^{^{03}}$ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leqslant 2] [Dudoso (D) - si 2 < | ZS | \leqslant 3] [Insatisfactorio (I) - si | ZS | > 3].

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

CICE Comité de infraestructuras para la Calidad de la Edificación




SACE
Subcomisión Administrativa para la
Calidad de la Edificación

DNT FRECUENCIA 4000 HZ (DB)

Análisis D. Estudios post-estadisticos

Apartado D.3. Diagramas Box-Plot o de Caja y Bigotes

ANALISIS GRAFICO DE CAJA Y BIGOTES (ANTES Y DESPUES DE ANALISIS ESTADISTICO)

Diagramas de caja y bigotes (Box Plot) de las medias aritméticas de los resultados aportados por los laboratorios antes (diagrama de la izquierda. Este incluye valores aberrantes y anómalos) y después (diagrama de la derecha. No incluye los valores descartados a lo largo del estudio) de análisis estadístico.

En ambos se han representado: el primer cuartil (Q_1 ; 25% de los datos), el segundo cuartil o la mediana (Q_2 ; 50% de los datos), el tercer cuartil (Q_3 ; 75% de los datos), el rango intercuartílico (RI; cuartil tres menos cuartil uno) y los límites de valores atípicos leves (f_3 y f_1 para el máximo y mínimo respectivamente; líneas discontinuas de color rojo) y extremos (f_3 * y f_1 * para el máximo y mínimo respectivamente; líneas continuas de color rojo).

CICE Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 4000 HZ (DB)

Conclusiones

Determinación de la repetibilidad y reproducibilidad

El análisis estadístico ElLA20 para el ensayo "DNT FRECUENCIA 4000 HZ", ha contado con la participación de un total de 12 laboratorios, debiendo haber aportado cada uno de ellos, un total de 5 determinaciones individuales además de su valor medio.

Tras analizar los resultados podemos concluir que, para cumplir con los criterios estadísticos establecidos en el informe, un total de 3 laboratorios han sido apartados de la evaluación final: 0 en el Análisis Pre-Estadístico (por no cumplir el criterio de validación y/o el procedimiento de ejecución recogido en la norma de ensayo) y 3 en el Análisis Estadístico (por resultar anómalos o aberrantes en las técnicas gráficas de consistencia de Mandel y en los ensayos de detección de resultados numéricos de Cochran y Grubbs), al cabo de 2 iteraciones.

De cada uno de los análisis (pre-estadístico y estadístico), se obtienen las siguientes tablas:

TIPO DE ANALISIS			PRE-ES	TADISTIC	0				ESTA	DISTICO		
Variables	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$
Valor Máximo (max ; %)	44,90	45,30	45,70	45,30	46,20	45,12	44,90	45,30	45,70	45,30	45,40	45,12
Valor Mínimo (min ; %)	41,90	42,20	42,50	42,70	42,50	42,40	43,90	43,20	43,70	43,90	44,10	44,06
Valor Promedio (M; %)	44,17	44,14	44,39	44,30	44,64	44,33	44,49	44,47	44,62	44,51	44,69	44,56
Desviación Típica (SDL ;)	0,82	1,02	0,94	0,72	0,86	0,71	0,37	0,62	0,78	0,48	0,37	0,37
Coef. Variación (CV ;)	0,02	0,02	0,02	0,02	0,02	0,02	0,01	0,01	0,02	0,01	0,01	0,01
VARIABLES	S_r^2	r		S_L^2	S_R^2	R	S_r^2	r		S _L ²	S_R^{2}	R
Valor Calculado	0,345	1,62	28 (),437	0,782	2,451	0,189	1,20)5 0	,100	0,289	1,490
Valor Referencia												

Asimismo, acompañando a éstas tablas y dependiendo del análisis que se esté llevando a cabo, se introducen los indicadores estadísticos "h y k" de Mandel y los valores críticos "C" de Cochran y "G_{sim} y G_{Dob}" de Grubbs, todos ellos adimensionales, obtenidos de las tablas 4, 5, 6 y 7 de la norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios y del número de ensayos efectuados por cada uno de ellos:

TIPO DE ANALISIS		PRI	-ESTADISTI	со			E	STADISTIC)	
VARIABLES	h	k	С	G_{sim}	G _{Dob}	h	k	С	G_{sim}	G_{Dob}
Nivel de Significación 1%	2,13	1,73	0,343	2,387	0,0851	2,13	1,73	0,425	2,387	0,0851
Nivel de Significación 5%	1,78	1,50	0,288	2,215	0,1492	1,78	1,50	0,358	2,215	0,1492

Con los resultados de los laboratorios, que tras los dos análisis estadísticos son evaluados por Z-Score, se han obtenido: 9 resultados satisfactorios, 0 resultados dudosos y 0 resultados insatisfactorios.

Respecto a los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística recogida en la ISO 17025, sobre las dispersiones de los resultados individuales y su media, en forma de varianzas o desviaciones estándar, también conocida como ANOVA (siglas de analisys of varience).

Sabiendo que una varianza es la suma de cuadrados dividida por un número, que se llama grados de libertad, que depende del número de participantes menos 1, se puede decir que la imprecisión del ensayo se descompone en dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad (variabilidad intralaboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad debida al cambio de laboratorio).

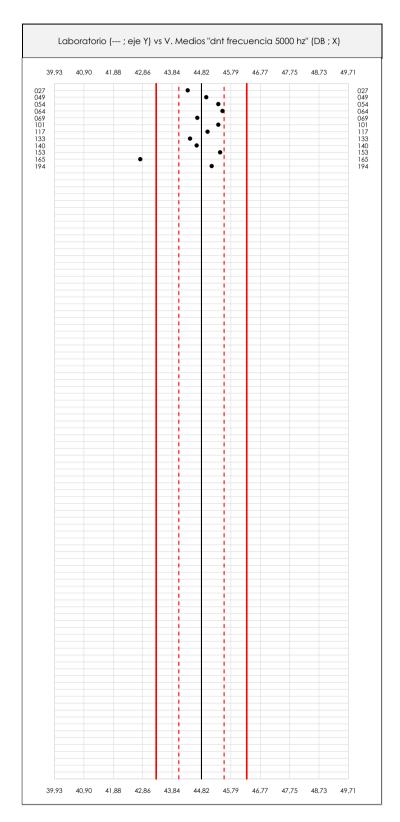
Las condiciones de repetibilidad de este ensayo son: mismo laborante, mismo laboratorio y mismo equipo de medición utilizado dentro de un período de tiempo corto. Por ende, las condiciones de reproducibilidad para la misma muestra y ensayo, cambian en: el laboratorio, el equipo y las condiciones de uso y tiempo.

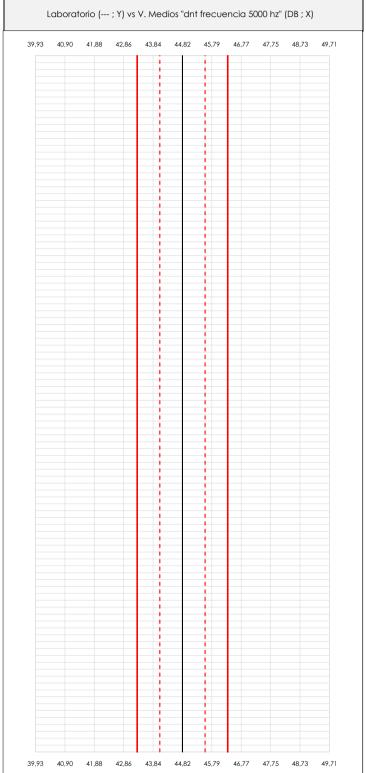
Comité de infraestructuras para la Calidad de la Edificación

Subcomisión Administrativa para la Calidad de la Edificación

ANÁLISIS ESTADISTICO DE ACÚSTICA DNT FRECUENCIA 5000 HZ

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 5000 HZ (DB)

Análisis A. Estudio pre-estadístico

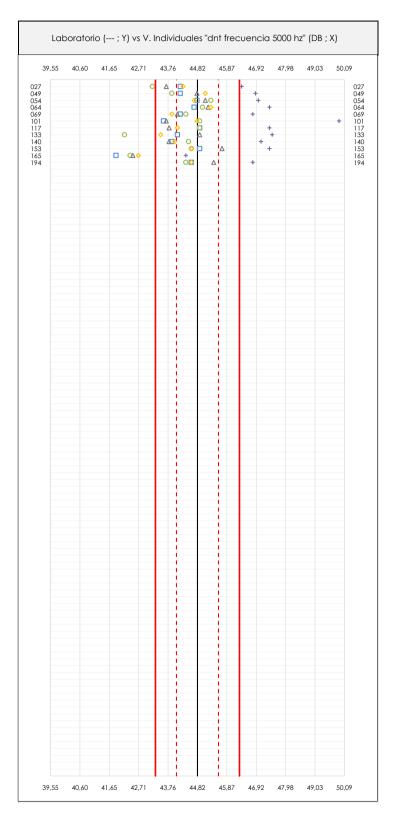
Apartado A.1. Gráficos de dispersión de valores medios

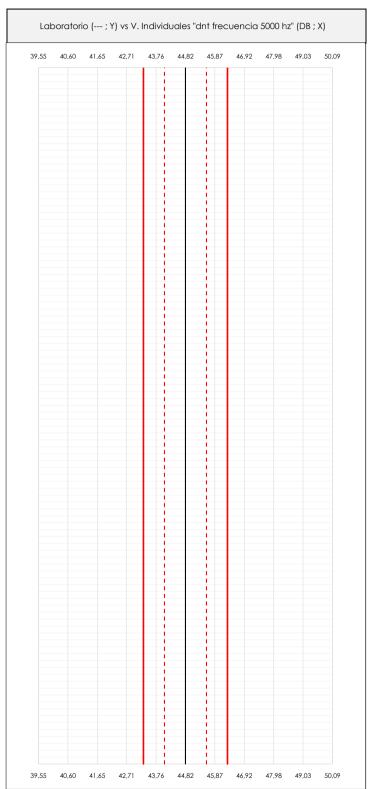
ANALISIS GRAFICO DE DISPERSION MEDIA (ANTES DE ANALISIS ESTADISTICO)

Dispersión de las medias aritméticas intra-laboratorios respecto de la media aritmética inter-laboratorios (44,82; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (45,57/44,06; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (46,32/43,31; líneas rojas de trazo continuo).

En el eje Y (adimensional) quedan reflejados los códigos de los laboratorios participantes y en el eje X (las unidades son las mismas que las del ensayo que se está analizando) las medias aritméticas intra-laboratorios representadas por punto de color negro.

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 5000 HZ (DB)

Análisis A. Estudio pre-estadístico

Apartado A.2. Gráficos de dispersión de valores individuales

ANALISIS GRAFICOS DE DISPERSION INDIVIDUAL (ANTES DE ANALISIS ESTADISTICO)

Dispersión de los valores individuales respecto de la media aritmética inter-laboratorios (44,82; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (45,57/44,06; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (46,32/43,31; líneas rojas de trazo continuo).

En el eje Y (adimensional) queda reflejado el código del laboratorio participante y en el eje X (las unidades son las de los resultados del ensayo que se está analizando) los resultados individuales: el primero $(X_{i,1})$ se representa con un cuadrado azul, el segundo $(X_{i,2})$ con un círculo verde, el tercero $(X_{i,3})$ con un triángulo grís y el cuarto $(X_{i,4})$ con un rombo amarillo

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 5000 HZ (DB)

Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

27 44,20 43,20 43,70 44,30 46,40 44,36 1,222 -1,02	Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{Li}	D _{i arit %}	Pasa A	Observaciones
49 44,20 43,90 44,80 45,10 46,90 44,98 1,173 0,36 ✓ 54 44,80 45,30 45,10 44,70 47,00 45,38 0,936 1,26 ✓ 64 44,70 45,00 45,20 45,30 47,40 45,52 1,076 1,57 ✓ 69 44,20 44,40 44,10 43,90 46,80 44,68 1,199 -0,30 ✓ 101 43,60 44,90 43,70 44,80 49,90 45,38 2,597 1,26 ✓ 117 44,90 43,80 44,10 47,40 45,02 1,417 0,45 ✓ 133 44,10 42,20 44,90 43,50 47,50 44,44 1,974 -0,84 ✓ 140 43,90 44,50 43,80 44,00 47,10 44,66 1,390 -0,35 ✓ 153 44,90 44,60 45,70 44,40 42,78 0,952 -4,54 ✓											
54 44,80 45,30 45,10 44,70 47,00 45,38 0,936 1,26 ✓ 64 44,70 45,00 45,20 45,30 47,40 45,52 1,076 1,57 ✓ 69 44,20 44,40 44,10 43,90 46,80 44,68 1,199 -0,30 ✓ 101 43,60 44,90 43,70 44,80 49,90 45,38 2,597 1,26 ✓ 117 44,90 44,90 43,80 44,10 47,40 45,02 1,417 0,45 ✓ 133 44,10 42,20 44,90 43,50 47,50 44,44 1,974 -0,84 ✓ 140 43,90 44,50 43,80 44,00 47,10 44,66 1,390 -0,35 ✓ 153 44,90 44,60 45,70 44,60 47,40 45,44 1,184 1,39 ✓ 165 41,90 42,40 42,50 42,70 44,40 42,78 0,952 -4,54 ✓				43,70							
64 44,70 45,00 45,20 45,30 47,40 45,52 1,076 1,57 ✓ 69 44,20 44,40 44,10 43,90 46,80 44,68 1,199 -0,30 ✓ 101 43,60 44,90 43,70 44,80 49,90 45,38 2,597 1,26 ✓ 117 44,90 44,90 43,80 44,10 47,40 45,02 1,417 0,45 ✓ 133 44,10 42,20 44,90 43,50 47,50 44,44 1,974 -0,84 ✓ 140 43,90 44,50 43,80 44,00 47,10 44,66 1,390 -0,35 ✓ 153 44,90 44,60 45,70 44,60 47,40 45,44 1,184 1,39 ✓ 165 41,90 42,40 42,50 42,70 44,40 42,78 0,952 -4,54 ✓											
69 44,20 44,40 44,10 43,90 46,80 44,68 1,199 -0,30 101 43,60 44,90 43,70 44,80 49,90 45,38 2,597 1,26 117 44,90 44,90 43,80 44,10 47,40 45,02 1,417 0,45 133 44,10 42,20 44,90 43,50 47,50 44,44 1,974 -0,84 140 43,90 44,50 43,80 44,00 47,10 44,66 1,390 -0,35 153 44,90 44,60 45,70 44,60 47,40 45,44 1,184 1,39 165 41,90 42,40 42,50 42,70 44,40 42,78 0,952 -4,54 1											
101 43,60 44,90 43,70 44,80 49,90 45,38 2,597 1,26 ✓ 117 44,90 44,90 43,80 44,10 47,40 45,02 1,417 0,45 ✓ 133 44,10 42,20 44,90 43,50 47,50 44,44 1,974 -0,84 ✓ 140 43,90 44,50 43,80 44,00 47,10 44,66 1,390 -0,35 ✓ 153 44,90 44,60 45,70 44,60 47,40 45,44 1,184 1,39 ✓ 165 41,90 42,40 42,50 42,70 44,40 42,78 0,952 -4,54 ✓											
117 44,90 44,90 43,80 44,10 47,40 45,02 1,417 0,45 ✓ 133 44,10 42,20 44,90 43,50 47,50 44,44 1,974 -0,84 ✓ 140 43,90 44,50 43,80 44,00 47,10 44,66 1,390 -0,35 ✓ 153 44,90 44,60 45,70 44,60 47,40 45,44 1,184 1,39 ✓ 165 41,90 42,40 42,50 42,70 44,40 42,78 0,952 -4,54 ✓											
133 44,10 42,20 44,90 43,50 47,50 44,44 1,974 -0,84 ✓ 140 43,90 44,50 43,80 44,00 47,10 44,66 1,390 -0,35 ✓ 153 44,90 44,60 45,70 44,60 47,40 45,44 1,184 1,39 ✓ 165 41,90 42,40 42,50 42,70 44,40 42,78 0,952 -4,54 ✓			•								
140 43,90 44,50 43,80 44,00 47,10 44,66 1,390 -0,35 ✓ 153 44,90 44,60 45,70 44,60 47,40 45,44 1,184 1,39 ✓ 165 41,90 42,40 42,50 42,70 44,40 42,78 0,952 -4,54 ✓											
153 44,90 44,60 45,70 44,60 47,40 45,44 1,184 1,39 √ 165 41,90 42,40 42,50 42,70 44,40 42,78 0,952 -4,54 √											
165 41,90 42,40 42,50 42,70 44,40 42,78 0,952 -4,54 √			•		•						
	174	44,00	44,40	43,40	44,00	40,00	43,10	0,774	0,77		

NOTAS:

[máximo]

[mínimo]

[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \, arit}$ " es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 5000 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

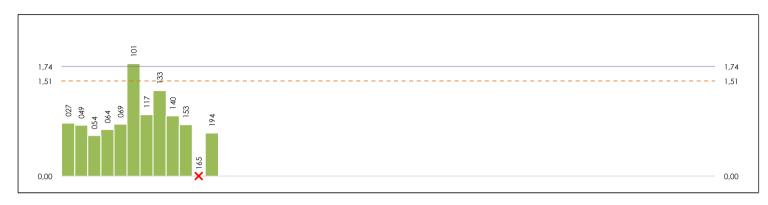
Apartado B.1. Gráfico de consistencia inter-laboratorios "h" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTER-LABORATORIOS

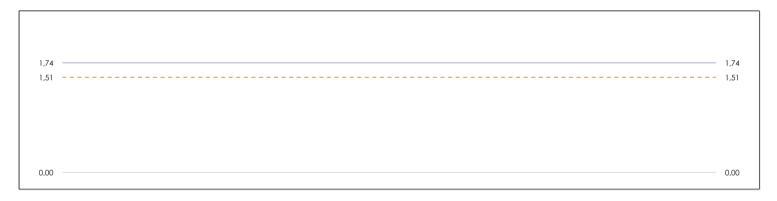
Análisis gráfico de consistencia inter-laboratorios "h" de Mandel. En él se representan las medias aritméticas inter-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes).

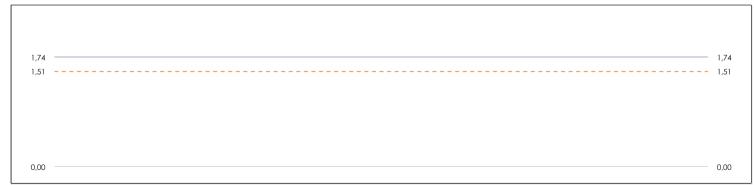
Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación


SACE

Subcomisión Administrativa para la Calidad de la Edificación


DNT FRECUENCIA 5000 HZ (DB)


Análisis B. Mandel, Cochran y Grubbs

Apartado B.2. Gráfico de consistencia intra-laboratorios "k" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTRA-LABORATORIOS

Análisis gráfico de consistencia intra-laboratorios "k" de Mandel. En él se representan las medias aritméticas intra-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes y el número de ensayos efectuados).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 5000 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i2}	X _{i 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{Li}	D _{i arit %}	h _i	k _i	Ci	G _{Sim Inf}	G _{Sim Sup}	G _{Dob Inf}	G _{Dob Sup}	Pasa B
27	44,200	43,200	43,700	44,300	46,400	44,360	1,222	-1,43	-1,55	0,84		1,547		0,4835		
49	44,20	43,900	44,800	45,100	46,900	44,980	1,173	-0,05	-0,05	0,81		1,017		0,1000		<u> </u>
54	44,80	45,300	45,100	44,700	47,000	45,380	0,936	0,84	0,91	0,64						<u>√</u>
64	44,70	45,000	45,200	45,300	47,400	45,520	1,076	1,15	1,25	0,74			1,249		0,6732	√
69	44,20	44,400	44,100	43,900	46,800	44,680	1,199	-0,72	-0,78	0,82						√
101	43,60	44,900	43,700	44,800	49,900	45,380	2,597	0,84	0,91	1,78**	0,289					√
117	44,90	44,900	43,800	44,100	47,400	45,020	1,417	0,04	0,04	0,97						✓
133	44,10	42,200	44,900	43,500	47,500	44,440	1,974	-1,25	-1,35	1,36				0,4835		√
140	43,90	44,500	43,800	44,000	47,100	44,660	1,390	-0,76	-0,82	0,95						✓
153	44,90	44,600	45,700	44,600	47,400	45,440	1,184	0,97	1,06	0,81					0,6732	√
165	41,90	42,400	42,500	42,700	44,400	42,780										Х
194	44,60	44,400	45,400	44,600	46,800	45,160	0,994	0,35	0,38	0,68						✓

NOTAS:

[aberrante]

[anómalo]

[máximo]

[mínimo]

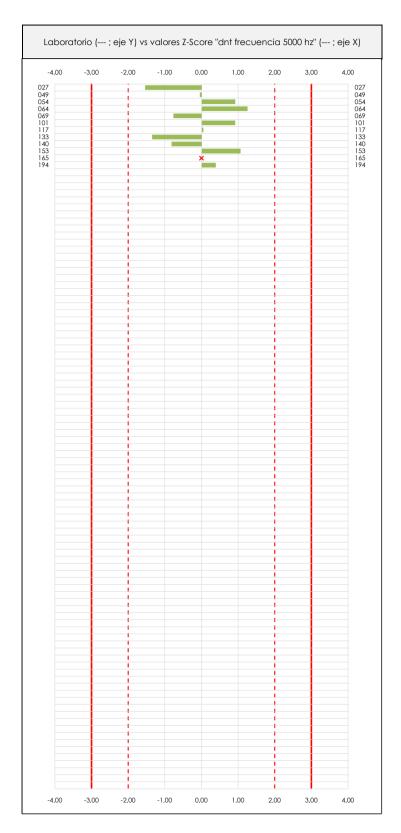
[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \text{ arit}}$ " es la media aritmética intralaboratorio calculada sin redondear.

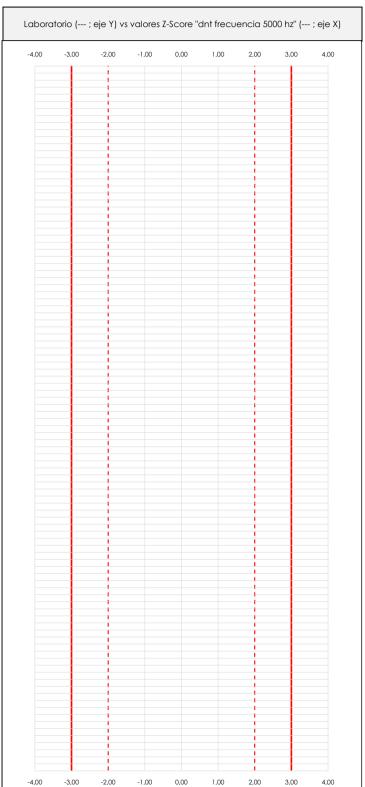
^{02 &}quot;S_Li" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ "h₁ y k," ,"C₁", "G_{Sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 5000 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.1. Análisis gráfico Altman Z-Score

ANALISIS GRAFICO Z-SCORE

Diagrama Z-Score para los resultados aportados por los laboratorios. Estos se considerarán satisfactorios (S) si el valor absoluto del Z-Score es menor o igual a 2 unidades, dudoso si está comprendido entre 2 y 3 unidades e insatisfactorio si es mayor o igual a 3 unidades.

Los resultados satisfactorios quedan reflejados entre las dos líneas rojas discontinuas, líneas de referencia en la evaluación Z-Score.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 5000 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{Li}	D _{i arit %}	Pasa A	Pasa B	Total	Causa	Iteración	Z-Score	Evaluación
27	44,20	43,20	43,70	44,30	46,40	44,36	1,222	-1,43	✓	√	√			-1,547	S
49	44,20	43,90	44,80	45,10	46,90	44,98	1,173	-0,05	√	√	√			-0,053	S
54	44,80	45,30	45,10	44,70	47,00	45,38	0,936	0,84	√	√	✓			0,912	S
64	44,70	45,00	45,20	45,30	47,40	45,52	1,076	1,15	√	√	√			1,249	S
69	44,20	44,40	44,10	43,90	46,80	44,68	1,199	-0,72	√	✓	✓			-0,776	S
101	43,60	44,90	43,70	44,80	49,90	45,38	2,597	0,84	✓	✓	✓			0,912	S
117	44,90	44,90	43,80	44,10	47,40	45,02	1,417	0,04	✓	✓	✓			0,044	S
133	44,10	42,20	44,90	43,50	47,50	44,44	1,974	-1,25	✓	✓	✓			-1,355	S
140	43,90	44,50	43,80	44,00	47,10	44,66	1,390	-0,76	✓	✓	✓			-0,824	S
153	44,90	44,60	45,70	44,60	47,40	45,44	1,184	0,97	✓	✓	√			1,056	S
165	41,90	42,40	42,50	42,70	44,40	42,78			✓	Х	X	AB	0		
194	44,60	44,40	45,40	44,60	46,80	45,16	0,994	0,35	✓	✓	✓			0,381	S

NOTAS:

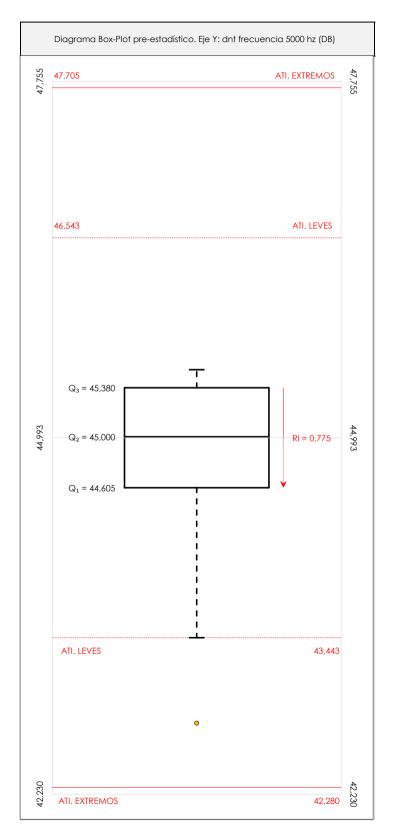
[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \text{ arit}}$ " es la media aritmética intralaboratorio calculada sin redondear.

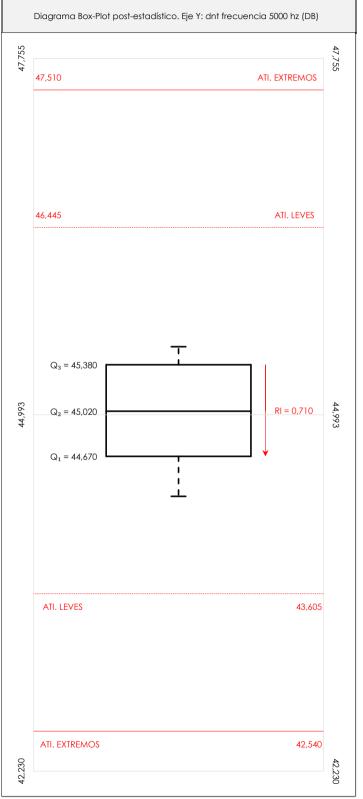
^{02 &}quot;S_Li" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

 $^{^{03}}$ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leqslant 2] [Dudoso (D) - si 2 < | ZS | \leqslant 3] [Insatisfactorio (I) - si | ZS | > 3].

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

CICE Comité de infraestructuras para la Calidad de la Edificación




SACE
Subcomisión Administrativa para la
Calidad de la Edificación

DNT FRECUENCIA 5000 HZ (DB)

Análisis D. Estudios post-estadisticos

Apartado D.3. Diagramas Box-Plot o de Caja y Bigotes

ANALISIS GRAFICO DE CAJA Y BIGOTES (ANTES Y DESPUES DE ANALISIS ESTADISTICO)

Diagramas de caja y bigotes (Box Plot) de las medias aritméticas de los resultados aportados por los laboratorios antes (diagrama de la izquierda. Este incluye valores aberrantes y anómalos) y después (diagrama de la derecha. No incluye los valores descartados a lo largo del estudio) de análisis estadístico.

En ambos se han representado: el primer cuartil (Q_1 ; 25% de los datos), el segundo cuartil o la mediana (Q_2 ; 50% de los datos), el tercer cuartil (Q_3 ; 75% de los datos), el rango intercuartílico (RI; cuartil tres menos cuartil uno) y los límites de valores atípicos leves (f_3 y f_1 para el máximo y mínimo respectivamente; líneas discontinuas de color rojo) y extremos (f_3 * y f_1 * para el máximo y mínimo respectivamente; líneas continuas de color rojo).

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 5000 HZ (DB)

Conclusiones

Determinación de la repetibilidad y reproducibilidad

El análisis estadístico EILA20 para el ensayo "DNT FRECUENCIA 5000 HZ", ha contado con la participación de un total de 12 laboratorios, debiendo haber aportado cada uno de ellos, un total de 5 determinaciones individuales además de su valor medio.

Tras analizar los resultados podemos concluir que, para cumplir con los criterios estadísticos establecidos en el informe, un total de 1 laboratorios han sido apartados de la evaluación final: O en el Análisis Pre-Estadístico (por no cumplir el criterio de validación y/o el procedimiento de ejecución recogido en la norma de ensayo) y 1 en el Análisis Estadístico (por resultar anómalos o aberrantes en las técnicas gráficas de consistencia de Mandel y en los ensayos de detección de resultados numéricos de Cochran y Grubbs), al cabo de 2 iteraciones.

De cada uno de los análisis (pre-estadístico y estadístico), se obtienen las siguientes tablas:

TIPO DE ANALISIS			PRE-ES	TADISTIC	0				ESTA	DISTICO		
Variables	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$
Valor Máximo (max ; %)	44,90	45,30	45,70	45,30	49,90	45,52	44,90	45,30	45,70	45,30	49,90	45,52
Valor Mínimo (min ; %)	41,90	42,20	42,50	42,70	44,40	42,78	43,60	42,20	43,70	43,50	46,40	44,36
Valor Promedio (M; %)	44,17	44,14	44,39	44,30	47,08	44,82	44,37	44,30	44,56	44,45	47,33	45,00
Desviación Típica (SDL ;)	0,82	1,02	0,94	0,72	1,22	0,75	0,43	0,90	0,76	0,54	0,92	0,41
Coef. Variación (CV ;)	0,02	0,02	0,02	0,02	0,03	0,02	0,01	0,02	0,02	0,01	0,02	0,01
VARIABLES	S_r^2	r		$S_L^{\ 2}$	S_R^{2}	R	S_r^2	r		S_L^2	S_R^{2}	R
Valor Calculado	2,019	3,93	38 (),164	2,183	4,095	2,120	4,03	36 -0	,252	1,868	3,788
Valor Referencia												

Asimismo, acompañando a éstas tablas y dependiendo del análisis que se esté llevando a cabo, se introducen los indicadores estadísticos "h y k" de Mandel y los valores críticos "C" de Cochran y "G_{Sim} y G_{Dob}" de Grubbs, todos ellos adimensionales, obtenidos de las tablas 4, 5, 6 y 7 de la norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios y del número de ensayos efectuados por cada uno de ellos:

TIPO DE ANALISIS		PRI	E-ESTADISTI	со			E	STADISTIC)	
VARIABLES	h	k	С	G_{sim}	G_Dob	h	k	С	G_{sim}	G_{Dob}
Nivel de Significación 1%	2,22	1,74	0,343	2,564	0,1448	2,22	1,74	0,366	2,564	0,1448
Nivel de Significación 5%	1,82	1,51	0,288	2,355	0,2213	1,82	1,51	0,308	2,355	0,2213

Con los resultados de los laboratorios, que tras los dos análisis estadísticos son evaluados por Z-Score, se han obtenido: 11 resultados satisfactorios, 0 resultados dudosos y 0 resultados insatisfactorios.

Respecto a los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística recogida en la ISO 17025, sobre las dispersiones de los resultados individuales y su media, en forma de varianzas o desviaciones estándar, también conocida como ANOVA (siglas de analisys of varience).

Sabiendo que una varianza es la suma de cuadrados dividida por un número, que se llama grados de libertad, que depende del número de participantes menos 1, se puede decir que la imprecisión del ensayo se descompone en dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad (variabilidad intralaboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad debida al cambio de laboratorio).

Las condiciones de repetibilidad de este ensayo son: mismo laborante, mismo laboratorio y mismo equipo de medición utilizado dentro de un período de tiempo corto. Por ende, las condiciones de reproducibilidad para la misma muestra y ensayo, cambian en: el laborante, el laboratorio, el equipo y las condiciones de uso y tiempo.

Comité de infraestructuras para la Calidad de la Edificación

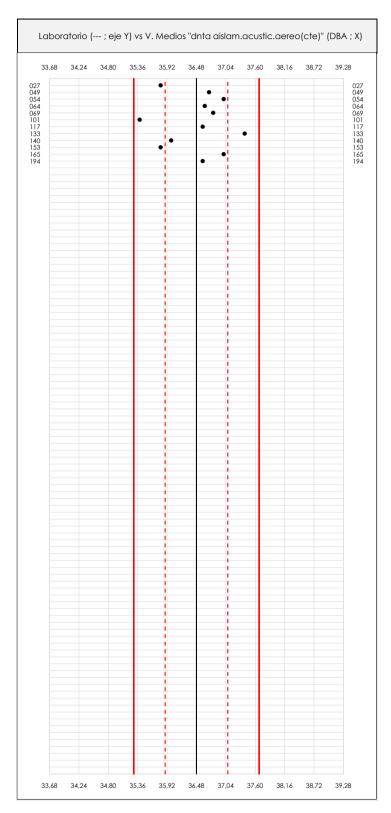
SACE

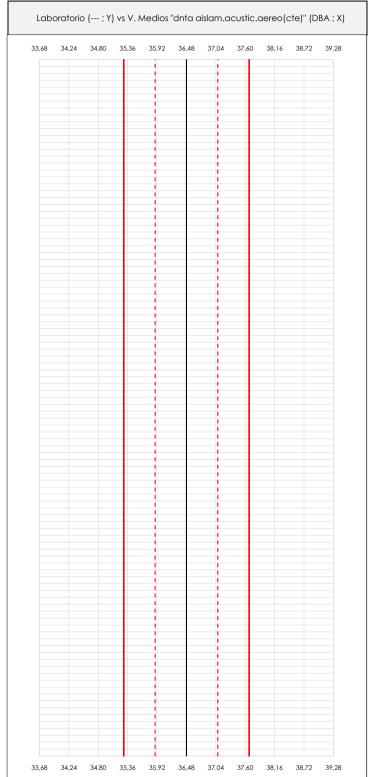
Subcomisión Administrativa para la Calidad de la Edificación

ANÁLISIS ESTADISTICO DE ACÚSTICA

DNTA AISLAM.ACUSTIC.AEREO(CTE)

Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNTA AISLAM.ACUSTIC.AEREO(CTE) (DBA) Análisis A. Estudio pre-estadístico

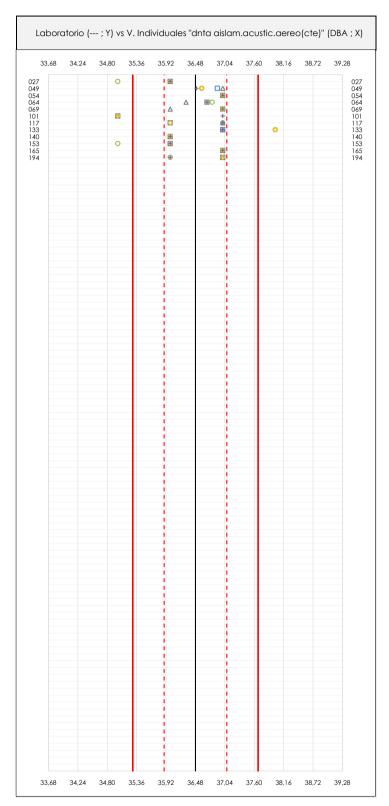
Apartado A.1. Gráficos de dispersión de valores medios

ANALISIS GRAFICO DE DISPERSION MEDIA (ANTES DE ANALISIS ESTADISTICO)

Dispersión de las medias aritméticas intra-laboratorios respecto de la media aritmética inter-laboratorios (36,48; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (37,08/35,88; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (37,67/35,29; líneas rojas de trazo continuo).

En el eje Y (adimensional) quedan reflejados los códigos de los laboratorios participantes y en el eje X (las unidades son las mismas que las del ensayo que se está analizando) las medias aritméticas intra-laboratorios representadas por punto de color negro.

Comité de infraestructuras para la Calidad de la Edificación


SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNTA AISLAM.ACUSTIC.AEREO(CTE) (DBA)

Análisis A. Estudio pre-estadístico

Apartado A.2. Gráficos de dispersión de valores individuales

ANALISIS GRAFICOS DE DISPERSION INDIVIDUAL (ANTES DE ANALISIS ESTADISTICO)

Dispersión de los valores individuales respecto de la media aritmética inter-laboratorios (36,48; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (37,08/35,88; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (37,67/35,29; líneas rojas de trazo continuo).

En el eje Y (adimensional) queda reflejado el código del laboratorio participante y en el eje X (las unidades son las de los resultados del ensayo que se está analizando) los resultados individuales: el primero (X_{i 1}) se representa con un cuadrado azul, el segundo (X_{i 2}) con un círculo verde, el tercero (X_{i 3}) con un triángulo grís y el cuarto (X_{i 4}) con un rombo amarillo

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNTA AISLAM.ACUSTIC.AEREO(CTE) (DBA)

Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	Х _{і 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{Li}	D _{i arit %}	Pasa A	Observaciones
27	36,00	35,00	36,00	36,00	36,00	35,80	0,447	-1,86	✓	
49	36,90	36,60	37,00	36,60	36,50	36,72	0,217	0,66	√	
54	37,00	37,00	37,00	37,00	37,00	37,00	0,000	1,43	√	
64	36,70 37,00	36,80 37,00	36,30 36,00	36,70 37,00	36,70 37,00	36,64 36,80	0,195 0,447	0,44	√	
101	35,00	35,00	35,00	35,00	37,00	35,40	0,894	-2,96	→	
117	36,00	37,00	37,00	36,00	37,00	36,60	0,548	0,33	→	
133	37,00	38,00	37,00	38,00	37,00	37,40	0,548	2,52	√	
140	36,00	36,00	36,00	36,00	36,00	36,00	0,000	-1,32	√	
153	36,00	35,00	36,00	36,00	36,00	35,80	0,447	-1,86	✓	
165	37,00	37,00	37,00	37,00	37,00	37,00	0,000	1,43	✓	
194	37,00	36,00	37,00	37,00	36,00	36,60	0,548	0,33	✓	

NOTAS:

[máximo]

[mínimo]

[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \, arit}$ " es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación

Calidad de la Edificación

DNTA AISLAM.ACUSTIC.AEREO(CTE) (DBA)

Análisis B. Mandel, Cochran y Grubbs

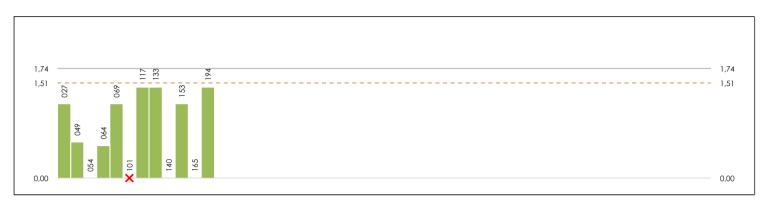
Apartado B.1. Gráfico de consistencia inter-laboratorios "h" de Mandel

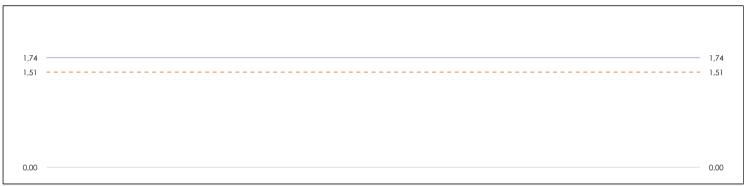
ANALISIS GRAFICO DE CONSISTENCIA INTER-LABORATORIOS

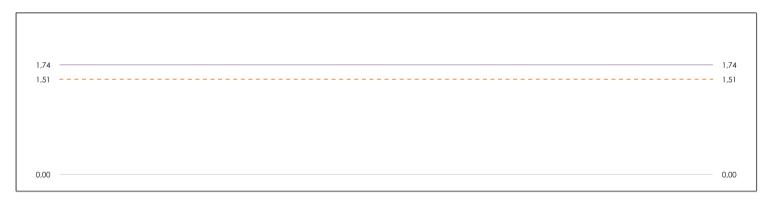
Análisis gráfico de consistencia inter-laboratorios "h" de Mandel. En él se representan las medias aritméticas inter-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación






DNTA AISLAM.ACUSTIC.AEREO(CTE) (DBA)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.2. Gráfico de consistencia intra-laboratorios "k" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTRA-LABORATORIOS

Análisis gráfico de consistencia intra-laboratorios "k" de Mandel. En él se representan las medias aritméticas intra-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes y el número de ensayos efectuados).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNTA AISLAM.ACUSTIC.AEREO(CTE) (DBA)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i2}	Х _{і 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	h _i	k _i	Ci	G _{Sim Inf}	G _{Sim Sup}	G _{Dob Inf}	G _{Dob Sup}	Pasa B
27	36,000	35,000	36,000	36,000	36,000	35,800	0,447	-2,13	-1,51	1,18		1,511		0,4416		
49	36,90	36,600	37,000	36,600	36,500	36,720	0,217	0,39	0,28	0,57						√
54	37,00	37,000	37,000	37,000	37,000	37,000	0,000	1,15	0,82	0,00					0,6133	√
64	36,70	36,800	36,300	36,700	36,700	36,640	0,195	0,17	0,12	0,51						√
69	37,00	37,000	36,000	37,000	37,000	36,800	0,447	0,61	0,43	1,18						√
101	35,00	35,000	35,000	35,000	37,000	35,400										X
117	36,00	37,000	37,000	36,000	37,000	36,600	0,548	0,06	0,04	1,44						✓
133	37,00	38,000	37,000	38,000	37,000	37,400	0,548	2,25	1,60	1,44			1,596		0,6133	✓
140	36,00	36,000	36,000	36,000	36,000	36,000	0,000	-1,58	-1,12	0,00						√
153	36,00	35,000	36,000	36,000	36,000	35,800	0,447	-2,13	-1,51	1,18		1,511		0,4416		√
165	37,00	37,000	37,000	37,000	37,000	37,000	0,000	1,15	0,82	0,00					0,6133	✓
194	37,00	36,000	37,000	37,000	36,000	36,600	0,548	0,06	0,04	1,44						✓
_																

NOTAS:

[aberrante]

[anómalo]

[máximo]

[mínimo]

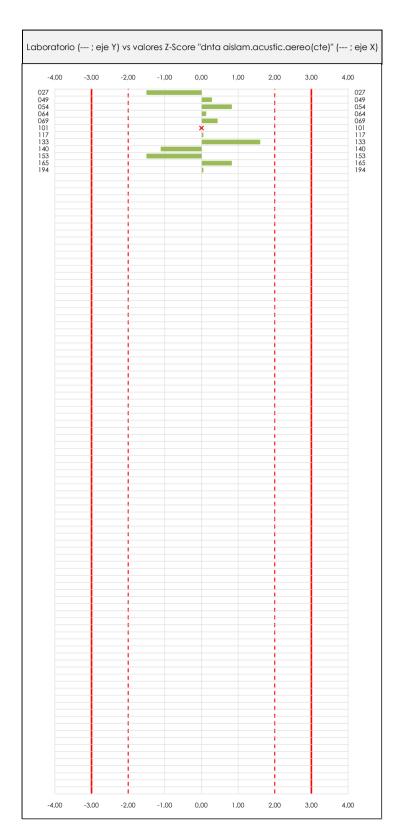
[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \text{ arit}}$ " es la media aritmética intralaboratorio calculada sin redondear.

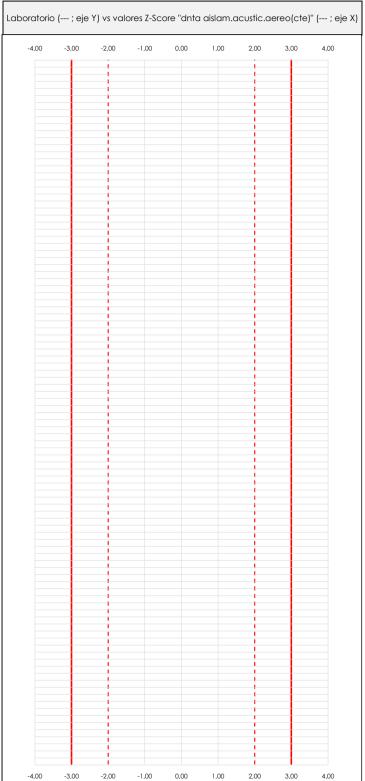
^{02 &}quot;S_Li" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ "h₁ y k," ,"C₁", "G_{Sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNTA AISLAM.ACUSTIC.AEREO(CTE) (DBA)

Análisis C. Evaluación Z-Score

Apartado C.1. Análisis gráfico Altman Z-Score

ANALISIS GRAFICO Z-SCORE

Diagrama Z-Score para los resultados aportados por los laboratorios. Estos se considerarán satisfactorios (S) si el valor absoluto del Z-Score es menor o igual a 2 unidades, dudoso si está comprendido entre 2 y 3 unidades e insatisfactorio si es mayor o igual a 3 unidades.

Los resultados satisfactorios quedan reflejados entre las dos líneas rojas discontinuas, líneas de referencia en la evaluación Z-Score.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNTA AISLAM.ACUSTIC.AEREO(CTE) (DBA)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

Lab												_			,
	X _{i 1}	X _{i 2}	Х _{і 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{Li}	D _{i arit %}	Pasa A	Pasa B	Total	Causa	Iteracion	Z-Score	Evaluación
27	36,00	35,00	36,00	36,00	36,00	35,80	0,447	-2,13	√	√	√			-1,511	S
49	36,90	36,60	37,00	36,60	36,50	36,72	0,217	0,39	<u> </u>	<u> </u>	<u> </u>			0,275	S
54	37,00	37,00	37,00	37,00	37,00	37,00	0,000	1,15	<u> </u>	<u> </u>	<u>√</u>			0,819	S
64	36,70	36,80	36,30	36,70	36,70	36,64	0,195	0,17	√	√	√			0,120	S
69	37,00	37,00	36,00	37,00	37,00	36,80	0,447	0,61	√	√	√			0,431	S
101	35,00	35,00	35,00	35,00	37,00	35,40			√	Х	X	AN	0		
117	36,00	37,00	37,00	36,00	37,00	36,60	0,548	0,06	✓	✓	✓			0,042	S
133	37,00	38,00	37,00	38,00	37,00	37,40	0,548	2,25	✓	✓	✓			1,596	S
140	36,00	36,00	36,00	36,00	36,00	36,00	0,000	-1,58	✓	✓	✓			-1,123	S
153	36,00	35,00	36,00	36,00	36,00	35,80	0,447	-2,13	✓	✓	✓			-1,511	S
165	37,00	37,00	37,00	37,00	37,00	37,00	0,000	1,15	✓	✓	✓			0,819	S
194	37,00	36,00	37,00	37,00	36,00	36,60	0,548	0,06	✓	✓	✓			0,042	S

NOTAS:

[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \text{ arit}}$ " es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_Li" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

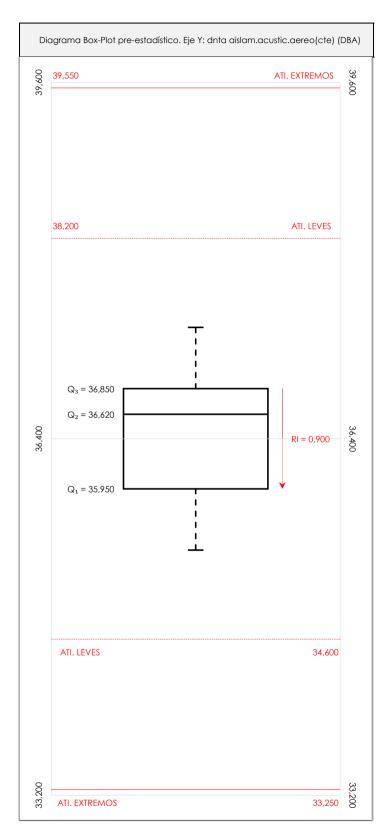
 $^{^{03}}$ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leqslant 2] [Dudoso (D) - si 2 < | ZS | \leqslant 3] [Insatisfactorio (I) - si | ZS | > 3].

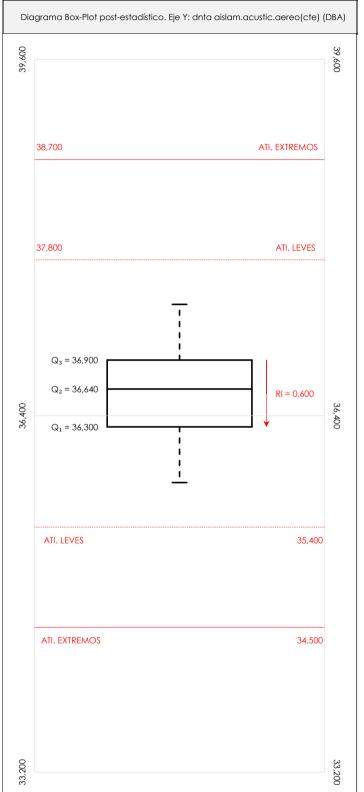
 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

CICE Comité de infraestructuras para la Calidad de la Edificación

SACE

Calidad de la Edificación





DNTA AISLAM.ACUSTIC.AEREO(CTE) (DBA)

Análisis D. Estudios post-estadisticos

Apartado D.3. Diagramas Box-Plot o de Caja y Bigotes

ANALISIS GRAFICO DE CAJA Y BIGOTES (ANTES Y DESPUES DE ANALISIS ESTADISTICO)

Diagramas de caja y bigotes (Box Plot) de las medias aritméticas de los resultados aportados por los laboratorios antes (diagrama de la izquierda. Este incluye valores $aberrantes \ y \ anómalos) \ y \ \underline{despu\'es} \ (diagrama \ de \ la \ derecha. \ No incluye \ los \ valores \ descartados \ a \ lo \ largo \ del \ estudio) \ de \ análisis \ estadístico.$

En ambos se han representado: el primer cuartil (Q1; 25% de los datos), el segundo cuartil o la mediana (Q2; 50% de los datos), el tercer cuartil (Q3; 75% d intercuartílico (RI; cuartil tres menos cuartil uno) y los límites de valores atípicos leves (f3 y f1 para el máximo y mínimo respectivamente; líneas discontinuas de color rojo) y extremos (f_3^+ y f_1^+ para el máximo y mínimo respectivamente ; líneas continuas de color rojo).

CICE Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNTA AISLAM.ACUSTIC.AEREO(CTE) (DBA)

Conclusiones

Determinación de la repetibilidad y reproducibilidad

El análisis estadístico ElLA20 para el ensayo "DNTA AISLAM.ACUSTIC.AEREO(CTE)", ha contado con la participación de un total de 12 laboratorios, debiendo haber aportado cada uno de ellos, un total de 5 determinaciones individuales además de su valor medio.

Tras analizar los resultados podemos concluir que, para cumplir con los criterios estadísticos establecidos en el informe, un total de 1 laboratorios han sido apartados de la evaluación final: 0 en el Análisis Pre-Estadístico (por no cumplir el criterio de validación y/o el procedimiento de ejecución recogido en la norma de ensayo) y 1 en el Análisis Estadístico (por resultar anómalos o aberrantes en las técnicas gráficas de consistencia de Mandel y en los ensayos de detección de resultados numéricos de Cochran y Grubbs), al cabo de 2 iteraciones.

De cada uno de los análisis (pre-estadístico y estadístico), se obtienen las siguientes tablas:

TIPO DE ANALISIS			PRE-ES	TADISTIC	0		ESTADISTICO						
Variables	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$	
Valor Máximo (max ; %)	37,00	38,00	37,00	38,00	37,00	37,40	37,00	38,00	37,00	38,00	37,00	37,40	
Valor Mínimo (min ; %)	35,00	35,00	35,00	35,00	36,00	35,40	36,00	35,00	36,00	36,00	36,00	35,80	
Valor Promedio (M; %)	36,47	36,37	36,44	36,53	36,60	36,48	36,60	36,49	36,57	36,66	36,56	36,58	
Desviación Típica (SDL ;)	0,65	0,97	0,66	0,77	0,47	0,60	0,48	0,91	0,50	0,63	0,47	0,51	
Coef. Variación (CV ;)	0,02	0,03	0,02	0,02	0,01	0,02	0,01	0,03	0,01	0,02	0,01	0,01	
VARIABLES	S_r^2	r		$S_L^{\ 2}$	$S_R^{\ 2}$	R	S_r^2	r		S_L^2	S_R^{-2}	R	
Valor Calculado	0,199	1,23	36 (0,317	0,516	1,990	0,144	1,05	52 0	,236	0,380	1,709	
Valor Referencia													

Asimismo, acompañando a éstas tablas y dependiendo del análisis que se esté llevando a cabo, se introducen los indicadores estadísticos "h y k" de Mandel y los valores críticos "C" de Cochran y " G_{Sim} y G_{Dob} " de Grubbs, todos ellos adimensionales, obtenidos de las tablas 4, 5, 6 y 7 de la norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios y del número de ensayos efectuados por cada uno de ellos:

TIPO DE ANALISIS		PRI	-ESTADISTI	со		ESTADISTICO						
VARIABLES	h	k	С	G_{sim}	G_{Dob}	h	k	С	G_{sim}	G_{Dob}		
Nivel de Significación 1%	2,22	1,74	0,343	2,564	0,1448	2,22	1,74	0,366	2,564	0,1448		
Nivel de Significación 5%	1,82	1,51	0,288	2,355	0,2213	1,82	1,51	0,308	2,355	0,2213		

Con los resultados de los laboratorios, que tras los dos análisis estadísticos son evaluados por Z-Score, se han obtenido: 11 resultados satisfactorios, 0 resultados dudosos y 0 resultados insatisfactorios.

Respecto a los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística recogida en la ISO 17025, sobre las dispersiones de los resultados individuales y su media, en forma de varianzas o desviaciones estándar, también conocida como ANOVA (siglas de analisys of varience).

Sabiendo que una varianza es la suma de cuadrados dividida por un número, que se llama grados de libertad, que depende del número de participantes menos 1, se puede decir que la imprecisión del ensayo se descompone en dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad (variabilidad intralaboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad debida al cambio de laboratorio).

Las condiciones de repetibilidad de este ensayo son: mismo laborante, mismo laboratorio y mismo equipo de medición utilizado dentro de un período de tiempo corto. Por ende, las condiciones de reproducibilidad para la misma muestra y ensayo, cambian en: el laboratorio, el equipo y las condiciones de uso y tiempo.

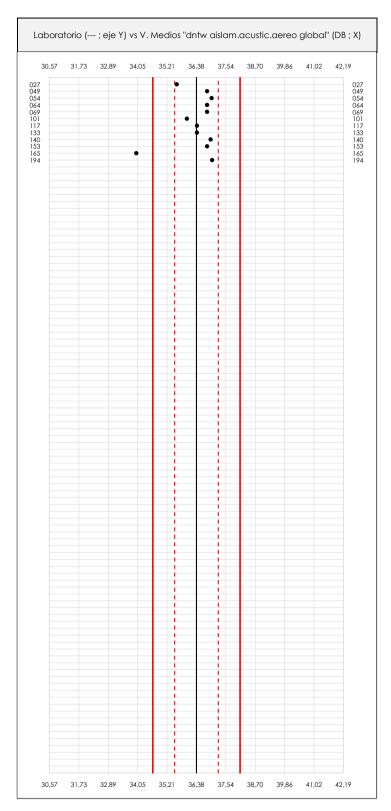
Comité de infraestructuras para la Calidad de la Edificación

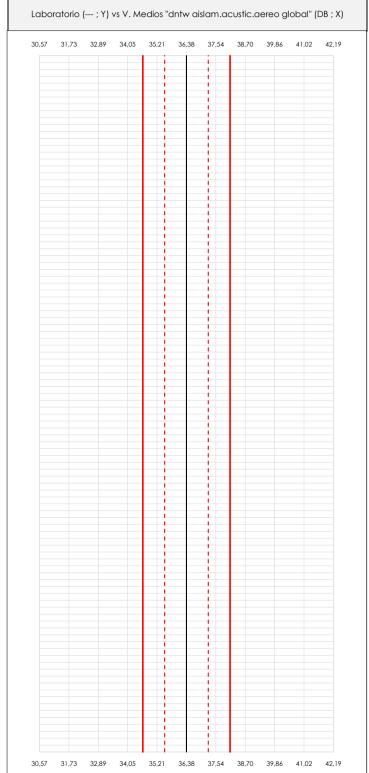
Subcomisión Administrativa para la Calidad de la Edificación

ANÁLISIS ESTADISTICO DE ACÚSTICA

DNTW AISLAM.ACUSTIC.AEREO GLOBAL

Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNTW AISLAM.ACUSTIC.AEREO GLOBAL (DB) Análisis A. Estudio pre-estadístico

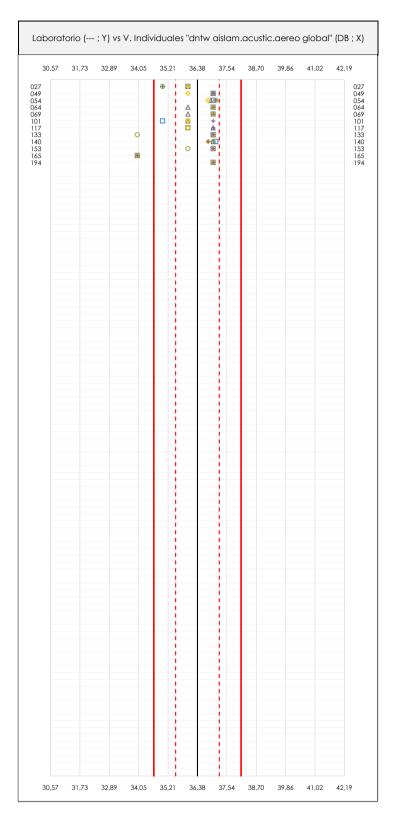
Apartado A.1. Gráficos de dispersión de valores medios

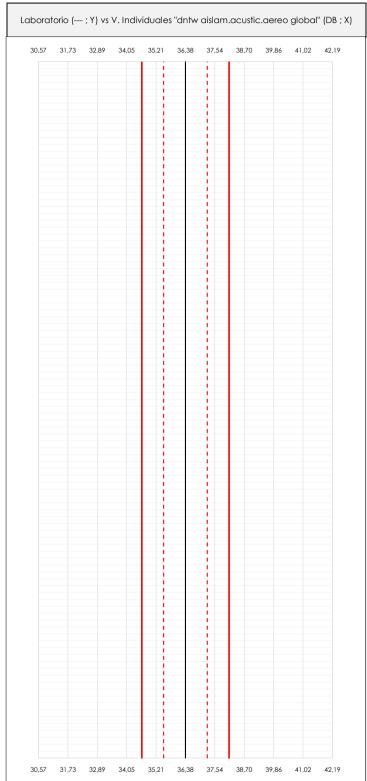
ANALISIS GRAFICO DE DISPERSION MEDIA (ANTES DE ANALISIS ESTADISTICO)

Dispersión de las medias aritméticas intra-laboratorios respecto de la media aritmética inter-laboratorios (36,38; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (37,24/35,51; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (38,10/34,65; líneas rojas de trazo continuo).

En el eje Y (adimensional) quedan reflejados los códigos de los laboratorios participantes y en el eje X (las unidades son las mismas que las del ensayo que se está analizando) las medias aritméticas intra-laboratorios representadas por punto de color negro.

Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNTW AISLAM.ACUSTIC.AEREO GLOBAL (DB) Análisis A. Estudio pre-estadístico

Apartado A.2. Gráficos de dispersión de valores individuales

ANALISIS GRAFICOS DE DISPERSION INDIVIDUAL (ANTES DE ANALISIS ESTADISTICO)

Dispersión de los valores individuales respecto de la media aritmética inter-laboratorios (36,38; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (37,24/35,51; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (38,10/34,65; líneas rojas de trazo continuo).

En el eje Y (adimensional) queda reflejado el código del laboratorio participante y en el eje X (las unidades son las de los resultados del ensayo que se está analizando) los resultados individuales: el primero (X_{i 1}) se representa con un cuadrado azul, el segundo (X_{i 2}) con un círculo verde, el tercero (X_{i 3}) con un triángulo grís y el cuarto (X_{i 4}) con un rombo amarillo

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNTW AISLAM.ACUSTIC.AEREO GLOBAL (DB)

Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	Pasa A	Observaciones
27	36,00	35,00	36,00	36,00	35,00	35,60	0,548	-2,14	✓	
49	37,00	37,00	37,00	36,00	37,00	36,80	0,447	1,16	√	
54	37,00	37,10	36,90	36,80	37,10	36,98	0,130	1,66	√	
64	37,00	37,00	36,00	37,00	37,00	36,80	0,447	1,16	<u> </u>	
69	37,00	37,00	36,00	37,00	37,00	36,80	0,447	1,16	√	
101	35,00 36,00	36,00 36,00	36,00	36,00	37,00	36,00	0,707	-1,04	√	
133	37,00	34,00	37,00 37,00	37,00	37,00 37,00	36,40 36,40	1,342	0,06	→	
140	37,10	37,00	37,00	36,80	36,80	36,94	0,134	1,55		
153	37,00	36,00	37,00	37,00	37,00	36,80	0,447	1,16		
165	34,00	34,00	34,00	34,00	34,00	34,00	0,000	-6,53	<u> </u>	
194	37,00	37,00	37,00	37,00	37,00	37,00	0,000	1,71		
.,,	07,00	0,,00	0,,00	0,,00	0,,00	0,,00	0,000	.,, .		

NOTAS:

[máximo]

[mínimo]

[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \, arit}$ " es la media aritmética intralaboratorio calculada sin redondear.

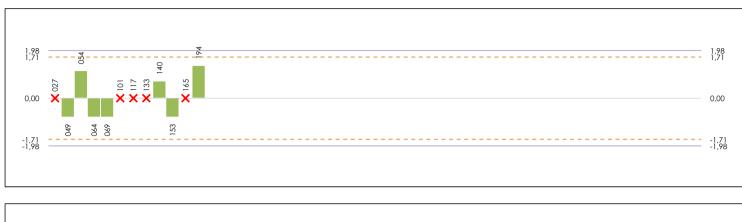
^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación

Calidad de la Edificación



DNTW AISLAM.ACUSTIC.AEREO GLOBAL (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.1. Gráfico de consistencia inter-laboratorios "h" de Mandel

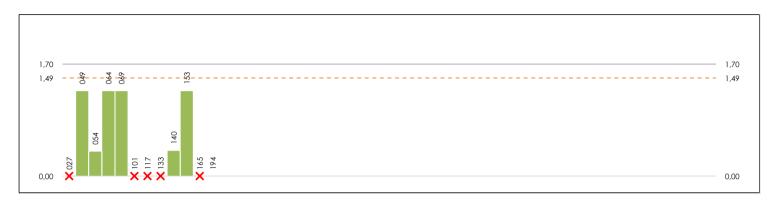
ANALISIS GRAFICO DE CONSISTENCIA INTER-LABORATORIOS

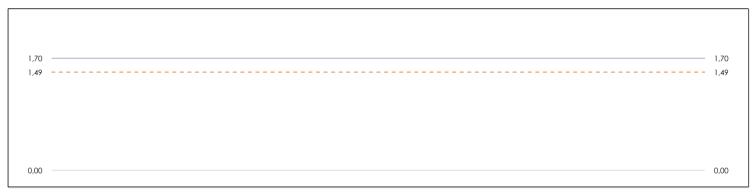
Análisis gráfico de consistencia inter-laboratorios "h" de Mandel. En él se representan las medias aritméticas inter-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes).

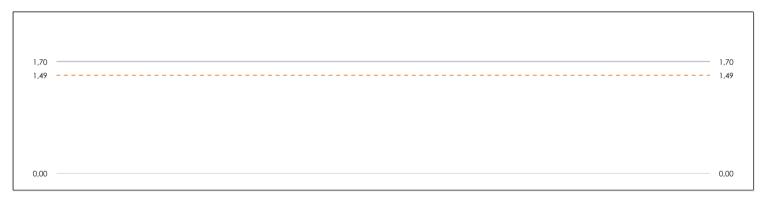
Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación

Calidad de la Edificación






DNTW AISLAM.ACUSTIC.AEREO GLOBAL (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.2. Gráfico de consistencia intra-laboratorios "k" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTRA-LABORATORIOS

Análisis gráfico de consistencia intra-laboratorios "k" de Mandel. En él se representan las medias aritméticas intra-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes y el número de ensayos efectuados).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNTW AISLAM.ACUSTIC.AEREO GLOBAL (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i2}	X _{i 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{Li}	D _{i arit %}	h _i	k _i	Ci	G _{Sim Inf}	G _{Sim Sup}	G _{Dob Inf}	G _{Dob Sup}	Pasa B
27	36,000	35,000	36,000	36,000	35,000	35,600										X
49	37,00	37,000	37,000	36,000	37,000	36,800	0,447	-0,20	-0,79	1,29		0,788		0,7105		
54	37,00	37,100	36,900	36,800	37,100	36,980	0,130	0,29	1,12	0,38		0,700		0,7100	0,2938	
64	37,00	37,000	36,000	37,000	37,000	36,800	0,447	-0,20	-0,79	1,29		0,788		0,7105	0,2700	<u> </u>
69	37,00	37,000	36,000	37,000	37,000	36,800	0,447	-0,20	-0,79	1,29		0,788		0,7105		<u> </u>
101	35,00	36,000	36,000	36,000	37,000	36,000										X
117	36,00	36,000	37,000	36,000	37,000	36,400										X
133	37,00	34,000	37,000	37,000	37,000	36,400										X
140	37,10	37,000	37,000	36,800	36,800	36,940	0,134	0,18	0,70	0,39						√
153	37,00	36,000	37,000	37,000	37,000	36,800	0,447	-0,20	-0,79	1,29		0,788		0,7105		√
165	34,00	34,000	34,000	34,000	34,000	34,000										Х
194	37,00	37,000	37,000	37,000	37,000	37,000	0,000	0,34	1,33	0,00			1,333		0,2938	√

NOTAS:

[aberrante]

[anómalo]

[máximo]

[mínimo]

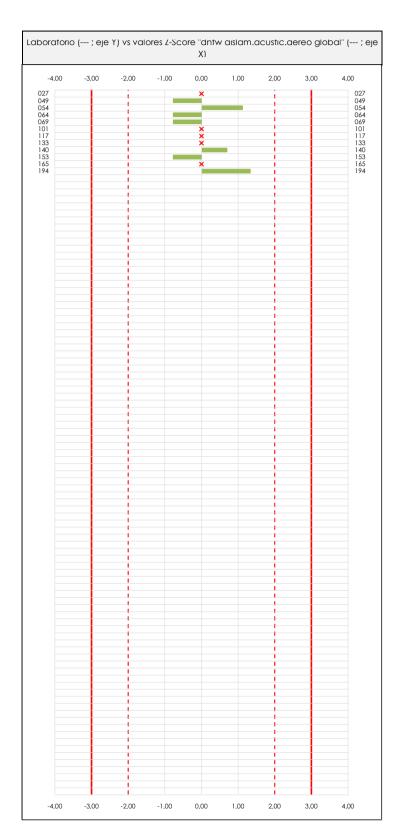
[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \text{ arit}}$ " es la media aritmética intralaboratorio calculada sin redondear.

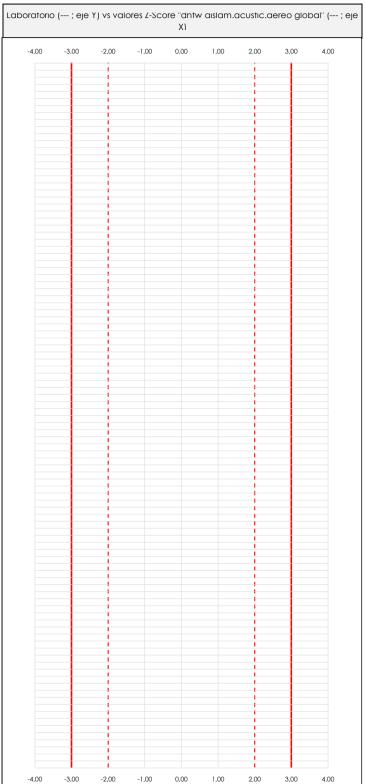
^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

^{03 &}quot;h₁ y k," ,"C₁", "G_{Sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNTW AISLAM.ACUSTIC.AEREO GLOBAL (DB) Análisis C. Evaluación Z-Score

Apartado C.1. Análisis gráfico Altman Z-Score

ANALISIS GRAFICO Z-SCORE

Diagrama Z-Score para los resultados aportados por los laboratorios. Estos se considerarán satisfactorios (S) si el valor absoluto del Z-Score es menor o igual a 2 unidades, dudoso si está comprendido entre 2 y 3 unidades e insatisfactorio si es mayor o igual a 3 unidades.

Los resultados satisfactorios quedan reflejados entre las dos líneas rojas discontinuas, líneas de referencia en la evaluación Z-Score.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNTW AISLAM.ACUSTIC.AEREO GLOBAL (DB)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

Lab	X _{i 1}	X _{i2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S_{Li}	D _{i arit %}	Pasa A	Pasa B	Total	Causa	Iteración	Z-Score	Evaluación
27	36,00	35,00	36,00	36,00	35,00	35,60			✓	Х	X	AN	1		
49	37,00	37,00	37,00	36,00	37,00	36,80	0,447	-0,20	✓	✓	✓			-0,788	S
54	37,00	37,10	36,90	36,80	37,10	36,98	0,130	0,29	✓	✓	✓			1,121	S
64	37,00	37,00	36,00	37,00	37,00	36,80	0,447	-0,20	✓	✓	✓			-0,788	S
69	37,00	37,00	36,00	37,00	37,00	36,80	0,447	-0,20	✓	✓	✓			-0,788	S
101	35,00	36,00	36,00	36,00	37,00	36,00			√	X	X	AN	1		
117	36,00	36,00	37,00	36,00	37,00	36,40			√	X	Х	AN	2		
133	37,00	34,00	37,00	37,00	37,00	36,40			√	X	Х	AB	0		
140	37,10	37,00	37,00	36,80	36,80	36,94	0,134	0,18	✓	✓	✓			0,697	S
153	37,00	36,00	37,00	37,00	37,00	36,80	0,447	-0,20	✓	✓	✓			-0,788	S
165	34,00	34,00	34,00	34,00	34,00	34,00			✓	X	Х	AB	0		
194	37,00	37,00	37,00	37,00	37,00	37,00	0,000	0,34	✓	✓	✓			1,333	S

NOTAS:

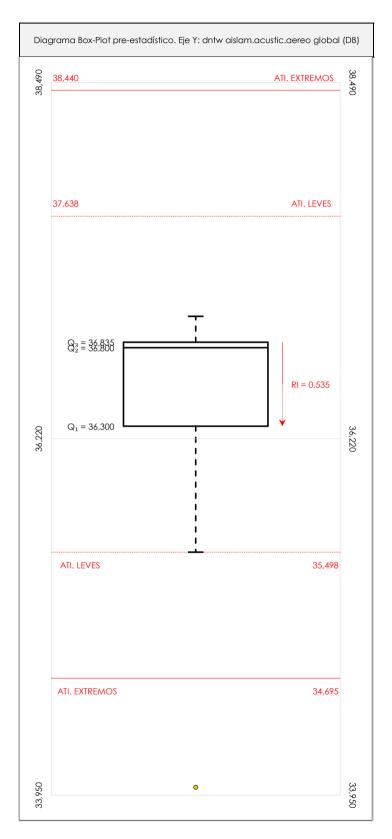
[&]quot; X_{ij} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{X}_{i \text{ arit}}$ " es la media aritmética intralaboratorio calculada sin redondear.

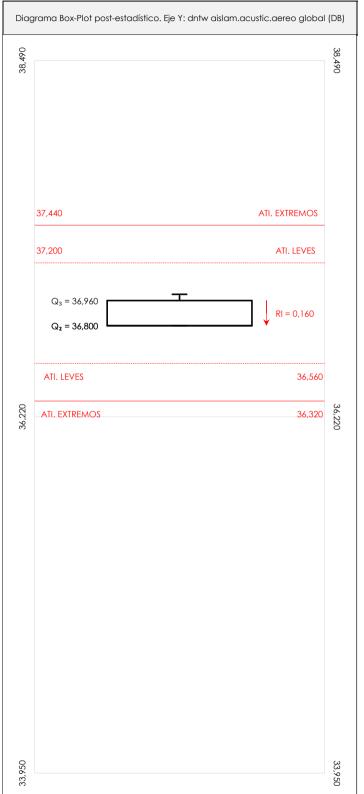
^{02 &}quot;S_Li" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

 $^{^{03}}$ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leqslant 2] [Dudoso (D) - si 2 < | ZS | \leqslant 3] [Insatisfactorio (I) - si | ZS | > 3].

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

CICE Comité de infraestructuras para la Calidad de la Edificación




SACE
Subcomisión Administrativa para la
Calidad de la Edificación

DNTW AISLAM.ACUSTIC.AEREO GLOBAL (DB)

Análisis D. Estudios post-estadisticos

Apartado D.3. Diagramas Box-Plot o de Caja y Bigotes

ANALISIS GRAFICO DE CAJA Y BIGOTES (ANTES Y DESPUES DE ANALISIS ESTADISTICO)

Diagramas de caja y bigotes (Box Plot) de las medias aritméticas de los resultados aportados por los laboratorios antes (diagrama de la izquierda. Este incluye valores aberrantes y anómalos) y después (diagrama de la derecha. No incluye los valores descartados a lo largo del estudio) de análisis estadístico.

En ambos se han representado: el primer cuartil (Q_1 ; 25% de los datos), el segundo cuartil o la mediana (Q_2 ; 50% de los datos), el tercer cuartil (Q_3 ; 75% de los datos), el rango intercuartílico (RI; cuartil tres menos cuartil uno) y los límites de valores atípicos leves (f_3 y f_1 para el máximo y mínimo respectivamente; líneas discontinuas de color rojo) y extremos (f_3 * y f_1 * para el máximo y mínimo respectivamente; líneas continuas de color rojo).

CICE Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNTW AISLAM.ACUSTIC.AEREO GLOBAL (DB)

Conclusiones

Determinación de la repetibilidad y reproducibilidad

El análisis estadístico ElLA20 para el ensayo "DNTW AISLAM.ACUSTIC.AEREO GLOBAL", ha contado con la participación de un total de 12 laboratorios, debiendo haber aportado cada uno de ellos, un total de 5 determinaciones individuales además de su valor medio.

Tras analizar los resultados podemos concluir que, para cumplir con los criterios estadísticos establecidos en el informe, un total de 5 laboratorios han sido apartados de la evaluación final: O en el Análisis Pre-Estadístico (por no cumplir el criterio de validación y/o el procedimiento de ejecución recogido en la norma de ensayo) y 5 en el Análisis Estadístico (por resultar anómalos o aberrantes en las técnicas gráficas de consistencia de Mandel y en los ensayos de detección de resultados numéricos de Cochran y Grubbs), al cabo de 4 iteraciones.

De cada uno de los análisis (pre-estadístico y estadístico), se obtienen las siguientes tablas:

TIPO DE ANALISIS			PRE-ES	STADISTIC	0		ESTADISTICO					
Variables	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i5}	$\overline{X}_{i arit}$	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$
Valor Máximo (max ; %)	37,10	37,10	37,00	37,00	37,10	37,00	37,10	37,10	37,00	37,00	37,10	37,00
Valor Mínimo (min ; %)	34,00	34,00	34,00	34,00	34,00	34,00	37,00	36,00	36,00	36,00	36,80	36,80
Valor Promedio (M; %)	36,43	36,09	36,41	36,38	36,58	36,38	37,01	36,87	36,70	36,80	36,99	36,87
Desviación Típica (SDL ;)	1,00	1,17	0,89	0,88	0,99	0,86	0,04	0,39	0,48	0,37	0,09	0,09
Coef. Variación (CV ;)	0,03	0,03	0,02	0,02	0,03	0,02	0,00	0,01	0,01	0,01	0,00	0,00
VARIABLES	S_r^2	r		$S_L^{\ 2}$	$S_R^{\ 2}$	R	S_r^2	r		S_L^2	S_R^{-2}	R
Valor Calculado	0,311	1,54	16 (0,682	0,993	2,762	0,119	0,95	57 -0	,015	0,104	0,895
Valor Referencia												

Asimismo, acompañando a éstas tablas y dependiendo del análisis que se esté llevando a cabo, se introducen los indicadores estadísticos "h y k" de Mandel y los valores críticos "C" de Cochran y "G_{Sim} y G_{Dob}" de Grubbs, todos ellos adimensionales, obtenidos de las tablas 4, 5, 6 y 7 de la norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios y del número de ensayos efectuados por cada uno de ellos:

TIPO DE ANALISIS		PRI	E-ESTADISTI	со		ESTADISTICO						
VARIABLES	h	k	С	G_{sim}	G_Dob	h	k	С	G_{sim}	G_{Dob}		
Nivel de Significación 1%	1,98	1,70	0,343	2,139	0,0308	1,98	1,70	0,508	2,139	0,0308		
Nivel de Significación 5%	1,71	1,49	0,288	2,020	0,0708	1,71	1,49	0,431	2,020	0,0708		

Con los resultados de los laboratorios, que tras los dos análisis estadísticos son evaluados por Z-Score, se han obtenido: 7 resultados satisfactorios, 0 resultados dudosos y 0 resultados insatisfactorios.

Respecto a los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística recogida en la ISO 17025, sobre las dispersiones de los resultados individuales y su media, en forma de varianzas o desviaciones estándar, también conocida como ANOVA (siglas de analisys of varience).

Sabiendo que una varianza es la suma de cuadrados dividida por un número, que se llama grados de libertad, que depende del número de participantes menos 1, se puede decir que la imprecisión del ensayo se descompone en dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad (variabilidad intralaboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad debida al cambio de laboratorio).

Las condiciones de repetibilidad de este ensayo son: mismo laborante, mismo laboratorio y mismo equipo de medición utilizado dentro de un período de tiempo corto. Por ende, las condiciones de reproducibilidad para la misma muestra y ensayo, cambian en: el laborante, el laboratorio, el equipo y las condiciones de uso y tiempo.