Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

ANÁLISIS ESTADÍSTICO ACÚSTICA

AISLAMIENTO ACÚSTICO AEREO ENTRE LOCALES -ZONA 05

DNT FRECUENCIA 100 HZ

Comité de infraestructuras para la Calidad de la Edificación

Calidad de la Edificación

SACE Subcomisión Administrativa para la

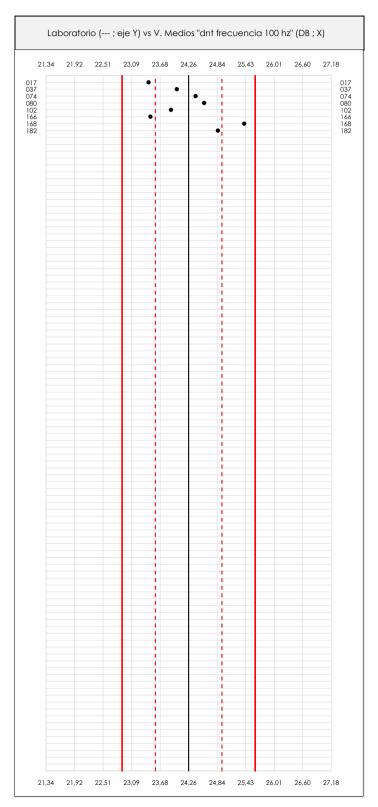
DNT FRECUENCIA 100 HZ (DB) Introducción

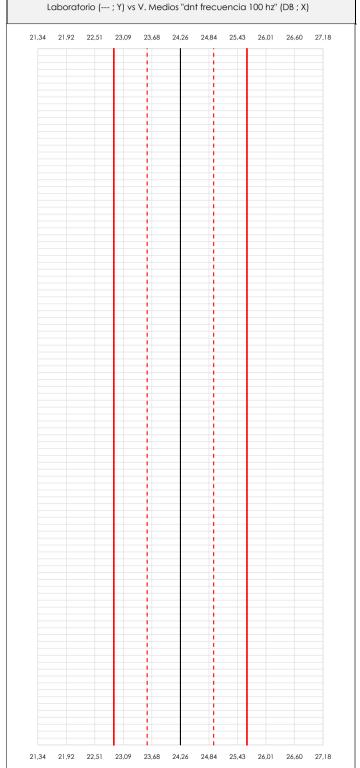
Criterios de análisis establecidos

El procedimiento llevado a cabo para analizar los resultados del ensayo "dnt frecuencia 100 hz", está basado en los protocolos ElLA20 y las normas UNE 82009-2:1999 y UNE-EN ISO/IEC 17043:2010 y es, para cada laboratorio, el que sigue:

- **01. Análisis A: Estudio pre-estadístico.** Antes de comenzar con los cálculos matemáticos, los datos son minuciosamente analizados para determinar si deben ser incluidos (</) o descartados (X) en función, de si cumplen o no, con unos criterios mínimos previamente establecidos y que pueden afectar a los resultados, tales como:
- A. No cumplir con el criterio de validación de la norma de ensayo, en caso de existir éste.
- B. No haber realizado el ensayo conforme a la norma de estudio, sin justificar los motivos por los cuales se ha hecho.
- C. No haber cumplido con las especificaciones particulares del ensayo descritas en los protocolos (pueden incluir aportar algún dato adicional no especificado en la norma).
- D. No haber especificado la fecha de verificación y/o de calibración de los equipos utilizados durante el ensayo (los resultados pueden verse afectados).
- E. No haber aportado, como mínimo, el resultado de dos determinaciones puesto que la desviación típica inter-laboratorio se ve afectada notablemente por ello.
- F. Expresiones erróneas de los resultados que no pudieran explicarse o no tuvieran sentido.
- G. No haber completado total y correctamente las hojas de ensayo, pues es posible que falte información para analizar parámetros importantes o que ayuden a explicar datos incorrectos.
- H. Cualquier otra incidencia o desviación de los resultados que afecte al conjunto de los datos analizados.
- **02. Análisis B: Mandel, Cochran y Grubbs.** Los resultados aportados por los laboratorios que hayan superado el paso anterior, se verán sometidos al análisis estadístico compuesto por los métodos de Mandel, Cochran y Grubbs. Los criterios de análisis que se han seguido para considerar los resultados como aptos (✓) o no aptos (X) por éste procedimiento son:
- A. Para cada laboratorio se llevan a cabo los cálculos necesarios para determinar los estadísticos "h y k" de Mandel, "C" de Cochran y "GSimp y GDob" de Grubbs, pudiendo salir un resultado correcto (X sobre fondo blanco), anómalo (X* sobre fondo rosa) o aberrante (X** sobre fondo morado), para todos o cada uno de ellos.
- B. Un laboratorio será considerado como apto, si el binomio Mandel-Cochran y el método de Grubbs no demuestran la presencia de resultados anómalos o aberrantes en comparación con los del resto de participantes. En caso contrario, el laboratorio afectado será excluido y por ende no tenido en cuenta para someterlo al análisis Z-Score.
- C. Binomio Mandel-Cochran. Si el ensayo de Mandel justifica para algún laboratorio (en cualquiera de sus estadísticos) la presencia de un valor anómalo o aberrante, antes de considerarlo como no apto se analiza el parámetro de Cochran. En caso de que éste último sea correcto, los resultados del laboratorio se considerarán aceptables. En caso contrario, el laboratorio será descartado.
- D. Método de Grubbs. Si el ensayo de Grubbs Simple demuestra que los resultados de algúno de los laboratorios son aberrantes o anómalos, finaliza el análisis y el laboratorio en cuestión deberá ser excluido. En caso de que éste método no demuestre la existencia de algún valor extraño, se lleva a cabo entonces el ensayo de Grubbs Doble aplicando los mismos criterios que para el método simple.
- **03. Análisis C: Evaluación Z-Score.** La totalidad de los laboratorios que hayan superado el "Análisis B" serán estudiados por éste método. En él, se determina si los parámetros Z-Score obtenidos para cada participante son satisfactorios (S), dudosos (D) o insatisfactorios (I), en función de que estén o no dentro de unos límites críticos establecidos.
- **04. Análisis D: Estudio post-estadístico.** Una vez superados los tres análisis anteriores, haremos un último barrido de los datos para ver como quedan los resultados de los laboratorios implicados mediante los diagramas "Box-Plot" o de caja y bigotes antes y después de llevar a cabo los descartes.

Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 100 HZ (DBA) Análisis A. Estudio pre-estadístico

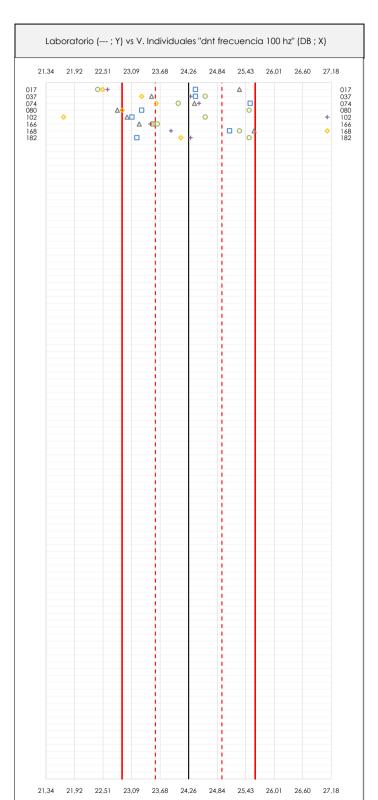
Apartado A.1. Gráficos de dispersión de valores medios

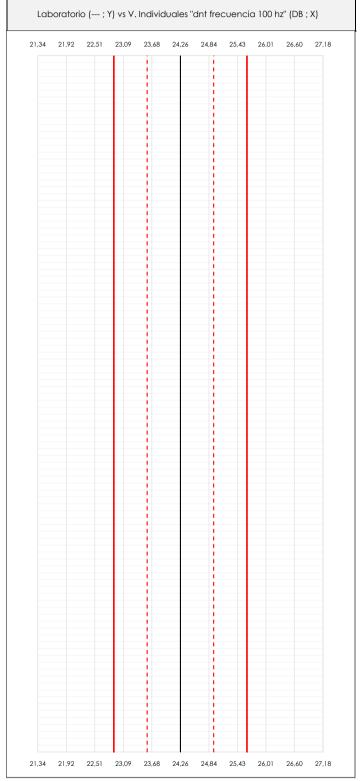
ANALISIS GRAFICO DE DISPERSION MEDIA (ANTES DE ANALISIS ESTADISTICO)

Dispersión de las medias aritméticas intra-laboratorios respecto de la media aritmética inter-laboratorios (24,26; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (24,94/23,58; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (25,62/22,90; líneas rojas de trazo continuo).

En el eje Y (adimensional) quedan reflejados los códigos de los laboratorios participantes y en el eje X (las unidades son las mismas que las del ensayo que se está analizando) las medias aritméticas intra-laboratorios representadas por punto de color negro.

CICEComité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 100 HZ (DB) Análisis A. Estudio pre-estadístico

Apartado A.2. Gráficos de dispersión de valores individuales

ANALISIS GRAFICOS DE DISPERSION INDIVIDUAL (ANTES DE ANALISIS ESTADISTICO)

Dispersión de los valores individuales respecto de la media aritmética inter-laboratorios (24,26; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (24,94/23,58; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (25,62/22,90; líneas rojas de trazo continuo).

En el eje Y (adimensional) queda reflejado el código del laboratorio participante y en el eje X (las unidades son las de los resultados del ensayo que se está analizando) los resultados individuales: el primero (X_{i,1}) se representa con un cuadrado azul, el segundo (X_{i,2}) con un círculo verde, el tercero (X_{i,3}) con un triángulo grís y el cuarto (X_{i,4}) con un rombo amarillo.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 100 HZ (DB)

Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{Li}	D _{i arit %}	Pasa A	Observaciones
17	24,40	22,40	25,30	22,50	22,60	23,44	1,328	-3,38	✓	
37	24,40	24,60	23,50	23,30	24,30	24,02	0,581	-0,99	✓	
74	25,52	24,05	24,38	23,60	24,47	24,40	0,712	0,59	✓	
80	23,30	25,50	22,80	22,90	28,40	24,58	2,401	1,32	✓	
102	23,10	24,60	23,00	21,70	27,10	23,90	2,063	-1,49	✓	
166	23,54	23,62	23,25	23,52	23,48	23,48	0,139	-3,22	✓	
168	25,10	25,30	25,60	27,10	23,90	25,40	1,149	4,70	✓	
182	23,20	25,50	27,20	24,10	24,30	24,86	1,544	2,47	✓	

NOTAS:

[máximo]

[mínimo

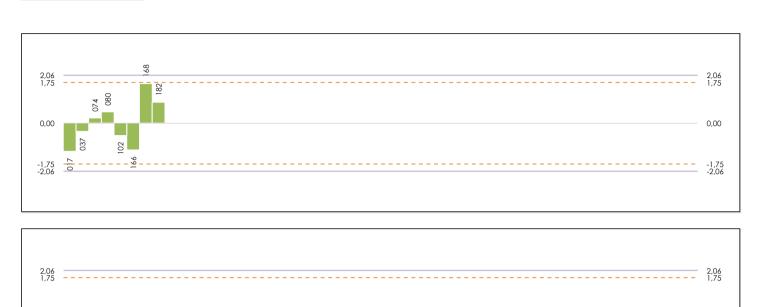
^{01 &}quot;X_{i j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

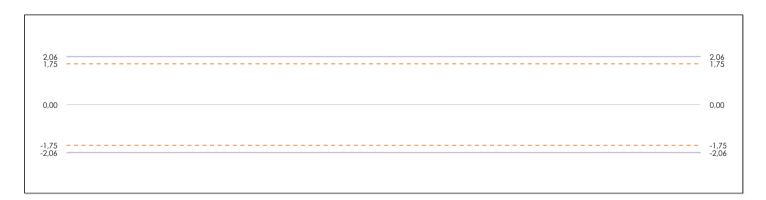
^{02 &}quot;S_Li" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma.

 $^{^{\}rm 04}$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación





DNT FRECUENCIA 100 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

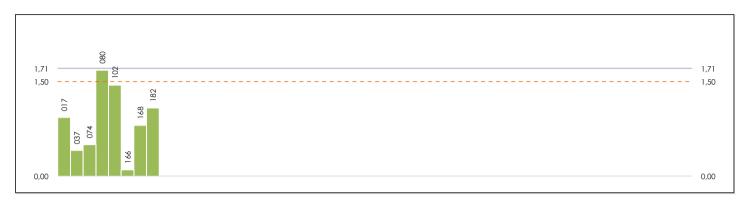
Apartado B.1. Gráfico de consistencia inter-laboratorios "h" de Mandel

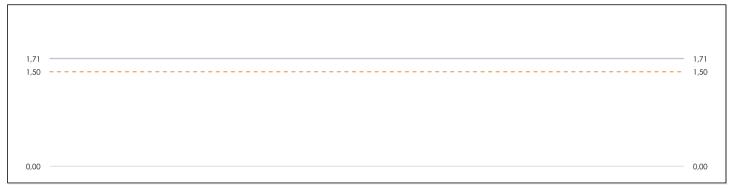
ANALISIS GRAFICO DE CONSISTENCIA INTER-LABORATORIOS

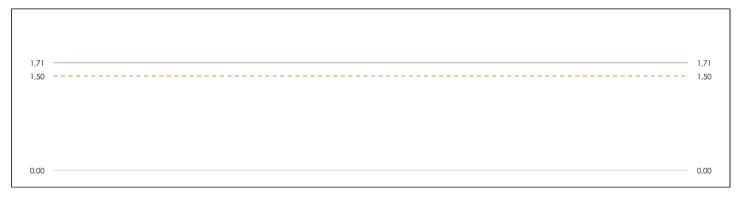
Análisis gráfico de consistencia inter-laboratorios "h" de Mandel. En él se representan las medias aritméticas inter-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación






DNT FRECUENCIA 100 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.2. Gráfico de consistencia intra-laboratorios "k" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTRA-LABORATORIOS

Análisis gráfico de consistencia intra-laboratorios "k" de Mandel. En él se representan las medias aritméticas intra-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes y el número de ensayos efectuados).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 100 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S_{Li}	D _{i arit %}	h _i	k _i	C _i	$G_{\text{Sim Inf}}$	$G_{\text{Sim Sup}}$	$G_{\text{Dob Inf}}$	$G_{\text{Dob Sup}}$	Pasa B
17	24.40	22.400	25 200	22 500	22,600	02.440	1,328	2 20	1.00	0,93		1,204		0,4741		√
37	24,40	22,400	25,300	22,500 23,300		23,440		-3,38	-1,20			1,204		0,4/41		
74	24,40 25,52	24,600	23,500	23,599	24,300 24,472	24,020 24,404	0,581	-0,99 0,59	-0,35 0,21	0,41						-
80	23,30	25,500	22,800	22,900	28,400	24,404	2,401	1,32	0,47	1,68*	0,353					
102	23,10	24,600	23,000	21,700	27,100	23,900	2,063	-1,49	-0,53	1,44	0,555					
166	23,54	23,619	23,249	23,517	23,478	23,480	0,139	-3,22	-1,15	0,10				0,4741		
168	25,10	25,300	25,600	27,100	23,900	25,400	1,149	4,70	1,67	0,80			1,672	0,1, 11	0,3349	<u> </u>
182	23,20	25,500	27,200	24,100	24,300	24,860	1,544	2,47	0,88	1,08			.,,,,		0,3349	
							.,.			.,					-,	

NOTAS:

 $^{\rm 04}$ El código colorimétrico empleado para las celdas es:

[aberrante]

[anómalo]

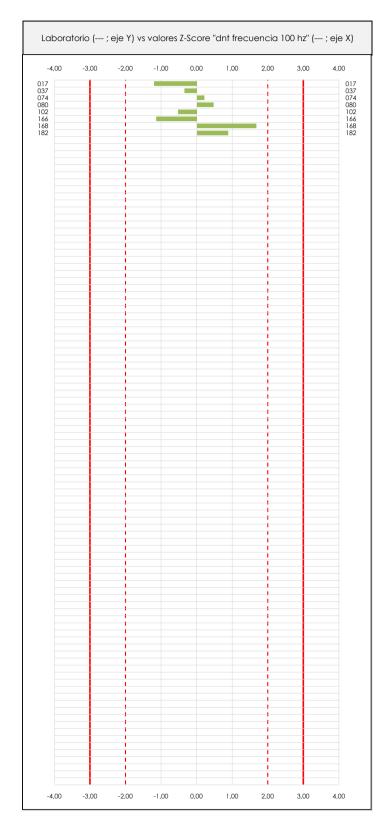
[máximo]

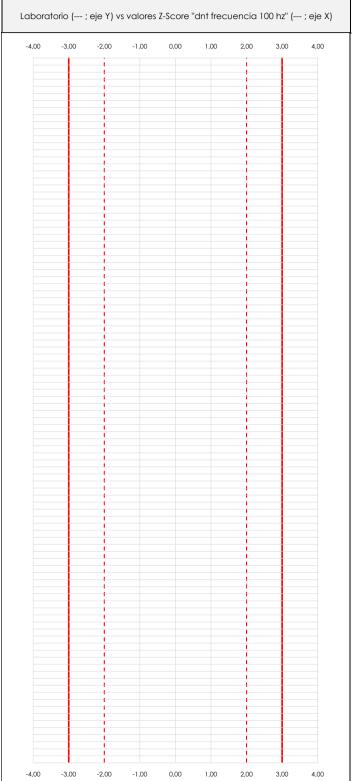
[mínimo]

^{01 &}quot;X_{i j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

^{03 &}quot;h_i y k_i", "C_i", "G_{sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.


Comité de infraestructuras para la Calidad de la Edificación



SACESubcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 100 HZ (DB) Análisis C. Evaluación Z-Score

Apartado C.1. Análisis gráfico Altman Z-Score

ANALISIS GRAFICO Z-SCORE

Diagrama Z-Score para los resultados aportados por los laboratorios. Estos se considerarán satisfactorios (S) si el valor absoluto del Z-Score es menor o igual a 2 unidades, dudoso si está comprendido entre 2 y 3 unidades e insatisfactorio si es mayor o igual a 3 unidades.

Los resultados satisfactorios quedan reflejados entre las dos líneas rojas discontinuas, líneas de referencia en la evaluación Z-Score.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 100 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	Х _{і З}	X _{i 4}	X _{i 5}	X _{i arit}	S _{Li}	D _{i arit %}	Pasa A	Pasa B	Total	Causa	Iteración	Z-Score	Evaluación
17	24,40	22,40	25,30	22,50	22,60	23,44	1,328	-3,38	√	√	√			-1,204	S
37	24,40	24,60	23,50	23,30	24,30	24,02	0,581	-0,99	✓	√	✓			-0,353	S
74	25,52	24,05	24,38	23,60	24,47	24,40	0,712	0,59	✓	√	✓			0,211	S
80	23,30	25,50	22,80	22,90	28,40	24,58	2,401	1,32	✓	√	✓			0,469	S
102	23,10	24,60	23,00	21,70	27,10	23,90	2,063	-1,49	✓	✓	✓			-0,529	S
166	23,54	23,62	23,25	23,52	23,48	23,48	0,139	-3,22	√	✓	✓			-1,145	S
168	25,10	25,30	25,60	27,10	23,90	25,40	1,149	4,70	✓	✓	✓			1,672	S
182	23,20	25,50	27,20	24,10	24,30	24,86	1,544	2,47	✓	✓	✓			0,880	S

NOTAS:

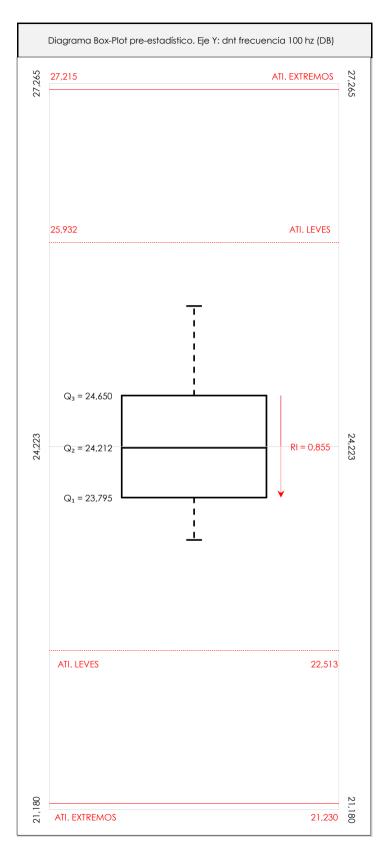
^{01 &}quot;X_{i,j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

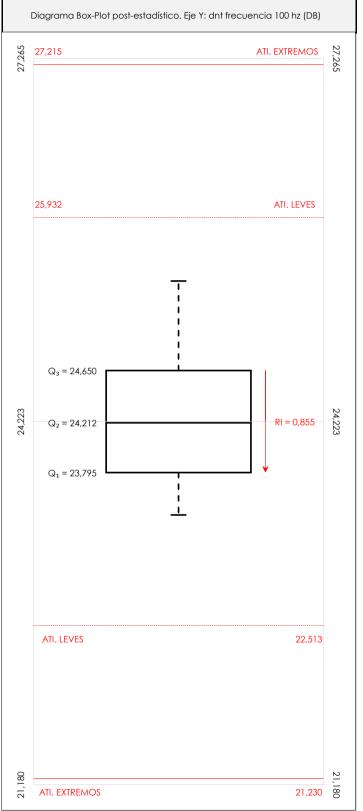
^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

 $^{^{03}}$ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leqslant 2] [Dudoso (D) - si 2 < | ZS | \leqslant 3] [Insatisfactorio (I) - si | ZS | > 3].

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 100 HZ (DB)

Análisis D. Estudios post-estadisticos

Apartado D.3. Diagramas Box-Plot o de Caja y Bigotes

ANALISIS GRAFICO DE CAJA Y BIGOTES (ANTES Y DESPUES DE ANALISIS ESTADISTICO)

Diagramas de caja y bigotes (Box Plot) de las medias aritméticas de los resultados aportados por los laboratorios antes (diagrama de la izquierda. Este incluye valores aberrantes y anómalos) y después (diagrama de la derecha. No incluye los valores descartados a lo largo del estudio) de análisis estadístico.

En ambos se han representado: el primer cuartil (Q_1 ; 25% de los datos), el segundo cuartil o la mediana (Q_2 ; 50% de los datos), el tercer cuartil (Q_3 ; 75% de los datos), el rango intercuartílico (RI ; cuartil tres menos cuartil uno) y los límites de valores atípicos leves (f_3 y f_1 para el máximo y mínimo respectivamente ; líneas discontinuas de color rojo) y extremos (f_3 * y f_1 * para el máximo y mínimo respectivamente ; líneas continuas de color rojo).

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 100 HZ (DB)

Conclusiones

Determinación de la repetibilidad y reproducibilidad

El análisis estadístico ElLA20 para el ensayo "DNT FRECUENCIA 100 HZ", ha contado con la participación de un total de 8 laboratorios, debiendo haber aportado cada uno de ellos, un total de 5 determinaciones individuales además de su valor medio.

Tras analizar los resultados podemos concluir que, para cumplir con los criterios estadísticos establecidos en el informe, un total de 0 laboratorios han sido apartados de la evaluación final: 0 en el Análisis Pre-Estadístico (por no cumplir el criterio de validación y/o el procedimiento de ejecución recogido en la norma de ensayo) y 0 en el Análisis Estadístico (por resultar anómalos o aberrantes en las técnicas gráficas de consistencia de Mandel y en los ensayos de detección de resultados numéricos de Cochran y Grubbs), al cabo de 1 iteraciones.

De cada uno de los análisis (pre-estadístico y estadístico), se obtienen las siguientes tablas:

TIPO DE ANALISIS			PRE-ES	TADISTIC	:0				ESTA	DISTICO		
Variables	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$
Valor Máximo (max ; %)	25,52	25,50	27,20	27,10	28,40	25,40	25,52	25,50	27,20	27,10	28,40	25,40
Valor Mínimo (min ; %)	23,10	22,40	22,80	21,70	22,60	23,44	23,10	22,40	22,80	21,70	22,60	23,44
Valor Promedio (M; %)	24,07	24,45	24,38	23,59	24,82	24,26	24,07	24,45	24,38	23,59	24,82	24,26
Desviación Típica (SDL ;)	0,92	1,07	1,55	1,60	1,94	0,68	0,92	1,07	1,55	1,60	1,94	0,68
Coef. Variación (CV ;)	0,04	0,04	0,06	0,07	0,08	0,03	0,04	0,04	0,06	0,07	0,08	0,03
VARIABLES	S_r^2	r		S_L^2	S_R^2	R	S_r^2	r		S_L^2	S_R^{2}	R
Valor Calculado	2,044	3,96	3 (0,056	2,099	4,016	2,044	3,96	33 0	,056	2,099	4,016
Valor Referencia												

Asimismo, acompañando a éstas tablas y dependiendo del análisis que se esté llevando a cabo, se introducen los indicadores estadísticos "h y k" de Mandel y los valores críticos "C" de Cochran y " G_{Sim} y G_{Dob} " de Grubbs, todos ellos adimensionales, obtenidos de las tablas 4, 5, 6 y 7 de la norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios y del número de ensayos efectuados por cada uno de ellos:

TIPO DE ANALISIS		PRE	-ESTADISTI	со			E	STADISTIC	5	
VARIABLES	h	k	С	G_{sim}	G_{Dob}	h	k	С	G_{sim}	G_{Dob}
Nivel de Significación 1%	2,06	1,71	0,463	2,274	0,0563	2,06	1,71	0,463	2,274	0,0563
Nivel de Significación 5%	1,75	1,50	0,391	2,126	0,1101	1,75	1,50	0,391	2,126	0,1101

Con los resultados de los laboratorios, que tras los dos análisis estadísticos son evaluados por Z-Score, se han obtenido: 8 resultados satisfactorios, 0 resultados dudosos y 0 resultados insatisfactorios.

Respecto a los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística recogida en la ISO 17025, sobre las dispersiones de los resultados individuales y su media, en forma de varianzas o desviaciones estándar, también conocida como ANOVA (siglas de analisys of varience).

Sabiendo que una varianza es la suma de cuadrados dividida por un número, que se llama grados de libertad, que depende del número de participantes menos 1, se puede decir que la imprecisión del ensayo se descompone en dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad (variabilidad intralaboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad debida al cambio de laboratorio).

Las condiciones de repetibilidad de este ensayo son: mismo laborante, mismo laboratorio y mismo equipo de medición utilizado dentro de un período de tiempo corto. Por ende, las condiciones de reproducibilidad para la misma muestra y ensayo, cambian en: el laborante, el laboratorio, el equipo y las condiciones de uso y tiempo.

Comité de infraestructuras para la Calidad de la Edificación

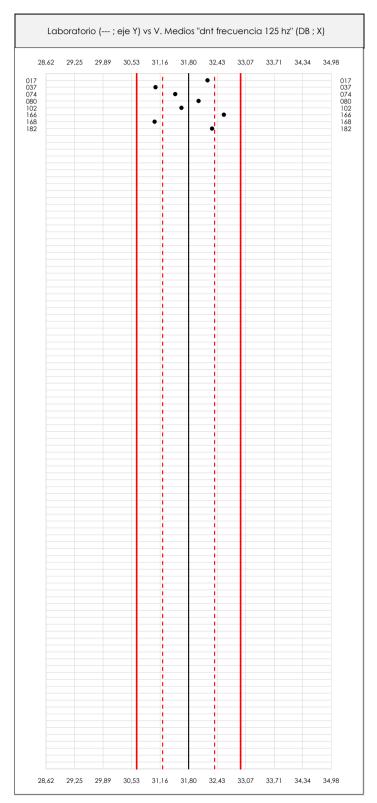
SACE

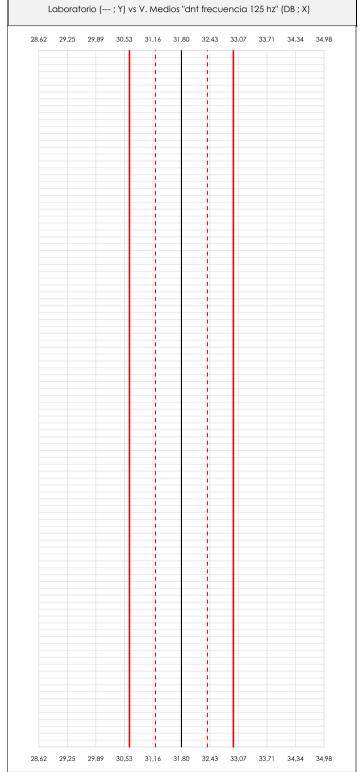
Subcomisión Administrativa para la Calidad de la Edificación

ANÁLISIS ESTADÍSTICO ACÚSTICA

DNT FRECUENCIA 125 HZ

Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 125 HZ (DB) Análisis A. Estudio pre-estadístico

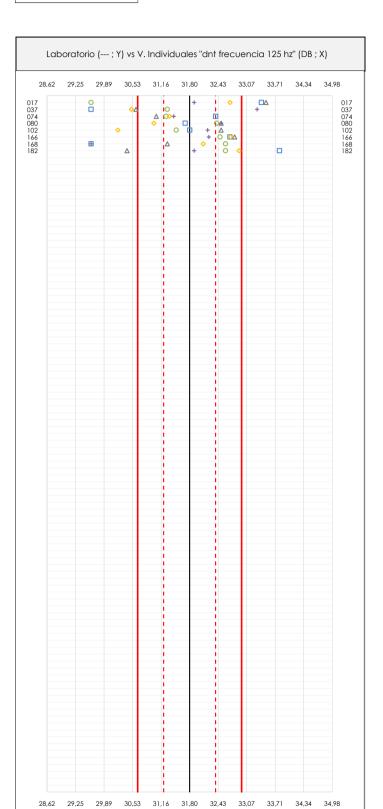
Apartado A.1. Gráficos de dispersión de valores medios

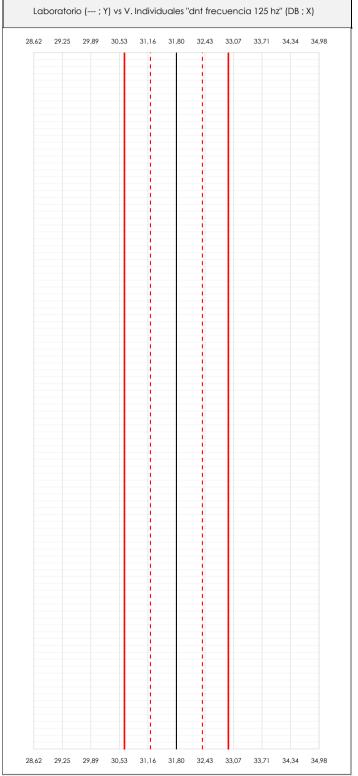
ANALISIS GRAFICO DE DISPERSION MEDIA (ANTES DE ANALISIS ESTADISTICO)

Dispersión de las medias aritméticas intra-laboratorios respecto de la media aritmética inter-laboratorios (31,80 ; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (32,38/31,22 ; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (32,96/30,64 ; líneas rojas de trazo continuo).

En el eje Y (adimensional) quedan reflejados los códigos de los laboratorios participantes y en el eje X (las unidades son las mismas que las del ensayo que se está analizando) las medias aritméticas intra-laboratorios representadas por punto de color negro.

CICE Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 125 HZ (DB) Análisis A. Estudio pre-estadístico

Apartado A.2. Gráficos de dispersión de valores individuales

ANALISIS GRAFICOS DE DISPERSION INDIVIDUAL (ANTES DE ANALISIS ESTADISTICO)

Dispersión de los valores individuales respecto de la media aritmética inter-laboratorios (31,80; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (32,38/31,22; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (32,96/30,64; líneas rojas de trazo continuo).

En el eje Y (adimensional) queda reflejado el código del laboratorio participante y en el eje X (las unidades son las de los resultados del ensayo que se está analizando) los resultados individuales: el primero (X_{i,1}) se representa con un cuadrado azul, el segundo (X_{i,2}) con un círculo verde, el tercero (X_{i,3}) con un triángulo grís y el cuarto (X_{i,4}) con un rombo amarillo.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 125 HZ (DB)

Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	Pasa A	Observaciones
17	33,40	29,60	33,50	32,70	31,90	32,22	1,599	1,33	✓	
37	29,60	31,30	30,60	30,50	33,30	31,06	1,390	-2,32	✓	
74	32,38	31,27	31,06	31,35	31,44	31,50	0,512	-0,94	✓	
80	31,70	32,40	32,50	31,00	32,50	32,02	0,661	0,70	✓	
102	31,80	31,50	32,50	30,20	32,20	31,64	0,891	-0,50	✓	
166	32,70	32,48	32,80	32,71	32,23	32,58	0,232	2,47	✓	
168	29,60	32,60	31,30	32,10	29,60	31,04	1,394	-2,38	✓	
182	33,80	32,60	30,40	32,90	31,90	32,32	1,272	1,64	✓	

NOTAS:

[máximo]

[mínimo

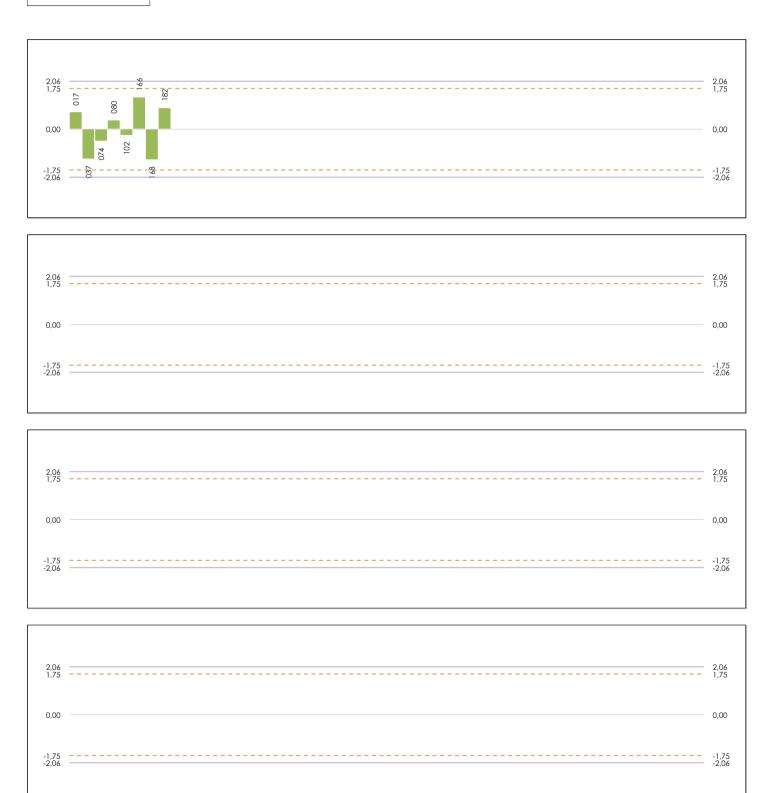
^{01 &}quot;X_{i j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_Li" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma.

 $^{^{\}rm 04}$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación



DNT FRECUENCIA 125 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

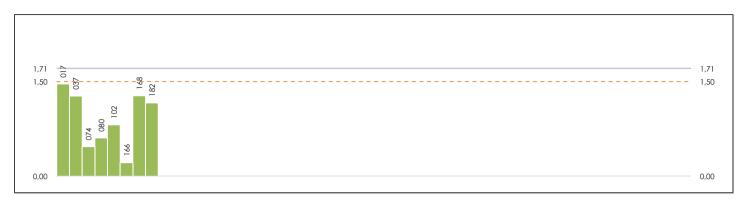
Apartado B.1. Gráfico de consistencia inter-laboratorios "h" de Mandel

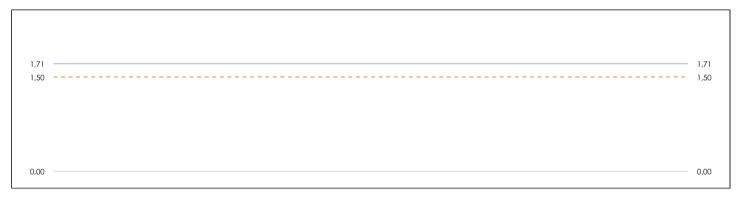
ANALISIS GRAFICO DE CONSISTENCIA INTER-LABORATORIOS

Análisis gráfico de consistencia inter-laboratorios "h" de Mandel. En él se representan las medias aritméticas inter-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación




DNT FRECUENCIA 125 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.2. Gráfico de consistencia intra-laboratorios "k" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTRA-LABORATORIOS

Análisis gráfico de consistencia intra-laboratorios "k" de Mandel. En él se representan las medias aritméticas intra-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes y el número de ensayos efectuados).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 125 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	h _i	k _i	Ci	$G_{\text{Sim Inf}}$	G _{Sim Sup}	G _{Dob Inf}	G _{Dob Sup}	Pasa B
17	33,40	29,600	33,500	32,700	31,900	32,220	1,599	1,33	0,73	1,46						
37	29,60	31,300	30,600	30,500	33,300	31,060	1,390	-2,32	-1,27	1,27				0,3654		<u> </u>
74	32,38	31,274	31,055	31,345	31,441	31,499	0,512	-0,94	-0,52	0,47				0,000 1		<u> </u>
80	31,70	32,400	32,500	31,000	32,500	32,020	0,661	0,70	0,38	0,60						<u> </u>
102	31,80	31,500	32,500	30,200	32,200	31,640	0,891	-0,50	-0,27	0,81						√
166	32,70	32,477	32,800	32,715	32,227	32,583	0,232	2,47	1,36	0,21			1,355		0,5002	√
168	29,60	32,600	31,300	32,100	29,600	31,040	1,394	-2,38	-1,31	1,27		1,308		0,3654		√
182	33,80	32,600	30,400	32,900	31,900	32,320	1,272	1,64	0,90	1,16					0,5002	√
-																

NOTAS:

 $^{\rm 04}\,$ El código colorimétrico empleado para las celdas es:

[aberrante]

[anómalo]

[máximo]

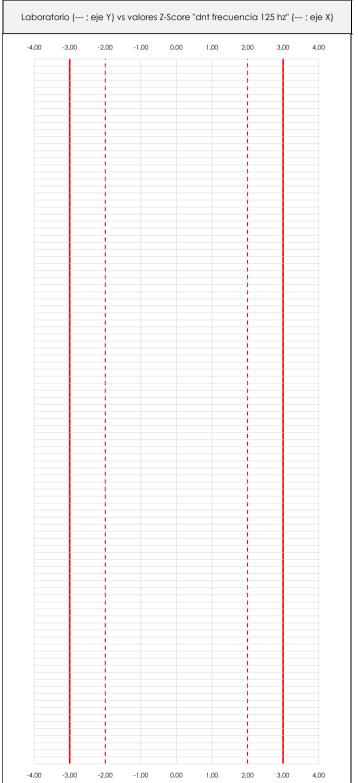
[mínimo]

^{01 &}quot;X_{i j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

^{03 &}quot;h_i y k_i", "C_i", "G_{sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.

Comité de infraestructuras para la Calidad de la Edificación



SACESubcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 125 HZ (DB) Análisis C. Evaluación Z-Score

Apartado C.1. Análisis gráfico Altman Z-Score

ANALISIS GRAFICO Z-SCORE

Diagrama Z-Score para los resultados aportados por los laboratorios. Estos se considerarán satisfactorios (S) si el valor absoluto del Z-Score es menor o igual a 2 unidades, dudoso si está comprendido entre 2 y 3 unidades e insatisfactorio si es mayor o igual a 3 unidades.

Los resultados satisfactorios quedan reflejados entre las dos líneas rojas discontinuas, líneas de referencia en la evaluación Z-Score.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 125 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	Pasa A	Pasa B	Total	Causa	Iteración	Z-Score	Evaluación
1.7	20.40	20.40	00.50	20.70	01.00	20.00	1.500	1.00						0.700	
17	33,40	29,60	33,50	32,70	31,90	32,22	1,599	1,33	√	<u> </u>	√			0,729	S
37	29,60	31,30	30,60	30,50	33,30	31,06	1,390	-2,32	√	√	√			-1,273	S
74	32,38	31,27	31,06	31,35	31,44	31,50	0,512	-0,94	√	√	√			-0,516	S
80	31,70	32,40	32,50	31,00	32,50	32,02	0,661	0,70	√	√	√			0,384	S
102	31,80 32,70	31,50 32,48	32,50	30,20	32,20	31,64	0,891	-0,50 2,47	√	√	√			-0,272 1,355	S
166 168	29,60	32,40	32,80 31,30	32,71 32,10	32,23 29,60	32,58 31,04	0,232 1,394	-2,38	√	√	√			-1,308	S S
182	33,80	32,60	30,40	32,90	31,90	32,32	1,272	1,64			√			0,901	S
102	33,60	32,60	30,40	32,70	31,70	32,32	1,2/2	1,04		✓				0,701	3

NOTAS:

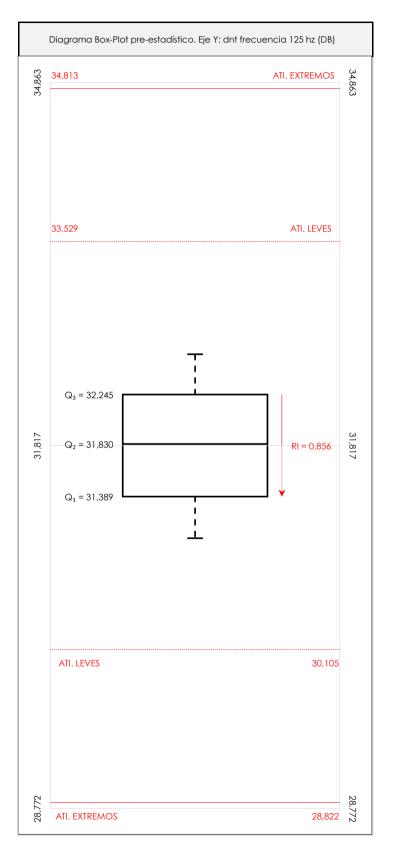
^{01 &}quot;X_{i,j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

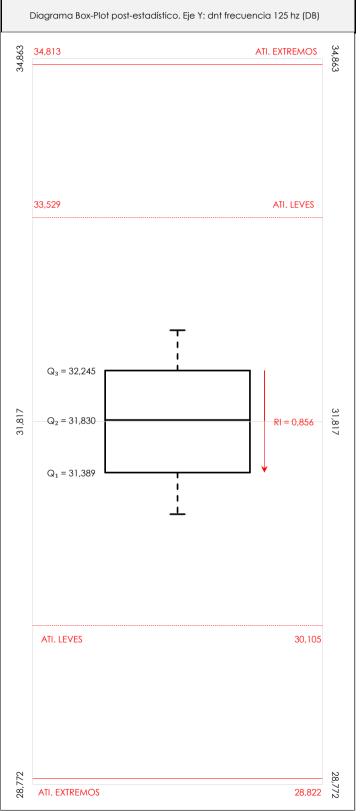
^{02 &}quot;S_{Li}" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

 $^{^{03}}$ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leqslant 2] [Dudoso (D) - si 2 < | ZS | \leqslant 3] [Insatisfactorio (I) - si | ZS | > 3].

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 125 HZ (DB)

Análisis D. Estudios post-estadisticos

Apartado D.3. Diagramas Box-Plot o de Caja y Bigotes

ANALISIS GRAFICO DE CAJA Y BIGOTES (ANTES Y DESPUES DE ANALISIS ESTADISTICO)

Diagramas de caja y bigotes (Box Plot) de las medias aritméticas de los resultados aportados por los laboratorios <u>antes</u> (diagrama de la izquierda. Este incluye valores aberrantes y anómalos) y <u>después</u> (diagrama de la derecha. No incluye los valores descartados a lo largo del estudio) de análisis estadístico.

En ambos se han representado: el primer cuartil (Q_1 ; 25% de los datos), el segundo cuartil o la mediana (Q_2 ; 50% de los datos), el tercer cuartil (Q_3 ; 75% de los datos), el rango intercuartílico (RI ; cuartil tres menos cuartil uno) y los límites de valores atípicos leves (f_3 y f_1 para el máximo y mínimo respectivamente ; líneas discontinuas de color rojo) y extremos (f_3 * y f_1 * para el máximo y mínimo respectivamente ; líneas continuas de color rojo).

Comité de infraestructuras para la Calidad de la Edificación

DNT FRECUENCIA 125 HZ (DB)

Conclusiones

Determinación de la repetibilidad y reproducibilidad

SACE Subcomisión Administrativa para la Calidad de la Edificación

El análisis estadístico EILA20 para el ensayo "DNT FRECUENCIA 125 HZ", ha contado con la participación de un total de 8 laboratorios, debiendo haber aportado cada uno de ellos, un total de 5 determinaciones individuales además de su valor medio.

Tras analizar los resultados podemos concluir que, para cumplir con los criterios estadísticos establecidos en el informe, un total de 0 laboratorios han sido apartados de la evaluación final: 0 en el Análisis Pre-Estadístico (por no cumplir el criterio de validación y/o el procedimiento de ejecución recogido en la norma de ensayo) y 0 en el Análisis Estadístico (por resultar anómalos o aberrantes en las técnicas gráficas de consistencia de Mandel y en los ensayos de detección de resultados numéricos de Cochran y Grubbs), al cabo de 1 iteraciones.

De cada uno de los análisis (pre-estadístico y estadístico), se obtienen las siguientes tablas:

TIPO DE ANALISIS			PRE-ES	TADISTIC	:0				ESTA	DISTICO		
Variables	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$
Valor Máximo (max ; %)	33,80	32,60	33,50	32,90	33,30	32,58	33,80	32,60	33,50	32,90	33,30	32,58
Valor Mínimo (min ; %)	29,60	29,60	30,40	30,20	29,60	31,04	29,60	29,60	30,40	30,20	29,60	31,04
Valor Promedio (M; %)	31,87	31,72	31,83	31,68	31,88	31,80	31,87	31,72	31,83	31,68	31,88	31,80
Desviación Típica (SDL ;)	1,57	1,04	1,14	1,06	1,07	0,58	1,57	1,04	1,14	1,06	1,07	0,58
Coef. Variación (CV ;)	0,05	0,03	0,04	0,03	0,03	0,02	0,05	0,03	0,04	0,03	0,03	0,02
VARIABLES	S_r^2	r		$S_L^{\ 2}$	S_R^2	R	S_r^2	r		S _L ²	S_R^{2}	R
Valor Calculado	1,199	3,03	36 (0,096	1,295	3,155	1,199	3,03	36 0	,096	1,295	3,155
Valor Referencia												

Asimismo, acompañando a éstas tablas y dependiendo del análisis que se esté llevando a cabo, se introducen los indicadores estadísticos "h y k" de Mandel y los valores críticos "C" de Cochran y " G_{Sim} y G_{Dob} " de Grubbs, todos ellos adimensionales, obtenidos de las tablas 4, 5, 6 y 7 de la norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios y del número de ensayos efectuados por cada uno de ellos:

TIPO DE ANALISIS		PRE	-ESTADISTI	со			E	STADISTIC	5	
VARIABLES	h	k	С	G_{sim}	G_Dob	h	k	С	G_{sim}	G_{Dob}
Nivel de Significación 1%	2,06	1,71	0,463	2,274	0,0563	2,06	1,71	0,463	2,274	0,0563
Nivel de Significación 5%	1,75	1,50	0,391	2,126	0,1101	1,75	1,50	0,391	2,126	0,1101

Con los resultados de los laboratorios, que tras los dos análisis estadísticos son evaluados por Z-Score, se han obtenido: 8 resultados satisfactorios, 0 resultados dudosos y 0 resultados insatisfactorios.

Respecto a los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística recogida en la ISO 17025, sobre las dispersiones de los resultados individuales y su media, en forma de varianzas o desviaciones estándar, también conocida como ANOVA (siglas de analisys of varience).

Sabiendo que una varianza es la suma de cuadrados dividida por un número, que se llama grados de libertad, que depende del número de participantes menos 1, se puede decir que la imprecisión del ensayo se descompone en dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad (variabilidad intralaboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad debida al cambio de laboratorio).

Las condiciones de repetibilidad de este ensayo son: mismo laborante, mismo laboratorio y mismo equipo de medición utilizado dentro de un período de tiempo corto. Por ende, las condiciones de reproducibilidad para la misma muestra y ensayo, cambian en: el laborante, el laboratorio, el equipo y las condiciones de uso y tiempo.

Comité de infraestructuras para la Calidad de la Edificación

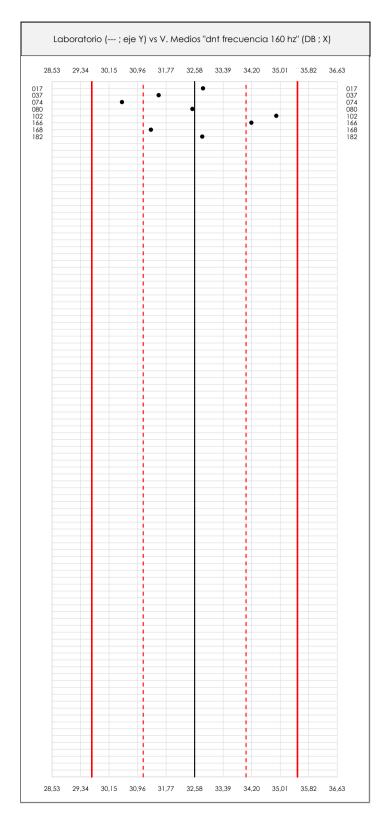
SACE

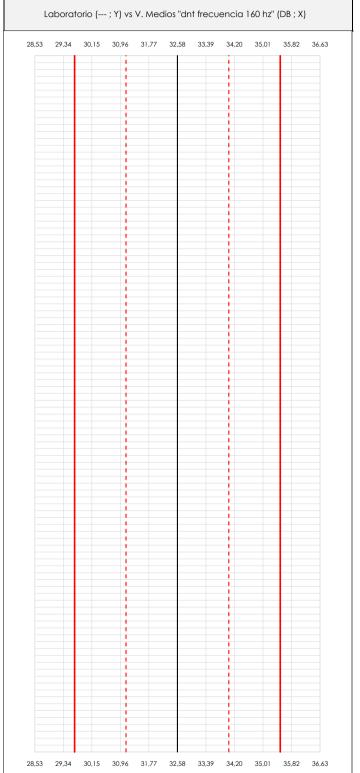
Subcomisión Administrativa para la Calidad de la Edificación

ANÁLISIS ESTADÍSTICO ACÚSTICA

DNT FRECUENCIA 160 HZ

Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 160 HZ (DB) Análisis A. Estudio pre-estadístico

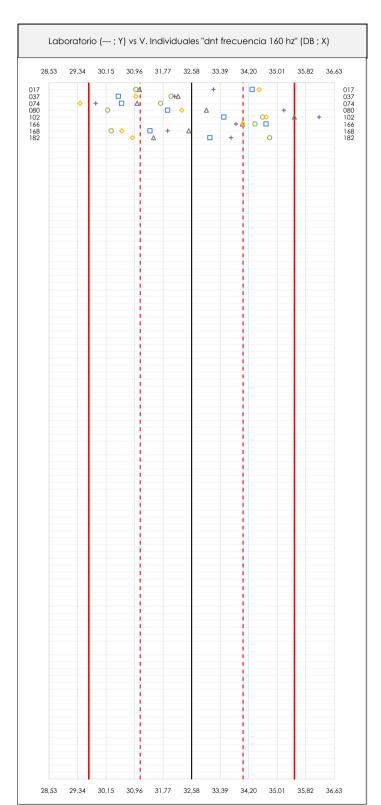
Apartado A.1. Gráficos de dispersión de valores medios

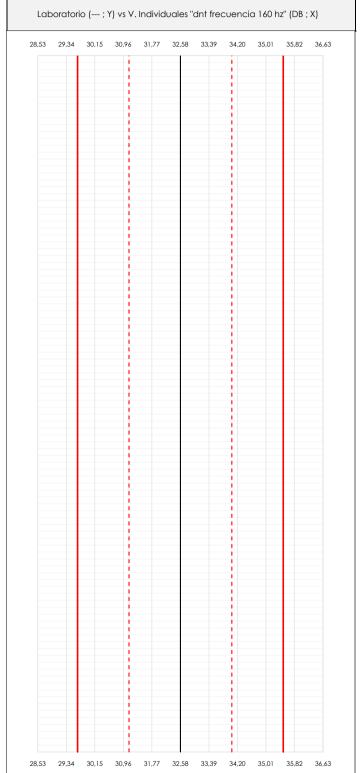
ANALISIS GRAFICO DE DISPERSION MEDIA (ANTES DE ANALISIS ESTADISTICO)

Dispersión de las medias aritméticas intra-laboratorios respecto de la media aritmética inter-laboratorios (32,58 ; línea negra de trazo continuo), la media aritmética interlaboratorios más/menos la desviación típica (34,04/31,12; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (35,50/29,66; líneas rojas de trazo continuo).

En el eje Y (adimensional) quedan reflejados los códigos de los laboratorios participantes y en el eje X (las unidades son las mismas que las del ensayo que se está analizando) las medias aritméticas intra-laboratorios representadas por punto de color negro.

CICE Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 160 HZ (DB) Análisis A. Estudio pre-estadístico

Apartado A.2. Gráficos de dispersión de valores individuales

ANALISIS GRAFICOS DE DISPERSION INDIVIDUAL (ANTES DE ANALISIS ESTADISTICO)

Dispersión de los valores individuales respecto de la media aritmética inter-laboratorios (32,58; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (34,04/31,12; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (35,50/29,66; líneas rojas de trazo continuo).

En el eje Y (adimensional) queda reflejado el código del laboratorio participante y en el eje X (las unidades son las de los resultados del ensayo que se está analizando) los resultados individuales: el primero (X_{i,1}) se representa con un cuadrado azul, el segundo (X_{i,2}) con un círculo verde, el tercero (X_{i,3}) con un triángulo grís y el cuarto (X_{i,4}) con un rombo amarillo.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 160 HZ (DB)

Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	Pasa A	Observaciones
17	34,30	31,00	31,10	34,50	33,20	32,82	1,690	0,73	✓	
37	30,50	32,00	32,20	31,00	32,10	31,56	0,764	-3,14	✓	
74	30,59	31,70	31,03	29,41	29,86	30,52	0,912	-6,33	✓	
80	31,90	30,20	33,00	32,30	35,20	32,52	1,819	-0,19	✓	
102	33,50	34,60	35,50	34,70	36,20	34,90	1,017	7,11	✓	
166	34,70	34,38	34,02	34,04	33,84	34,20	0,341	4,95	✓	
168	31,40	30,30	32,50	30,60	31,90	31,34	0,907	-3,81	✓	
182	33,10	34,80	31,50	30,90	33,70	32,80	1,597	0,67	✓	

NOTAS:

 $^{\rm 04}$ El código colorimétrico empleado para las celdas es:

[máximo]

[mínimo

^{01 &}quot;X_{i,j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_Li" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma.

Comité de infraestructuras para la Calidad de la Edificación

DNT FRECUENCIA 160 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

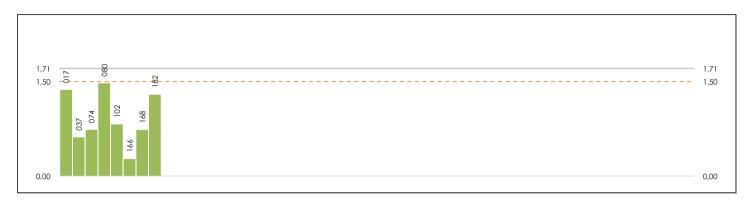
Apartado B.1. Gráfico de consistencia inter-laboratorios "h" de Mandel

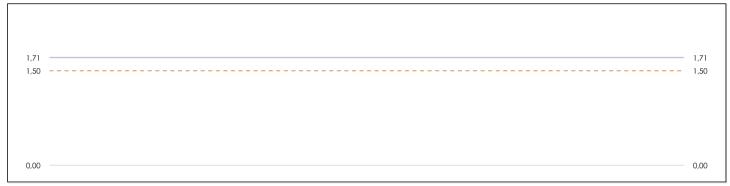
ANALISIS GRAFICO DE CONSISTENCIA INTER-LABORATORIOS

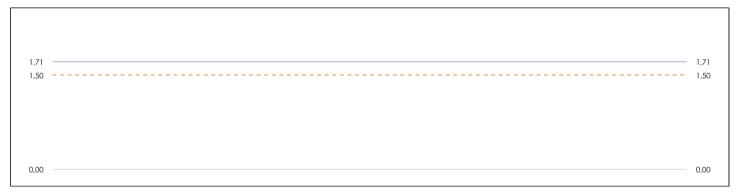
Análisis gráfico de consistencia inter-laboratorios "h" de Mandel. En él se representan las medias aritméticas inter-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación






DNT FRECUENCIA 160 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.2. Gráfico de consistencia intra-laboratorios "k" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTRA-LABORATORIOS

Análisis gráfico de consistencia intra-laboratorios "k" de Mandel. En él se representan las medias aritméticas intra-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes y el número de ensayos efectuados).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 160 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

17 34,30 31,000 31,100 34,500 33,200 32,820 1,690 0,73 0,16 1,37 37 30,50 32,000 32,200 31,000 32,100 31,560 0,764 -3,14 -0,70 0,62 74 30,59 31,701 31,030 29,414 29,857 30,519 0,912 -6,33 -1,41 0,74 1,413 0,44 80 31,90 30,200 33,000 32,520 32,520 1,819 -0,19 -0,04 1,48 102 33,50 34,600 35,500 34,700 36,200 34,900 1,017 7,11 1,59 0,83 1,588 166 34,70 34,380 34,022 34,037 33,841 34,195 0,341 4,95 1,10 0,28 168 31,40 30,300 32,500 30,600 31,900 31,340 0,907 -3,81 -0,85 0,74 0,44 182 33,10 34,800 31,500 30,900 33,700 32,800 1,597 0,67 0,15		
37 30,50 32,000 32,200 31,000 32,100 31,560 0,764 -3,14 -0,70 0,62 74 30,59 31,701 31,030 29,414 29,857 30,519 0,912 -6,33 -1,41 0,74 1,413 0,44 80 31,90 30,200 33,000 32,300 35,200 32,520 1,819 -0,19 -0,04 1,48 102 33,50 34,600 35,500 34,700 36,200 34,900 1,017 7,11 1,59 0,83 1,588 166 34,70 34,380 34,022 34,037 33,841 34,195 0,341 4,95 1,10 0,28 168 31,40 30,300 32,500 30,600 31,900 31,340 0,907 -3,81 -0,85 0,74 0,44		
74 30,59 31,701 31,030 29,414 29,857 30,519 0,912 -6,33 -1,41 0,74 1,413 0,44 80 31,90 30,200 33,000 32,300 35,200 32,520 1,819 -0,19 -0,04 1,48 102 33,50 34,600 35,500 34,700 36,200 34,900 1,017 7,11 1,59 0,83 1,588 166 34,70 34,380 34,022 34,037 33,841 34,195 0,341 4,95 1,10 0,28 168 31,40 30,300 32,500 30,600 31,900 31,340 0,907 -3,81 -0,85 0,74 0,44		√
80 31,90 30,200 33,000 32,300 35,200 32,520 1,819 -0,19 -0,04 1,48 102 33,50 34,600 35,500 34,700 36,200 34,900 1,017 7,11 1,59 0,83 1,588 166 34,70 34,380 34,022 34,037 33,841 34,195 0,341 4,95 1,10 0,28 168 31,40 30,300 32,500 30,600 31,900 31,340 0,907 -3,81 -0,85 0,74 0,44	907	√
102 33,50 34,600 35,500 34,700 36,200 34,900 1,017 7,11 1,59 0,83 1,588 166 34,70 34,380 34,022 34,037 33,841 34,195 0,341 4,95 1,10 0,28 168 31,40 30,300 32,500 30,600 31,900 31,340 0,907 -3,81 -0,85 0,74 0,44	577	
166 34,70 34,380 34,022 34,037 33,841 34,195 0,341 4,95 1,10 0,28 168 31,40 30,300 32,500 30,600 31,900 31,340 0,907 -3,81 -0,85 0,74 0,44	0,2929	→
168 31,40 30,300 32,500 30,600 31,900 31,340 0,907 -3,81 -0,85 0,74 0,44	0,2727	

NOTAS:

 $^{\rm 04}$ El código colorimétrico empleado para las celdas es:

[aberrante]

[anómalo]

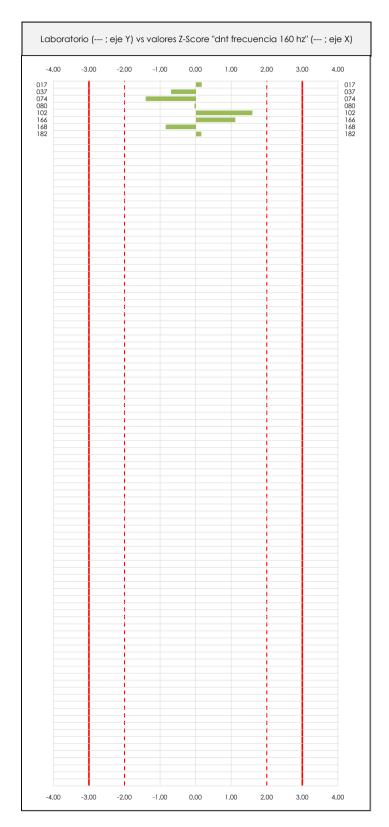
[máximo]

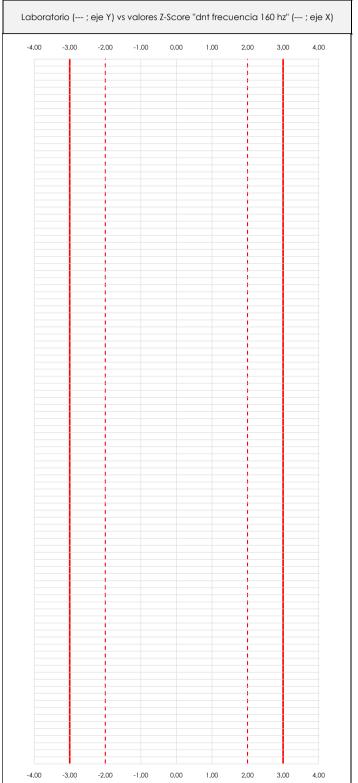
[mínimo]

^{01 &}quot;X_{i j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

^{03 &}quot;h_i y k_i", "C_i", "G_{sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.


Comité de infraestructuras para la Calidad de la Edificación



SACESubcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 160 HZ (DB) Análisis C. Evaluación Z-Score

Apartado C.1. Análisis gráfico Altman Z-Score

ANALISIS GRAFICO Z-SCORE

Diagrama Z-Score para los resultados aportados por los laboratorios. Estos se considerarán satisfactorios (S) si el valor absoluto del Z-Score es menor o igual a 2 unidades, dudoso si está comprendido entre 2 y 3 unidades e insatisfactorio si es mayor o igual a 3 unidades.

Los resultados satisfactorios quedan reflejados entre las dos líneas rojas discontinuas, líneas de referencia en la evaluación Z-Score.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 160 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	Pasa A	Pasa B	Total	Causa	Iteración	Z-Score	Evaluación
17	2420	21.00	21.10	24.50	22.00	20.00	1,690	0.72	,	,				0.1/2	
17	34,30	31,00	31,10	34,50	33,20	32,82		0,73	√	√	√			0,163	S S
74	30,50	32,00	32,20 31,03	31,00 29,41	32,10 29,86	31,56	0,764	-3,14 -6,33	→		√			-0,700 -1,413	S
80	31,90	30,20	33,00	32,30	35,20	32,52	1,819	-0,19	→					-0,042	S
102	33,50	34,60	35,50	34,70	36,20	34,90	1,017	7,11	<u> </u>		<u> </u>			1,588	S
166	34,70	34,38	34,02	34,04	33,84	34,20	0,341	4,95	<u> </u>		<u> </u>			1,105	S
168	31,40	30,30	32,50	30,60	31,90	31,34	0,907	-3,81	<u> </u>		<u>√</u>			-0,850	S
182	33,10	34,80	31,50	30,90	33,70	32,80	1,597	0,67	√	<u> </u>	<u>√</u>			0,149	S

NOTAS:

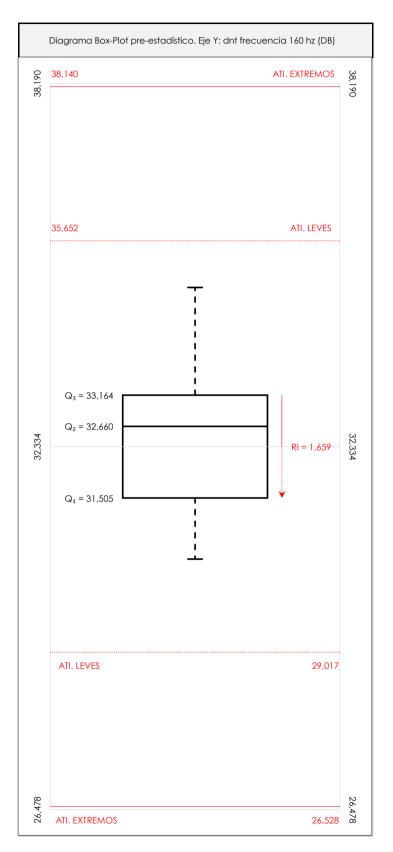
^{01 &}quot;X_{i,j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

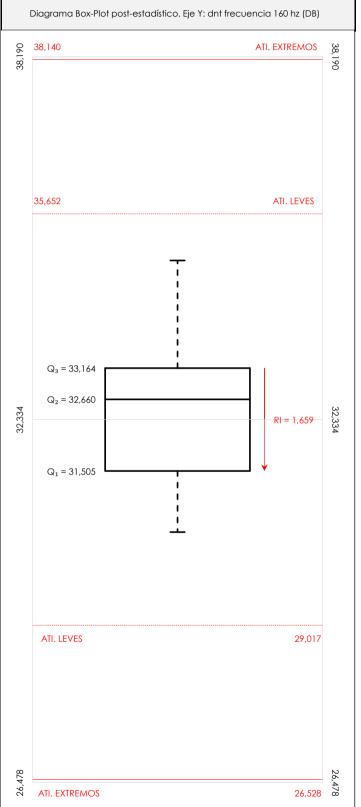
^{02 &}quot;S_{Li}" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

 $^{^{03}}$ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leqslant 2] [Dudoso (D) - si 2 < | ZS | \leqslant 3] [Insatisfactorio (I) - si | ZS | > 3].

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 160 HZ (DB)

Análisis D. Estudios post-estadisticos

Apartado D.3. Diagramas Box-Plot o de Caja y Bigotes

ANALISIS GRAFICO DE CAJA Y BIGOTES (ANTES Y DESPUES DE ANALISIS ESTADISTICO)

Diagramas de caja y bigotes (Box Plot) de las medias aritméticas de los resultados aportados por los laboratorios <u>antes</u> (diagrama de la izquierda. Este incluye valores aberrantes y anómalos) y <u>después</u> (diagrama de la derecha. No incluye los valores descartados a lo largo del estudio) de análisis estadístico.

En ambos se han representado: el primer cuartil (Q_1 ; 25% de los datos), el segundo cuartil o la mediana (Q_2 ; 50% de los datos), el tercer cuartil (Q_3 ; 75% de los datos), el rango intercuartílico (RI ; cuartil tres menos cuartil uno) y los límites de valores atípicos leves (f_3 y f_1 para el máximo y mínimo respectivamente ; líneas discontinuas de color rojo) y extremos (f_3 * y f_1 * para el máximo y mínimo respectivamente ; líneas continuas de color rojo).

Comité de infraestructuras para la Calidad de la Edificación

DNT FRECUENCIA 160 HZ (DB)

Conclusiones

Determinación de la repetibilidad y reproducibilidad

SACE Subcomisión Administrativa para la Calidad de la Edificación

El análisis estadístico ElLA20 para el ensayo "DNT FRECUENCIA 160 HZ", ha contado con la participación de un total de 8 laboratorios, debiendo haber aportado cada uno de ellos, un total de 5 determinaciones individuales además de su valor medio.

Tras analizar los resultados podemos concluir que, para cumplir con los criterios estadísticos establecidos en el informe, un total de 0 laboratorios han sido apartados de la evaluación final: 0 en el Análisis Pre-Estadístico (por no cumplir el criterio de validación y/o el procedimiento de ejecución recogido en la norma de ensayo) y 0 en el Análisis Estadístico (por resultar anómalos o aberrantes en las técnicas gráficas de consistencia de Mandel y en los ensayos de detección de resultados numéricos de Cochran y Grubbs), al cabo de 1 iteraciones.

De cada uno de los análisis (pre-estadístico y estadístico), se obtienen las siguientes tablas:

TIPO DE ANALISIS	PRE-ESTADISTICO							ESTADISTICO					
Variables	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$	
Valor Máximo (max ; %)	34,70	34,80	35,50	34,70	36,20	34,90	34,70	34,80	35,50	34,70	36,20	34,90	
Valor Mínimo (min ; %)	30,50	30,20	31,03	29,41	29,86	30,52	30,50	30,20	31,03	29,41	29,86	30,52	
Valor Promedio (M; %)	32,50	32,37	32,61	32,18	33,25	32,58	32,50	32,37	32,61	32,18	33,25	32,58	
Desviación Típica (SDL ;)	1,63	1,94	1,54	2,01	1,99	1,46	1,63	1,94	1,54	2,01	1,99	1,46	
Coef. Variación (CV ;)	0,05	0,06	0,05	0,06	0,06	0,04	0,05	0,06	0,05	0,06	0,06	0,04	
VARIABLES	S_r^2	r		S_L^2	S_R^{2}	R	S_r^2	r		S_L^2	S_R^{-2}	R	
Valor Calculado	1,513	3,40)9 1	,830	3,343	5,068	1,513	3,40)9 1	,830	3,343	5,068	
Valor Referencia													

Asimismo, acompañando a éstas tablas y dependiendo del análisis que se esté llevando a cabo, se introducen los indicadores estadísticos "h y k" de Mandel y los valores críticos "C" de Cochran y " G_{Sim} y G_{Dob} " de Grubbs, todos ellos adimensionales, obtenidos de las tablas 4, 5, 6 y 7 de la norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios y del número de ensayos efectuados por cada uno de ellos:

TIPO DE ANALISIS		PRE	-ESTADISTI	со		ESTADISTICO					
VARIABLES	h	k	С	G_{sim}	G_Dob	h	k	С	G_{sim}	G_{Dob}	
Nivel de Significación 1%	2,06	1,71	0,463	2,274	0,0563	2,06	1,71	0,463	2,274	0,0563	
Nivel de Significación 5%	1,75	1,50	0,391	2,126	0,1101	1,75	1,50	0,391	2,126	0,1101	

Con los resultados de los laboratorios, que tras los dos análisis estadísticos son evaluados por Z-Score, se han obtenido: 8 resultados satisfactorios, 0 resultados dudosos y 0 resultados insatisfactorios.

Respecto a los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística recogida en la ISO 17025, sobre las dispersiones de los resultados individuales y su media, en forma de varianzas o desviaciones estándar, también conocida como ANOVA (siglas de analisys of varience).

Sabiendo que una varianza es la suma de cuadrados dividida por un número, que se llama grados de libertad, que depende del número de participantes menos 1, se puede decir que la imprecisión del ensayo se descompone en dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad (variabilidad intralaboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad debida al cambio de laboratorio).

Las condiciones de repetibilidad de este ensayo son: mismo laborante, mismo laboratorio y mismo equipo de medición utilizado dentro de un período de tiempo corto. Por ende, las condiciones de reproducibilidad para la misma muestra y ensayo, cambian en: el laborante, el laboratorio, el equipo y las condiciones de uso y tiempo.

Comité de infraestructuras para la Calidad de la Edificación

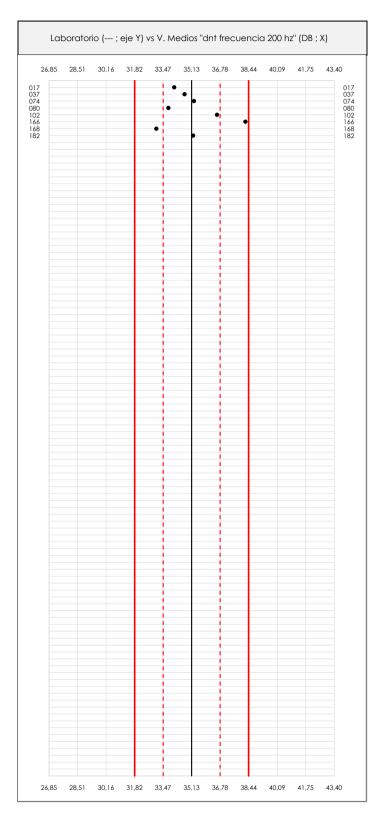
SACE

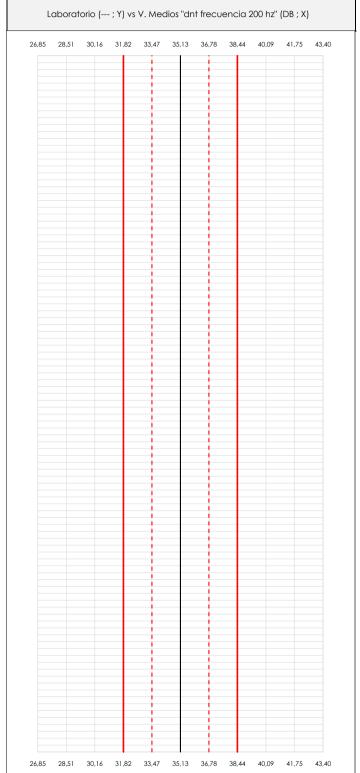
Subcomisión Administrativa para la Calidad de la Edificación

ANÁLISIS ESTADÍSTICO ACÚSTICA

DNT FRECUENCIA 200 HZ

Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 200 HZ (DB) Análisis A. Estudio pre-estadístico

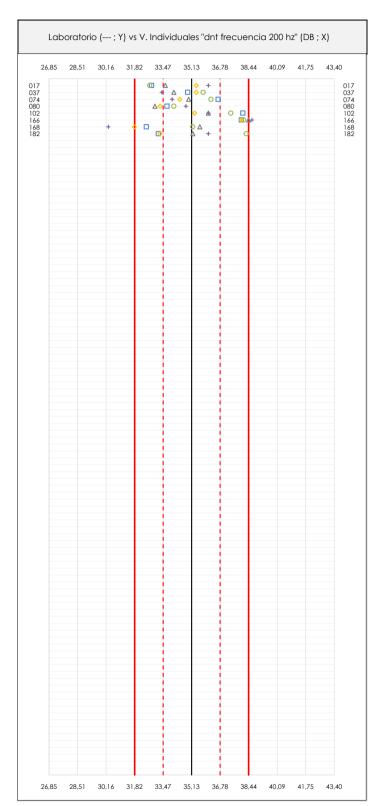
Apartado A.1. Gráficos de dispersión de valores medios

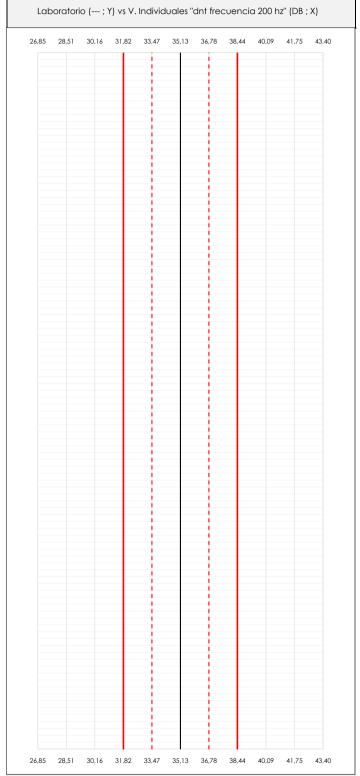
ANALISIS GRAFICO DE DISPERSION MEDIA (ANTES DE ANALISIS ESTADISTICO)

Dispersión de las medias aritméticas intra-laboratorios respecto de la media aritmética inter-laboratorios (35,13 ; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (36,78/33,48 ; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (38,43/31,82 ; líneas rojas de trazo continuo).

En el eje Y (adimensional) quedan reflejados los códigos de los laboratorios participantes y en el eje X (las unidades son las mismas que las del ensayo que se está analizando) las medias aritméticas intra-laboratorios representadas por punto de color negro.

CICE Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 200 HZ (DB) Análisis A. Estudio pre-estadístico

Apartado A.2. Gráficos de dispersión de valores individuales

ANALISIS GRAFICOS DE DISPERSION INDIVIDUAL (ANTES DE ANALISIS ESTADISTICO)

Dispersión de los valores individuales respecto de la media aritmética inter-laboratorios (35,13; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (36,78/33,48; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (38,43/31,82; líneas rojas de trazo continuo).

En el eje Y (adimensional) queda reflejado el código del laboratorio participante y en el eje X (las unidades son las de los resultados del ensayo que se está analizando) los resultados individuales: el primero (X_{i,1}) se representa con un cuadrado azul, el segundo (X_{i,2}) con un círculo verde, el tercero (X_{i,3}) con un triángulo grís y el cuarto (X_{i,4}) con un rombo amarillo.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 200 HZ (DB)

Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{Li}	D _{i arit %}	Pasa A	Observaciones
17	32,80	32,70	33,60	35,40	36,10	34,12	1,548	-2,87	✓	
37	34,90	35,80	34,10	35,40	33,40	34,72	0,973	-1,16	✓	
74	36,67	36,25	34,95	34,44	34,00	35,26	1,154	0,38	✓	
80	33,70	34,10	33,00	33,30	34,80	33,78	0,705	-3,84	✓	
102	38,10	37,40	36,10	35,30	36,10	36,60	1,127	4,19	✓	
166	38,02	38,14	38,43	38,02	38,62	38,25	0,269	8,88	✓	
168	32,50	35,20	35,60	31,80	30,30	33,08	2,266	-5,83	✓	
182	33,20	38,30	35,20	33,30	36,10	35,22	2,123	0,26	✓	
-										

NOTAS:

[máximo]

[mínimo

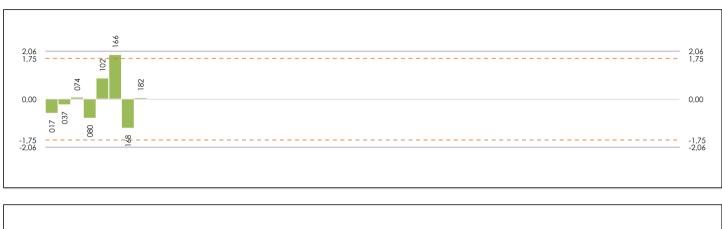
^{01 &}quot;X_{i j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_Li" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma.

 $^{^{\}rm 04}$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación



DNT FRECUENCIA 200 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

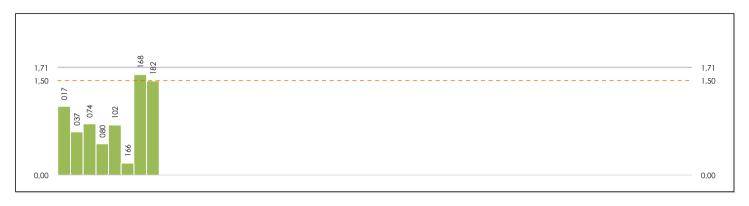
Apartado B.1. Gráfico de consistencia inter-laboratorios "h" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTER-LABORATORIOS

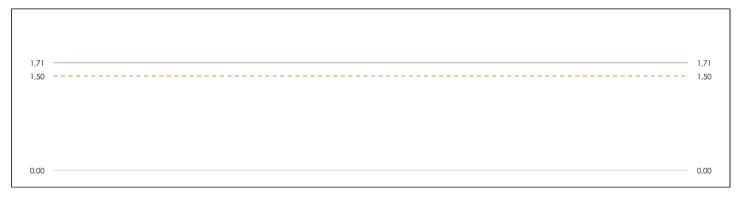
Análisis gráfico de consistencia inter-laboratorios "h" de Mandel. En él se representan las medias aritméticas inter-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación






DNT FRECUENCIA 200 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.2. Gráfico de consistencia intra-laboratorios "k" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTRA-LABORATORIOS

Análisis gráfico de consistencia intra-laboratorios "k" de Mandel. En él se representan las medias aritméticas intra-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes y el número de ensayos efectuados).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 200 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	h _i	k _i	C _i	G _{Sim Inf}	G _{Sim Sup}	G _{Dob Inf}	G _{Dob Sup}	Pasa B
17	20.00	00.700	00.400	05.400	0/100	0.4.100	1.540	0.07	0.41	1.00						
17 37	32,80 34,90	32,700	33,600	35,400	36,100	34,120	1,548	-2,87	-0,61	1,09						√
74	36,67	35,800 36,252	34,100 34,952	35,400 34,439	33,400	34,720 35,263	0,973 1,154	-1,16 0,38	-0,25 0,08	0,68						→
80	33,70	34,100	33,000	33,300	34,800	33,780	0,705	-3,84	-0,82	0,50				0,5847		
102	38,10	37,400	36,100	35,300	36,100	36,600	1,127	4,19	0,89	0,79				0,3047	0,1943	
166	38,02	38,145	38,432	38,020	38,624	38,248	0,269	8,88	1,89*	0,19	0,318		1,887		0,1943	
168	32,50	35,200	35,600	31,800	30,300	33,080	2,266	-5,83	-1,24	1,59*	0,318	1,240	,	0,5847		√
182	33,20	38,300	35,200	33,300	36,100	35,220	2,123	0,26	0,06	1,49						√

NOTAS:

 $^{\rm 04}$ El código colorimétrico empleado para las celdas es:

[aberrante]

[anómalo]

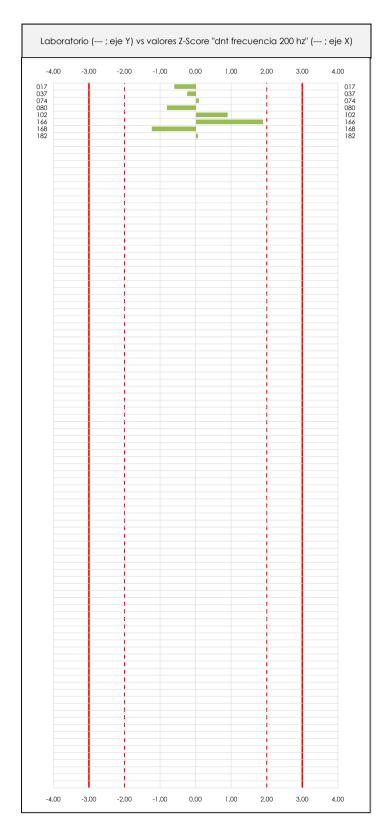
[máximo]

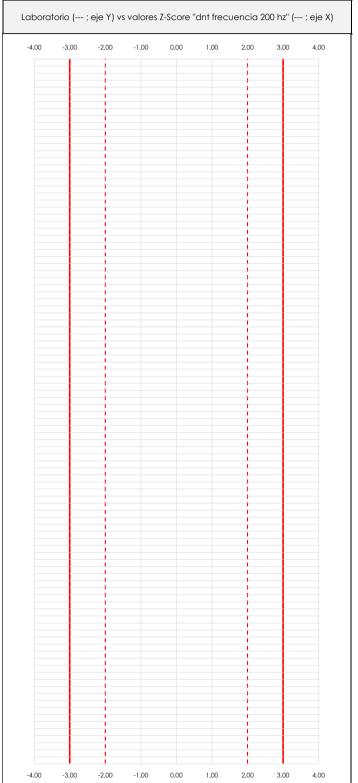
[mínimo]

^{01 &}quot;X_{i j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

^{03 &}quot;h_i y k_i", "C_i", "G_{sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.


Comité de infraestructuras para la Calidad de la Edificación



SACESubcomisión Administrativa para la
Calidad de la Edificación

DNT FRECUENCIA 200 HZ (DB) Análisis C. Evaluación Z-Score

Apartado C.1. Análisis gráfico Altman Z-Score

ANALISIS GRAFICO Z-SCORE

Diagrama Z-Score para los resultados aportados por los laboratorios. Estos se considerarán satisfactorios (S) si el valor absoluto del Z-Score es menor o igual a 2 unidades, dudoso si está comprendido entre 2 y 3 unidades e insatisfactorio si es mayor o igual a 3 unidades.

Los resultados satisfactorios quedan reflejados entre las dos líneas rojas discontinuas, líneas de referencia en la evaluación Z-Score.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 200 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	Pasa A	Pasa B	Total	Causa	Iteración	Z-Score	Evaluación
17	32,80	32,70	33,60	35,40	36,10	34,12	1,548	-2,87	√	√	√			-0,610	S
37	34,90	35,80	34,10	35,40	33,40	34,72	0,973	-1,16	√	√	√			-0,247	S
74	36,67	36,25	34,95	34,44	34,00	35,26	1,154	0,38	√	√	√			0,081	S
80	33,70	34,10	33,00	33,30	34,80	33,78	0,705	-3,84	√	√	√			-0,816	S
102	38,10	37,40	36,10	35,30	36,10	36,60	1,127	4,19	√	✓	√			0,890	S
166	38,02	38,14	38,43	38,02	38,62	38,25	0,269	8,88	√	√	√			1,887	S
168	32,50	35,20	35,60	31,80	30,30	33,08	2,266	-5,83	√	✓	✓			-1,240	S
182	33,20	38,30	35,20	33,30	36,10	35,22	2,123	0,26	✓	✓	√			0,055	S

NOTAS:

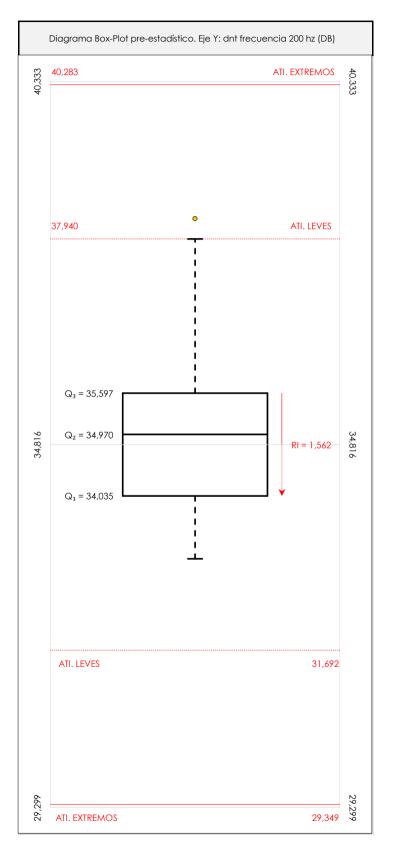
^{01 &}quot;X_{i,j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

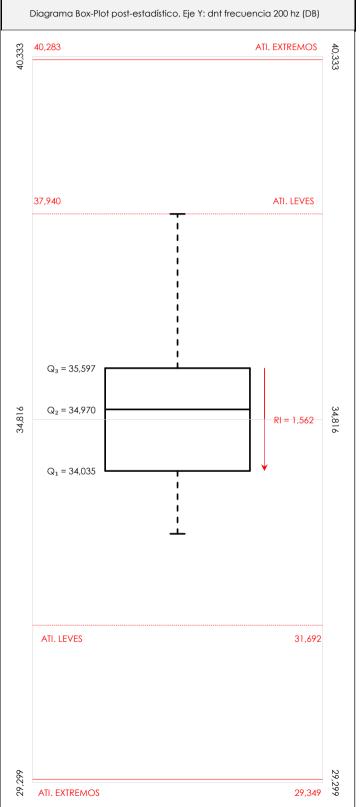
^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

 $^{^{03}}$ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leqslant 2] [Dudoso (D) - si 2 < | ZS | \leqslant 3] [Insatisfactorio (I) - si | ZS | > 3].

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 200 HZ (DB)

Análisis D. Estudios post-estadisticos

Apartado D.3. Diagramas Box-Plot o de Caja y Bigotes

ANALISIS GRAFICO DE CAJA Y BIGOTES (ANTES Y DESPUES DE ANALISIS ESTADISTICO)

Diagramas de caja y bigotes (Box Plot) de las medias aritméticas de los resultados aportados por los laboratorios antes (diagrama de la izquierda. Este incluye valores aberrantes y anómalos) y después (diagrama de la derecha. No incluye los valores descartados a lo largo del estudio) de análisis estadístico.

En ambos se han representado: el primer cuartil (Q_1 ; 25% de los datos), el segundo cuartil o la mediana (Q_2 ; 50% de los datos), el tercer cuartil (Q_3 ; 75% de los datos), el rango intercuartílico (RI ; cuartil tres menos cuartil uno) y los límites de valores atípicos leves (f_3 y f_1 para el máximo y mínimo respectivamente ; líneas discontinuas de color rojo) y extremos (f_3 * y f_1 * para el máximo y mínimo respectivamente ; líneas continuas de color rojo).

Comité de infraestructuras para la Calidad de la Edificación

SACE Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 200 HZ (DB)

Conclusiones

Determinación de la repetibilidad y reproducibilidad

El análisis estadístico EILA20 para el ensayo "DNT FRECUENCIA 200 HZ", ha contado con la participación de un total de 8 laboratorios, debiendo haber aportado cada uno de ellos, un total de 5 determinaciones individuales además de su valor medio.

Tras analizar los resultados podemos concluir que, para cumplir con los criterios estadísticos establecidos en el informe, un total de 0 laboratorios han sido apartados de la evaluación final: 0 en el Análisis Pre-Estadístico (por no cumplir el criterio de validación y/o el procedimiento de ejecución recogido en la norma de ensayo) y 0 en el Análisis Estadístico (por resultar anómalos o aberrantes en las técnicas gráficas de consistencia de Mandel y en los ensayos de detección de resultados numéricos de Cochran y Grubbs), al cabo de 1 iteraciones.

De cada uno de los análisis (pre-estadístico y estadístico), se obtienen las siguientes tablas:

TIPO DE ANALISIS			PRE-ES	TADISTIC	:0				ESTA	DISTICO		
Variables	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$
Valor Máximo (max ; %)	38,10	38,30	38,43	38,02	38,62	38,25	38,10	38,30	38,43	38,02	38,62	38,25
Valor Mínimo (min ; %)	32,50	32,70	33,00	31,80	30,30	33,08	32,50	32,70	33,00	31,80	30,30	33,08
Valor Promedio (M; %)	34,99	35,99	35,12	34,62	34,93	35,13	34,99	35,99	35,12	34,62	34,93	35,13
Desviación Típica (SDL ;)	2,32	1,97	1,69	1,88	2,46	1,65	2,32	1,97	1,69	1,88	2,46	1,65
Coef. Variación (CV ;)	0,07	0,05	0,05	0,05	0,07	0,05	0,07	0,05	0,05	0,05	0,07	0,05
VARIABLES	S_r^2	r		$S_L^{\ 2}$	S_R^2	R	S_r^2	r		S_L^2	S_R^{2}	R
Valor Calculado	2,020	3,93	39 2	2,328	4,348	5,780	2,020	3,93	39 2	,328	4,348	5,780
Valor Referencia												

Asimismo, acompañando a éstas tablas y dependiendo del análisis que se esté llevando a cabo, se introducen los indicadores estadísticos "h y k" de Mandel y los valores críticos "C" de Cochran y " G_{Sim} y G_{Dob} " de Grubbs, todos ellos adimensionales, obtenidos de las tablas 4, 5, 6 y 7 de la norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios y del número de ensayos efectuados por cada uno de ellos:

TIPO DE ANALISIS		PRE	-ESTADISTI	со			E	STADISTIC	5	
VARIABLES	h	k	С	G_{sim}	G_{Dob}	h	k	С	G_{sim}	G_{Dob}
Nivel de Significación 1%	2,06	1,71	0,463	2,274	0,0563	2,06	1,71	0,463	2,274	0,0563
Nivel de Significación 5%	1,75	1,50	0,391	2,126	0,1101	1,75	1,50	0,391	2,126	0,1101

Con los resultados de los laboratorios, que tras los dos análisis estadísticos son evaluados por Z-Score, se han obtenido: 8 resultados satisfactorios, 0 resultados dudosos y 0 resultados insatisfactorios.

Respecto a los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística recogida en la ISO 17025, sobre las dispersiones de los resultados individuales y su media, en forma de varianzas o desviaciones estándar, también conocida como ANOVA (siglas de analisys of varience).

Sabiendo que una varianza es la suma de cuadrados dividida por un número, que se llama grados de libertad, que depende del número de participantes menos 1, se puede decir que la imprecisión del ensayo se descompone en dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad (variabilidad intralaboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad debida al cambio de laboratorio).

Las condiciones de repetibilidad de este ensayo son: mismo laborante, mismo laboratorio y mismo equipo de medición utilizado dentro de un período de tiempo corto. Por ende, las condiciones de reproducibilidad para la misma muestra y ensayo, cambian en: el laborante, el laboratorio, el equipo y las condiciones de uso y tiempo.

Comité de infraestructuras para la Calidad de la Edificación

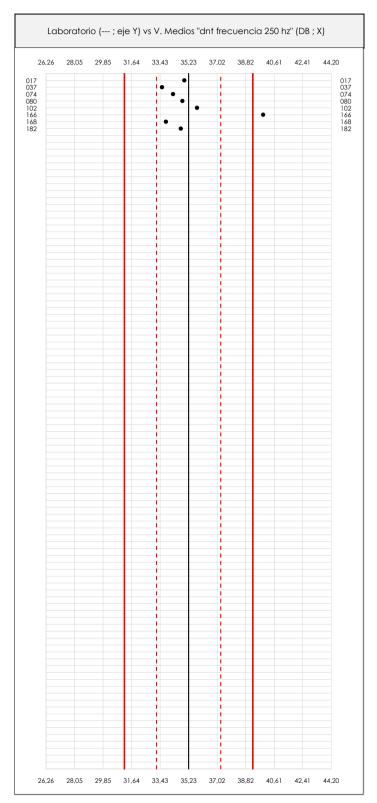
SACE

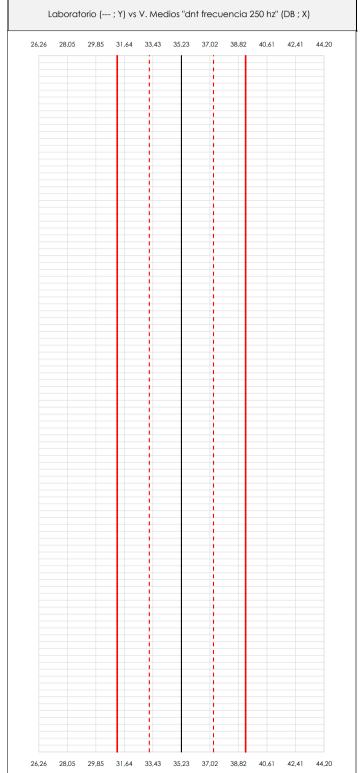
Subcomisión Administrativa para la Calidad de la Edificación

ANÁLISIS ESTADÍSTICO ACÚSTICA

DNT FRECUENCIA 250 HZ

Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 250 HZ (DB) Análisis A. Estudio pre-estadístico

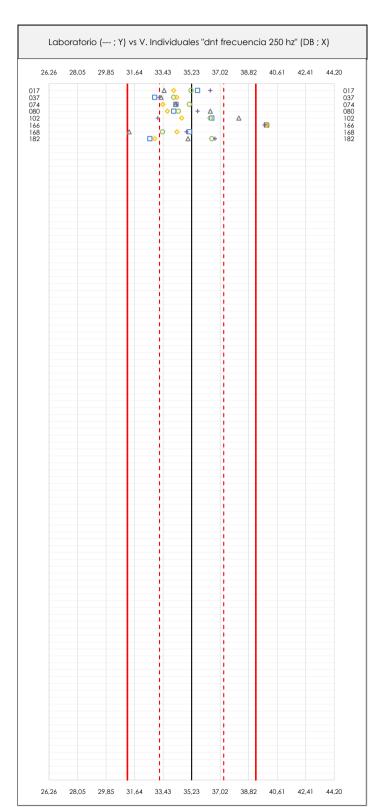
Apartado A.1. Gráficos de dispersión de valores medios

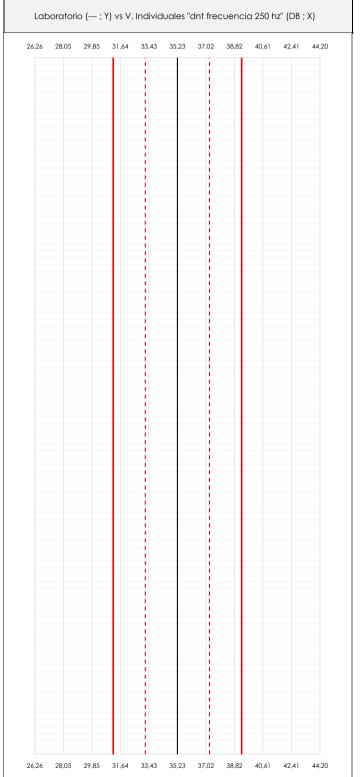
ANALISIS GRAFICO DE DISPERSION MEDIA (ANTES DE ANALISIS ESTADISTICO)

Dispersión de las medias aritméticas intra-laboratorios respecto de la media aritmética inter-laboratorios (35,23 ; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (37,25/33,21 ; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (39,27/31,19 ; líneas rojas de trazo continuo).

En el eje Y (adimensional) quedan reflejados los códigos de los laboratorios participantes y en el eje X (las unidades son las mismas que las del ensayo que se está analizando) las medias aritméticas intra-laboratorios representadas por punto de color negro.

CICE Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 250 HZ (DB) Análisis A. Estudio pre-estadístico

Apartado A.2. Gráficos de dispersión de valores individuales

ANALISIS GRAFICOS DE DISPERSION INDIVIDUAL (ANTES DE ANALISIS ESTADISTICO)

Dispersión de los valores individuales respecto de la media aritmética inter-laboratorios (35,23; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (37,25/33,21; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (39,27/31,19; líneas rojas de trazo continuo).

En el eje Y (adimensional) queda reflejado el código del laboratorio participante y en el eje X (las unidades son las de los resultados del ensayo que se está analizando) los resultados individuales: el primero (X_{i,1}) se representa con un cuadrado azul, el segundo (X_{i,2}) con un círculo verde, el tercero (X_{i,3}) con un triángulo grís y el cuarto (X_{i,4}) con un rombo amarillo.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 250 HZ (DB) Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	Х _{і 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	Pasa A	Observaciones
17	35,60	35,20	33,50	34,10	36,40	34,96	1,163	-0,76	√	
37	32,90	34,10	33,30	34,30	33,20	33,56	0,607	-4,74		
74	34,24	35,09	34,22	33,41	34,28	34,25	0,594	-2,78	<u> </u>	
80	34,10	34,40	36,40	33,70	35,60	34,84	1,124	-1,10	√	
102	36,50	36,40	38,20	34,60	33,10	35,76	1,958	1,51	√	
166	39,94	39,97	39,95	39,93	39,82	39,92	0,060	13,32	✓	
168	35,10	33,40	31,30	34,30	34,90	33,80	1,546	-4,06	√	
182	32,60	36,50	35,00	32,90	36,70	34,74	1,935	-1,39	✓	

NOTAS:

[máximo]

[mínimo

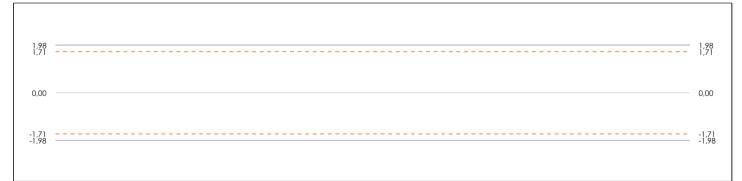
^{01 &}quot;X_{i j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_{L1}" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma.

 $^{^{\}rm 04}$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación


DNT FRECUENCIA 250 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

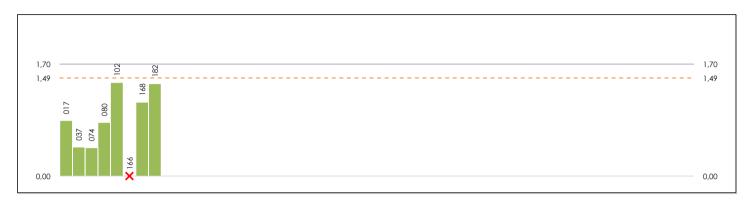
Apartado B.1. Gráfico de consistencia inter-laboratorios "h" de Mandel

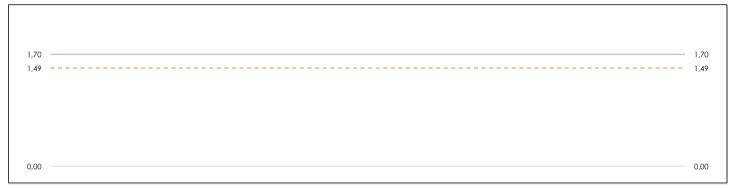
ANALISIS GRAFICO DE CONSISTENCIA INTER-LABORATORIOS

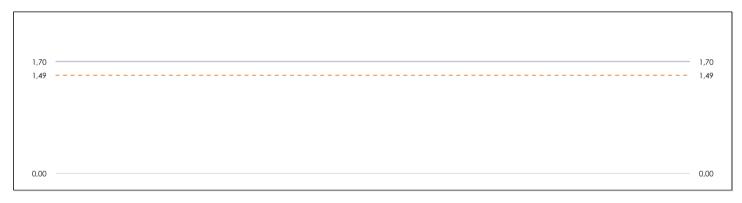
Análisis gráfico de consistencia inter-laboratorios "h" de Mandel. En él se representan las medias aritméticas inter-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación






DNT FRECUENCIA 250 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.2. Gráfico de consistencia intra-laboratorios "k" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTRA-LABORATORIOS

Análisis gráfico de consistencia intra-laboratorios "k" de Mandel. En él se representan las medias aritméticas intra-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes y el número de ensayos efectuados).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 250 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	h _i	k _i	Ci	G _{Sim Inf}	G _{Sim Sup}	G _{Dob Inf}	G _{Dob Sup}	Pasa B
	05.40	05.000	00.500	0.4.100	0.4.400	0.4.0.4.0	11/0	11/	0.50	0.04					0.07.10	
17	35,60	35,200	33,500	34,100	36,400	34,960	1,163	1,16	0,53	0,84					0,3740	√
37	32,90	34,100	33,300	34,300	33,200	33,560	0,607	-2,89	-1,33	0,44		1,329		0,3532		√
74	34,24	35,093	34,218	33,414	34,280	34,249	0,594	-0,90	-0,41	0,43						√
80	34,10	34,400	36,400 38,200	33,700	35,600	34,840	1,124	0,81	0,37	0,82			1 /00		0.2740	√
102	36,50 39,94	39,974	39,951	34,600 39,931	33,100 39,819	35,760 39,922	1,958	3,48	1,60	1,42			1,600		0,3740	X
168	35,10	33,400	31,300	34,300	34,900	33,800	1,546	-2,19	-1,01	1,12				0,3532		
182	32,60	36,500	35,000	32,900	36,700	34,740	1,935	0,53	0,24	1,40				0,0002		- ✓
102	02,00	30,300	33,000	32,700	30,700	04,740	1,700	0,30	0,24	1,40						

NOTAS:

 $^{\rm 04}$ El código colorimétrico empleado para las celdas es:

[aberrante]

[anómalo]

[máximo]

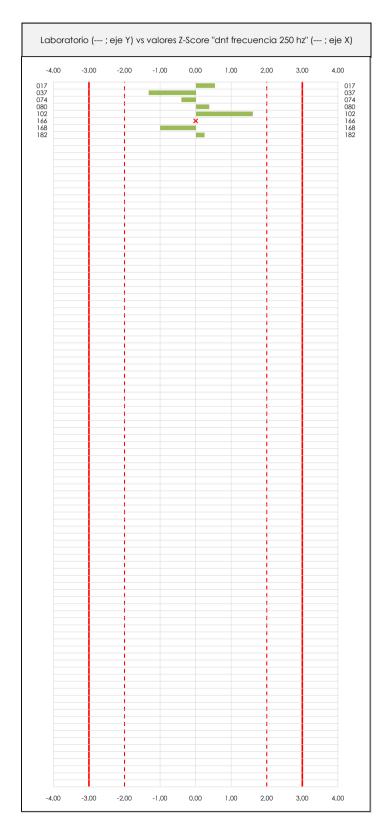
[mínimo]

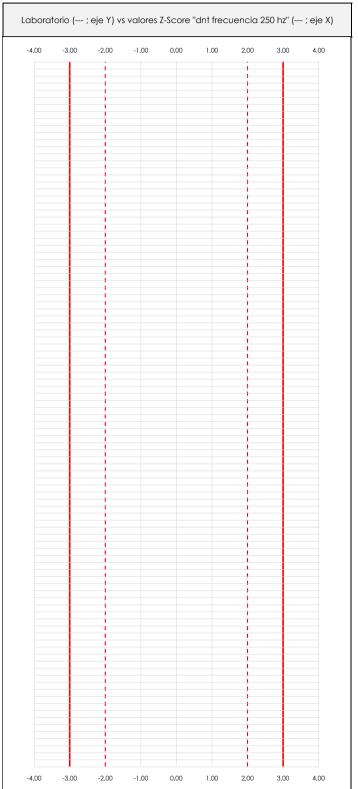
^{01 &}quot;X_{i j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

^{03 &}quot;h_i y k_i", "C_i", "G_{sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.

Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 250 HZ (DB) Análisis C. Evaluación Z-Score

Apartado C.1. Análisis gráfico Altman Z-Score

ANALISIS GRAFICO Z-SCORE

Diagrama Z-Score para los resultados aportados por los laboratorios. Estos se considerarán satisfactorios (S) si el valor absoluto del Z-Score es menor o igual a 2 unidades, dudoso si está comprendido entre 2 y 3 unidades e insatisfactorio si es mayor o igual a 3 unidades.

Los resultados satisfactorios quedan reflejados entre las dos líneas rojas discontinuas, líneas de referencia en la evaluación Z-Score.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 250 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	Pasa A	Pasa B	Total	Causa	Iteración	Z-Score	Evaluación
17	25.70	25.00	22.50	2410	27.40	2404	1.1/0	1.1.						0.505	
17	35,60	35,20	33,50	34,10	36,40	34,96	1,163	1,16	√	√	√			0,535	S
37	32,90	34,10	33,30	34,30	33,20	33,56	0,607	-2,89	√	<u> </u>	<u> </u>			-1,329	S
74	34,24	35,09	34,22	33,41	34,28	34,25	0,594	-0,90	√	<u> </u>	<u> </u>			-0,412	S
80	34,10	34,40	36,40	33,70	35,60	34,84	1,124	0,81	√	<u> </u>	<u> </u>			0,375	S
102	36,50 39,94	36,40 39,97	38,20	34,60	33,10	35,76 39,92	1,958	3,48	√	√	√	A D	0	1,600	S
166			39,95	39,93	39,82		1.54/	-2,19	√	X	X ✓	AB	0	1.010	
168 182	35,10 32,60	33,40 36,50	31,30 35,00	34,30 32,90	34,90 36,70	33,80 34,74	1,546 1,935	0,53	✓	√	√			-1,010 0,242	S
102	32,60	36,30	33,00	32,90	36,70	34,/4	1,733	0,33						0,242	3

NOTAS:

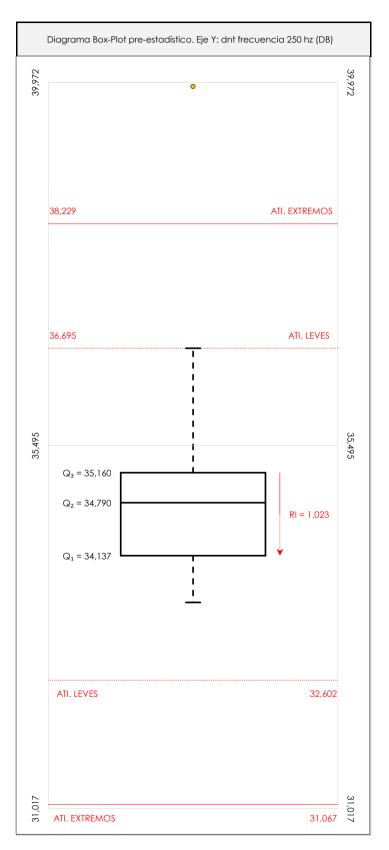
^{01 &}quot;X_{i,j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

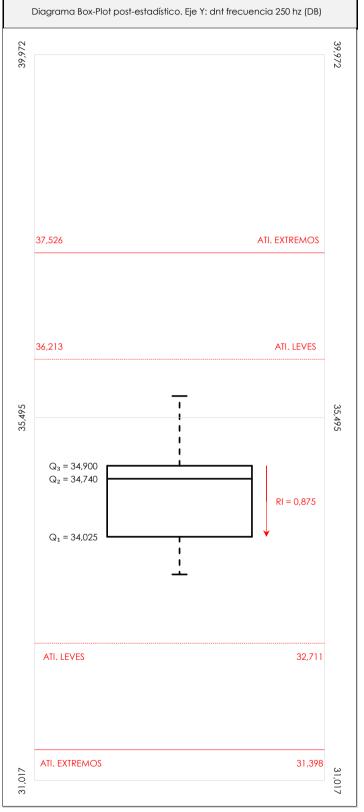
^{02 &}quot;S_{Li}" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

 $^{^{03}}$ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leqslant 2] [Dudoso (D) - si 2 < | ZS | \leqslant 3] [Insatisfactorio (I) - si | ZS | > 3].

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 250 HZ (DB)

Análisis D. Estudios post-estadisticos

Apartado D.3. Diagramas Box-Plot o de Caja y Bigotes

ANALISIS GRAFICO DE CAJA Y BIGOTES (ANTES Y DESPUES DE ANALISIS ESTADISTICO)

Diagramas de caja y bigotes (Box Plot) de las medias aritméticas de los resultados aportados por los laboratorios <u>antes</u> (diagrama de la izquierda. Este incluye valores aberrantes y anómalos) y <u>después</u> (diagrama de la derecha. No incluye los valores descartados a lo largo del estudio) de análisis estadístico.

En ambos se han representado: el primer cuartil (Q_1 ; 25% de los datos), el segundo cuartil o la mediana (Q_2 ; 50% de los datos), el tercer cuartil (Q_3 ; 75% de los datos), el rango intercuartílico (RI ; cuartil tres menos cuartil uno) y los límites de valores atípicos leves (f_3 y f_1 para el máximo y mínimo respectivamente ; líneas discontinuas de color rojo) y extremos (f_3 * y f_1 * para el máximo y mínimo respectivamente ; líneas continuas de color rojo).

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 250 HZ (DB)

Conclusiones

Determinación de la repetibilidad y reproducibilidad

El análisis estadístico ElLA20 para el ensayo "DNT FRECUENCIA 250 HZ", ha contado con la participación de un total de 8 laboratorios, debiendo haber aportado cada uno de ellos, un total de 5 determinaciones individuales además de su valor medio.

Tras analizar los resultados podemos concluir que, para cumplir con los criterios estadísticos establecidos en el informe, un total de 1 laboratorios han sido apartados de la evaluación final: 0 en el Análisis Pre-Estadístico (por no cumplir el criterio de validación y/o el procedimiento de ejecución recogido en la norma de ensayo) y 1 en el Análisis Estadístico (por resultar anómalos o aberrantes en las técnicas gráficas de consistencia de Mandel y en los ensayos de detección de resultados numéricos de Cochran y Grubbs), al cabo de 2 iteraciones.

De cada uno de los análisis (pre-estadístico y estadístico), se obtienen las siguientes tablas:

TIPO DE ANALISIS			PRE-ES	TADISTIC	:0				ESTA	DISTICO		
Variables	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$
Valor Máximo (max ; %)	39,94	39,97	39,95	39,93	39,82	39,92	36,50	36,50	38,20	34,60	36,70	35,76
Valor Mínimo (min ; %)	32,60	33,40	31,30	32,90	33,10	33,56	32,60	33,40	31,30	32,90	33,10	33,56
Valor Promedio (M; %)	35,12	35,63	35,23	34,66	35,50	35,23	34,43	35,01	34,56	33,90	34,88	34,56
Desviación Típica (SDL ;)	2,34	2,05	2,82	2,20	2,20	2,02	1,41	1,15	2,25	0,60	1,44	0,75
Coef. Variación (CV ;)	0,07	0,06	0,08	0,06	0,06	0,06	0,04	0,03	0,07	0,02	0,04	0,02
VARIABLES	S_r^2	r		$S_L^{\ 2}$	S_R^{2}	R	S_r^2	r		S_L^2	S_R^{2}	R
Valor Calculado	1,663	3,57	75 3	3,747	5,410	6,447	1,900	3,82	21 0	,184	2,085	4,002
Valor Referencia												

Asimismo, acompañando a éstas tablas y dependiendo del análisis que se esté llevando a cabo, se introducen los indicadores estadísticos "h y k" de Mandel y los valores críticos "C" de Cochran y " G_{Sim} y G_{Dob} " de Grubbs, todos ellos adimensionales, obtenidos de las tablas 4, 5, 6 y 7 de la norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios y del número de ensayos efectuados por cada uno de ellos:

TIPO DE ANALISIS		PRE	-ESTADISTI	со			Е	STADISTIC	5	
VARIABLES	h	k	С	G_{sim}	G_Dob	h	k	С	G_{sim}	G_{Dob}
Nivel de Significación 1%	1,98	1,70	0,463	2,139	0,0308	1,98	1,70	0,508	2,139	0,0308
Nivel de Significación 5%	1,71	1,49	0,391	2,020	0,0708	1,71	1,49	0,431	2,020	0,0708

Con los resultados de los laboratorios, que tras los dos análisis estadísticos son evaluados por Z-Score, se han obtenido: 7 resultados satisfactorios, 0 resultados dudosos y 0 resultados insatisfactorios.

Respecto a los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística recogida en la ISO 17025, sobre las dispersiones de los resultados individuales y su media, en forma de varianzas o desviaciones estándar, también conocida como ANOVA (siglas de analisys of varience).

Sabiendo que una varianza es la suma de cuadrados dividida por un número, que se llama grados de libertad, que depende del número de participantes menos 1, se puede decir que la imprecisión del ensayo se descompone en dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad (variabilidad intralaboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad debida al cambio de laboratorio).

Las condiciones de repetibilidad de este ensayo son: mismo laborante, mismo laboratorio y mismo equipo de medición utilizado dentro de un período de tiempo corto. Por ende, las condiciones de reproducibilidad para la misma muestra y ensayo, cambian en: el laborante, el laboratorio, el equipo y las condiciones de uso y tiempo.

Comité de infraestructuras para la Calidad de la Edificación

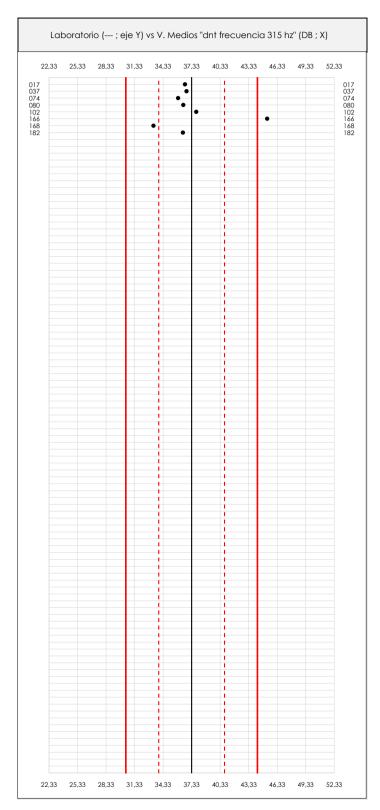
SACE

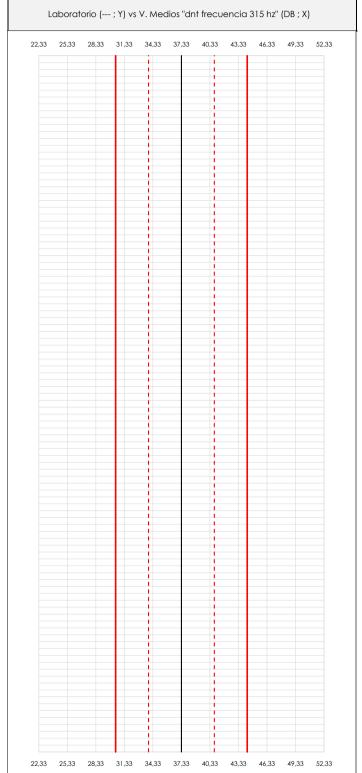
Subcomisión Administrativa para la Calidad de la Edificación

ANÁLISIS ESTADÍSTICO ACÚSTICA

DNT FRECUENCIA 315 HZ

Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 315 HZ (DB) Análisis A. Estudio pre-estadístico

Apartado A.1. Gráficos de dispersión de valores medios

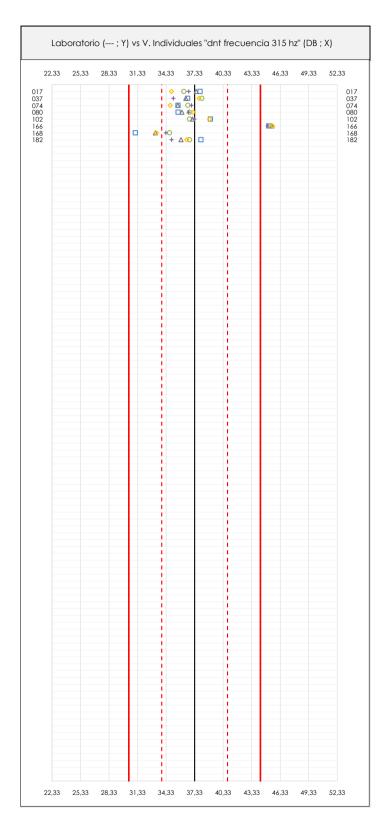
ANALISIS GRAFICO DE DISPERSION MEDIA (ANTES DE ANALISIS ESTADISTICO)

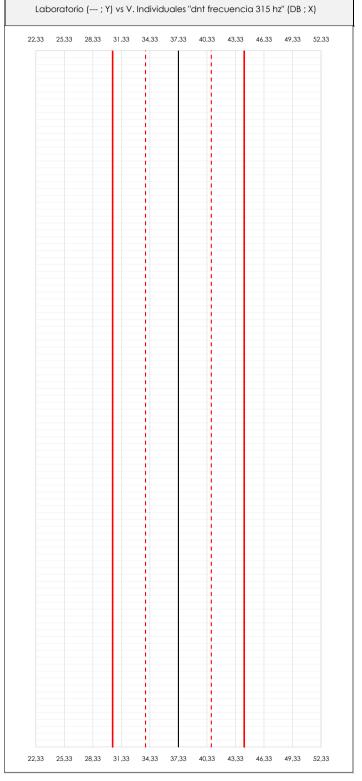
Dispersión de las medias aritméticas intra-laboratorios respecto de la media aritmética inter-laboratorios (37,33 ; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (40,79/33,87 ; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (44,25/30,41 ; líneas rojas de trazo continuo).

En el eje Y (adimensional) quedan reflejados los códigos de los laboratorios participantes y en el eje X (las unidades son las mismas que las del ensayo que se está analizando) las medias aritméticas intra-laboratorios representadas por punto de color negro.

CICE infraestructuras para la

Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 315 HZ (DB) Análisis A. Estudio pre-estadístico

Apartado A.2. Gráficos de dispersión de valores individuales

ANALISIS GRAFICOS DE DISPERSION INDIVIDUAL (ANTES DE ANALISIS ESTADISTICO)

Dispersión de los valores individuales respecto de la media aritmética inter-laboratorios (37,33; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (40,79/33,87; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (44,25/30,41; líneas rojas de trazo continuo).

En el eje Y (adimensional) queda reflejado el código del laboratorio participante y en el eje X (las unidades son las de los resultados del ensayo que se está analizando) los resultados individuales: el primero (X_{i,1}) se representa con un cuadrado azul, el segundo (X_{i,2}) con un círculo verde, el tercero (X_{i,3}) con un triángulo grís y el cuarto (X_{i,4}) con un rombo amarillo.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 315 HZ (DB)

Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{Li}	D _{i arit %}	Pasa A	Observaciones
17	37,90	36,20	37,50	34,90	36,70	36,64	1,178	-1,85	✓	
37	36,60	38,10	36,40	37,80	35,10	36,80	1,202	-1,42	✓	
74	35,59	36,63	35,56	34,77	37,00	35,91	0,897	-3,81	✓	
80	35,60	36,80	36,00	37,20	36,70	36,46	0,647	-2,33	✓	
102	39,00	36,80	37,10	38,90	37,30	37,82	1,047	1,31	✓	
166	45,13	45,25	45,45	45,52	45,02	45,28	0,213	21,28	✓	
168	31,10	34,70	33,20	33,30	34,30	33,32	1,397	-10,74	✓	
182	38,00	36,80	35,90	36,50	34,90	36,42	1,143	-2,44	✓	

NOTAS:

 $^{\rm 04}$ El código colorimétrico empleado para las celdas es:

[máximo]

[mínimo

^{01 &}quot;X_{i,j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_Li" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma.

Comité de infraestructuras para la Calidad de la Edificación



DNT FRECUENCIA 315 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

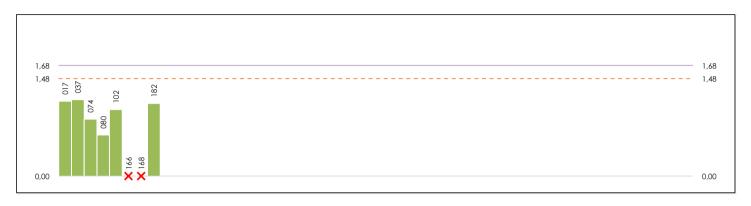
Apartado B.1. Gráfico de consistencia inter-laboratorios "h" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTER-LABORATORIOS

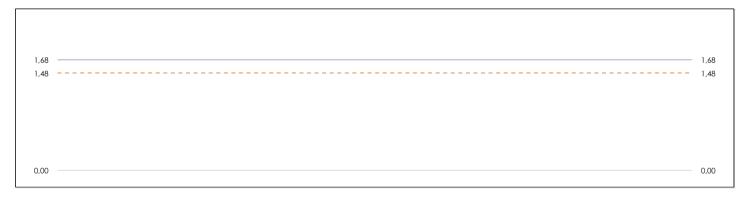
Análisis gráfico de consistencia inter-laboratorios "h" de Mandel. En él se representan las medias aritméticas inter-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes).

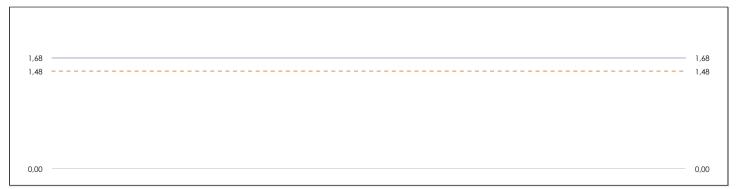
Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación






DNT FRECUENCIA 315 HZ (DB)


Análisis B. Mandel, Cochran y Grubbs

Apartado B.2. Gráfico de consistencia intra-laboratorios "k" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTRA-LABORATORIOS

Análisis gráfico de consistencia intra-laboratorios "k" de Mandel. En él se representan las medias aritméticas intra-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes y el número de ensayos efectuados).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 315 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	h _i	k _i	C _i	$G_{\text{Sim Inf}}$	$G_{\text{Sim Sup}}$	G _{Dob Inf}	G _{Dob Sup}	Pasa B
17	07.00	04.000	07.500	0.4.000	0 / 700	04440	1.170	0.00	0.05	114						
17	37,90	36,200	37,500	34,900	36,700	36,640	1,178	-0,09	-0,05	1,14					0.1.440	√
37	36,60	38,100	36,400	37,800	35,100	36,800	1,202	0,34	0,20	1,16		1.004		0.5404	0,1462	√
74	35,59	36,627	35,557	34,771	36,996	35,908	0,897	-2,09	-1,20	0,86		1,204		0,5494		√
80 102	35,60 39,00	36,800 36,800	36,000 37,100	37,200 38,900	36,700 37,300	36,460 37,820	0,647	-0,59	-0,34 1,80*	0,62	0.224		1,799		0.14/2	√
166	45,13	45,249	45,454	45,525	45,021	45,275	1,047	3,12		1,01	0,224				0,1462	X
168	31,10	34,700	33,200	33,300	34,300	33,320										×
182	38,00	36,800	35,900	36,500	34,900	36,420	1,143	-0,69	-0,40	1,10				0,5494		
102	00,00	00,000	00,700	00,000	0 1,700	00,120	1,110	0,07	0,10	1,10				0,0171		

NOTAS:

 $^{\rm 04}$ El código colorimétrico empleado para las celdas es:

[aberrante]

[anómalo]

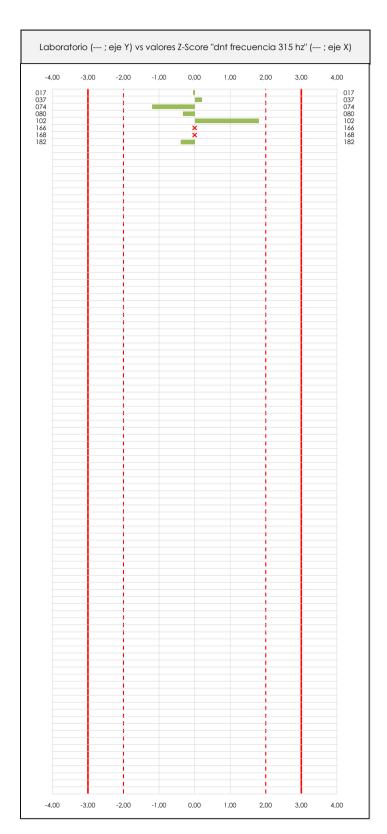
[máximo]

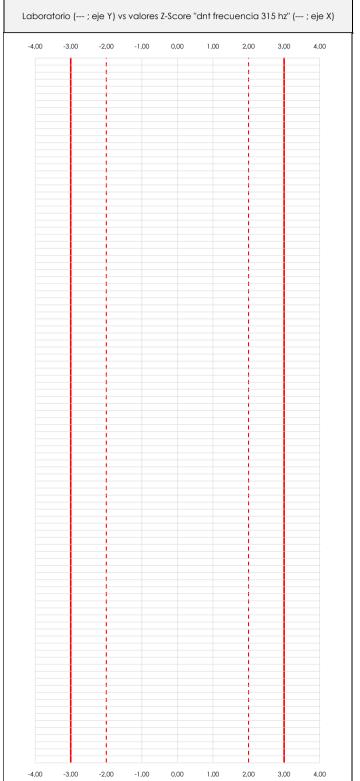
[mínimo]

^{01 &}quot;X_{i j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

^{03 &}quot;h_i y k_i", "C_i", "G_{sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.


Comité de infraestructuras para la Calidad de la Edificación



SACESubcomisión Administrativa para la
Calidad de la Edificación

DNT FRECUENCIA 315 HZ (DB) Análisis C. Evaluación Z-Score

Apartado C.1. Análisis gráfico Altman Z-Score

ANALISIS GRAFICO Z-SCORE

Diagrama Z-Score para los resultados aportados por los laboratorios. Estos se considerarán satisfactorios (S) si el valor absoluto del Z-Score es menor o igual a 2 unidades, dudoso si está comprendido entre 2 y 3 unidades e insatisfactorio si es mayor o igual a 3 unidades.

Los resultados satisfactorios quedan reflejados entre las dos líneas rojas discontinuas, líneas de referencia en la evaluación Z-Score.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 315 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{Li}	D _{i arit %}	Pasa A	Pasa B	Total	Causa	Iteración	Z-Score	Evaluación
17	07.00	24.00	07.50	0.4.00	0 / 70	24.44	1.170	2.00						0.054	
17	37,90	36,20	37,50	34,90	36,70	36,64	1,178	-0,09	√	<u> </u>	√			-0,054	S
37	36,60	38,10	36,40	37,80	35,10	36,80	1,202	0,34	√	√	<u> </u>			0,197	S
74	35,59	36,63	35,56	34,77	37,00	35,91	0,897	-2,09	√	√	<u> </u>			-1,204	S
80	35,60	36,80	36,00	37,20	36,70	36,46	0,647	-0,59	√	√	<u> </u>			-0,337	S
102	39,00 45,13	36,80 45,25	37,10	38,90	37,30	37,82	1,047	3,12	√	√	√	A D	0	1,799	S
166 168	31,10	34,70	45,45 33,20	45,52 33,30	45,02 34,30	45,28 33,32			√	X	X	AB AN	1		
182	38,00	36,80	35,90	36,50	34,90	36,42	1,143	-0,69	→	X		AN	· ·	-0,400	S
102	36,00	36,60	33,70	36,30	34,70	36,42	1,143	-0,67						-0,400	3

NOTAS:

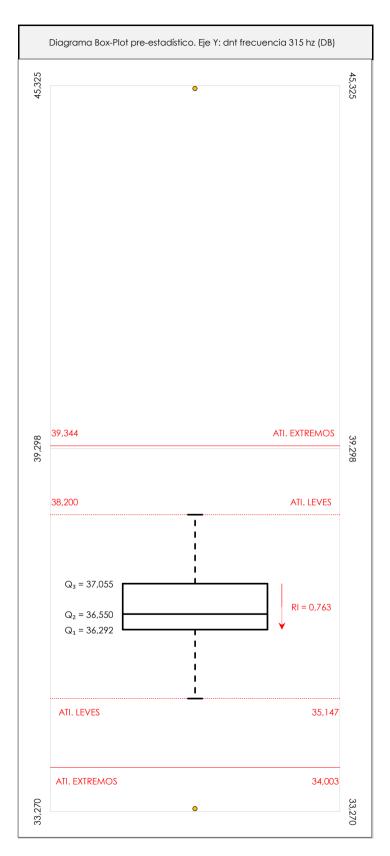
^{01 &}quot;X_{i,j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

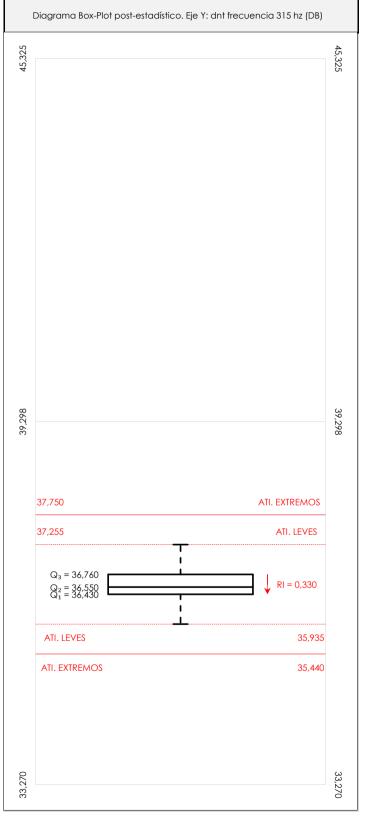
^{02 &}quot;S_{Li}" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

 $^{^{03}}$ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leqslant 2] [Dudoso (D) - si 2 < | ZS | \leqslant 3] [Insatisfactorio (I) - si | ZS | > 3].

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 315 HZ (DB)

Análisis D. Estudios post-estadisticos

Apartado D.3. Diagramas Box-Plot o de Caja y Bigotes

ANALISIS GRAFICO DE CAJA Y BIGOTES (ANTES Y DESPUES DE ANALISIS ESTADISTICO)

Diagramas de caja y bigotes (Box Plot) de las medias aritméticas de los resultados aportados por los laboratorios <u>antes</u> (diagrama de la izquierda. Este incluye valores aberrantes y anómalos) y <u>después</u> (diagrama de la derecha. No incluye los valores descartados a lo largo del estudio) de análisis estadístico.

En ambos se han representado: el primer cuartil (Q_1 ; 25% de los datos), el segundo cuartil o la mediana (Q_2 ; 50% de los datos), el tercer cuartil (Q_3 ; 75% de los datos), el rango intercuartílico (RI ; cuartil tres menos cuartil uno) y los límites de valores atípicos leves (f_3 y f_1 para el máximo y mínimo respectivamente ; líneas discontinuas de color rojo) y extremos (f_3 * y f_1 * para el máximo y mínimo respectivamente ; líneas continuas de color rojo).

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 315 HZ (DB)

Conclusiones

Determinación de la repetibilidad y reproducibilidad

El análisis estadístico EILA20 para el ensayo "DNT FRECUENCIA 315 HZ", ha contado con la participación de un total de 8 laboratorios, debiendo haber aportado cada uno de ellos, un total de 5 determinaciones individuales además de su valor medio.

Tras analizar los resultados podemos concluir que, para cumplir con los criterios estadísticos establecidos en el informe, un total de 2 laboratorios han sido apartados de la evaluación final: 0 en el Análisis Pre-Estadístico (por no cumplir el criterio de validación y/o el procedimiento de ejecución recogido en la norma de ensayo) y 2 en el Análisis Estadístico (por resultar anómalos o aberrantes en las técnicas gráficas de consistencia de Mandel y en los ensayos de detección de resultados numéricos de Cochran y Grubbs), al cabo de 3 iteraciones.

De cada uno de los análisis (pre-estadístico y estadístico), se obtienen las siguientes tablas:

TIPO DE ANALISIS			PRE-ES	TADISTIC	:0		ESTADISTICO					
Variables	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$
Valor Máximo (max ; %)	45,13	45,25	45,45	45,52	45,02	45,28	39,00	38,10	37,50	38,90	37,30	37,82
Valor Mínimo (min ; %)	31,10	34,70	33,20	33,30	34,30	33,32	35,59	36,20	35,56	34,77	34,90	35,91
Valor Promedio (M; %)	37,36	37,66	37,14	37,36	37,13	37,33	37,11	36,89	36,41	36,68	36,28	36,67
Desviación Típica (SDL ;)	3,96	3,21	3,60	3,77	3,38	3,46	1,40	0,64	0,75	1,63	1,02	0,64
Coef. Variación (CV ;)	0,11	0,09	0,10	0,10	0,09	0,09	0,04	0,02	0,02	0,04	0,03	0,02
VARIABLES	S_r^2	r		S_L^2	S_R^{2}	R	S_r^2	r		S _L ²	S_R^{2}	R
Valor Calculado	1,057	2,85	50 1	1,761	12,818	9,924	1,077	2,87	76 O	,190	1,267	3,120
Valor Referencia												

Asimismo, acompañando a éstas tablas y dependiendo del análisis que se esté llevando a cabo, se introducen los indicadores estadísticos "h y k" de Mandel y los valores críticos "C" de Cochran y " G_{Sim} y G_{Dob} " de Grubbs, todos ellos adimensionales, obtenidos de las tablas 4, 5, 6 y 7 de la norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios y del número de ensayos efectuados por cada uno de ellos:

TIPO DE ANALISIS		PRE	-ESTADISTI	со		ESTADISTICO					
VARIABLES	h	k	С	G_{sim}	G_{Dob}	h	k	С	G_{sim}	G_{Dob}	
Nivel de Significación 1%	1,87	1,68	0,463	1,973	0,0116	1,87	1,68	0,564	1,973	0,0116	
Nivel de Significación 5%	1,66	1,48	0,391	1,887	0,0349	1,66	1,48	0,480	1,887	0,0349	

Con los resultados de los laboratorios, que tras los dos análisis estadísticos son evaluados por Z-Score, se han obtenido: 6 resultados satisfactorios, 0 resultados dudosos y 0 resultados insatisfactorios.

Respecto a los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística recogida en la ISO 17025, sobre las dispersiones de los resultados individuales y su media, en forma de varianzas o desviaciones estándar, también conocida como ANOVA (siglas de analisys of varience).

Sabiendo que una varianza es la suma de cuadrados dividida por un número, que se llama grados de libertad, que depende del número de participantes menos 1, se puede decir que la imprecisión del ensayo se descompone en dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad (variabilidad intralaboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad debida al cambio de laboratorio).

Las condiciones de repetibilidad de este ensayo son: mismo laborante, mismo laboratorio y mismo equipo de medición utilizado dentro de un período de tiempo corto. Por ende, las condiciones de reproducibilidad para la misma muestra y ensayo, cambian en: el laborante, el laboratorio, el equipo y las condiciones de uso y tiempo.

Comité de infraestructuras para la Calidad de la Edificación

SACE

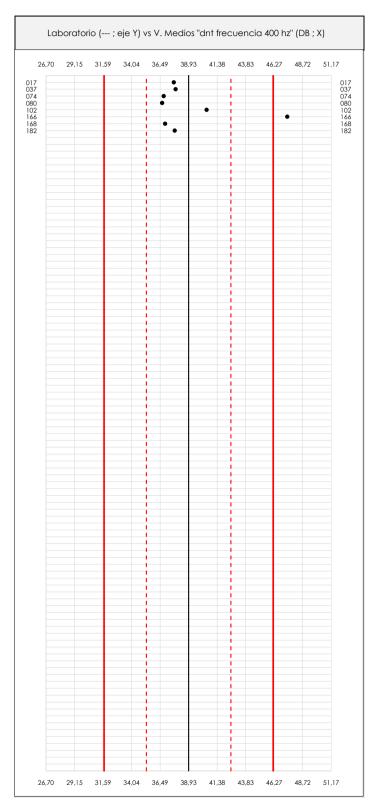
Subcomisión Administrativa para la Calidad de la Edificación

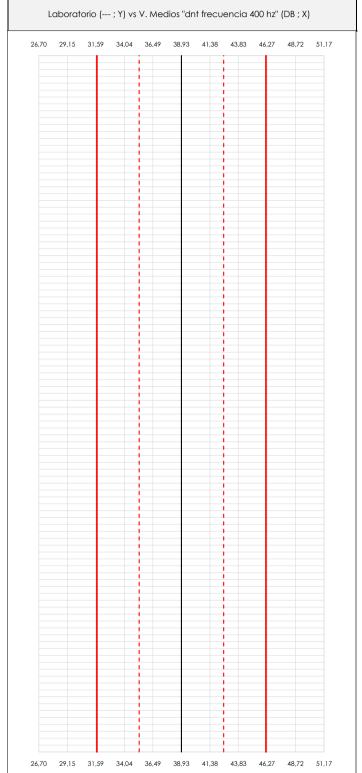
ANÁLISIS ESTADÍSTICO ACÚSTICA

DNT FRECUENCIA 400 HZ

CICE le infraestructuras para la

Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 400 HZ (DB) Análisis A. Estudio pre-estadístico

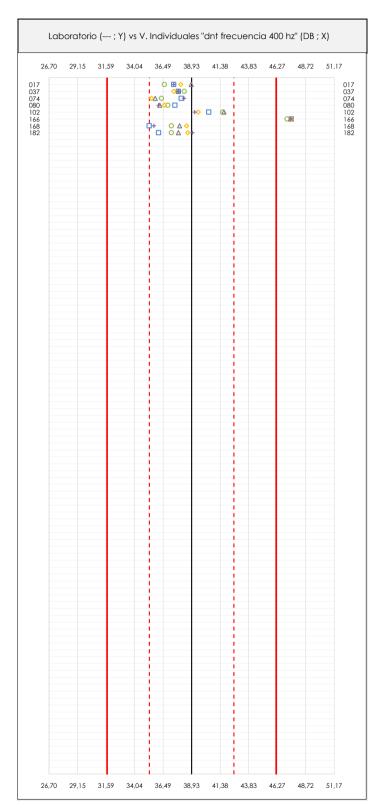
Apartado A.1. Gráficos de dispersión de valores medios

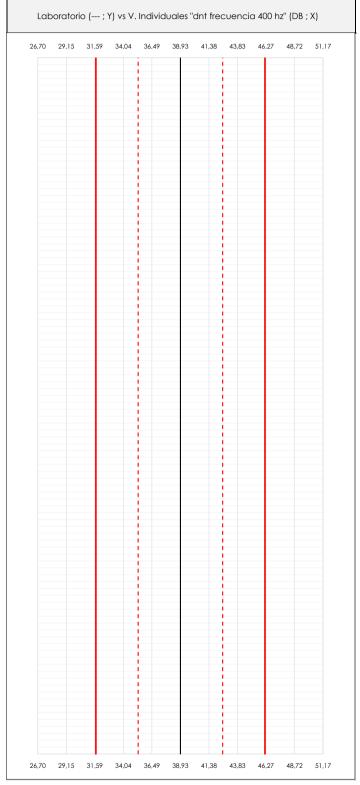
ANALISIS GRAFICO DE DISPERSION MEDIA (ANTES DE ANALISIS ESTADISTICO)

Dispersión de las medias aritméticas intra-laboratorios respecto de la media aritmética inter-laboratorios (38,93; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (42,56/35,31; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (46,18/31,68; líneas rojas de trazo continuo).

En el eje Y (adimensional) quedan reflejados los códigos de los laboratorios participantes y en el eje X (las unidades son las mismas que las del ensayo que se está analizando) las medias aritméticas intra-laboratorios representadas por punto de color negro.

Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 400 HZ (DB) Análisis A. Estudio pre-estadístico

Apartado A.2. Gráficos de dispersión de valores individuales

ANALISIS GRAFICOS DE DISPERSION INDIVIDUAL (ANTES DE ANALISIS ESTADISTICO)

Dispersión de los valores individuales respecto de la media aritmética inter-laboratorios (38,93; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (42,56/35,31; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (46,18/31,68; líneas rojas de trazo continuo).

En el eje Y (adimensional) queda reflejado el código del laboratorio participante y en el eje X (las unidades son las de los resultados del ensayo que se está analizando) los resultados individuales: el primero (X_{1,1}) se representa con un cuadrado azul, el segundo (X_{1,2}) con un círculo verde, el tercero (X_{1,3}) con un triángulo grís y el cuarto (X_{1,4})

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 400 HZ (DB)

Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	Pasa A	Observaciones
17	37,40	36,60	38,90	38,00	37,40	37,66	0,853	-3,27	✓	
37	37,80	38,30	37,80	37,40	37,80	37,82	0,319	-2,86	✓	
74	38,04	36,35	35,80	35,50	38,28	36,79	1,285	-5,50	✓	
80	37,50	36,90	36,20	36,60	36,10	36,66	0,568	-5,84	✓	
102	40,40	41,60	41,70	39,50	39,20	40,48	1,156	3,97	✓	
166	47,48	47,12	47,42	47,48	47,45	47,39	0,153	21,73	✓	
168	35,30	37,20	37,90	38,50	35,70	36,92	1,383	-5,17	✓	
182	36,10	37,20	37,80	38,60	39,00	37,74	1,152	-3,06	✓	

NOTAS:

[máximo]

[mínimo

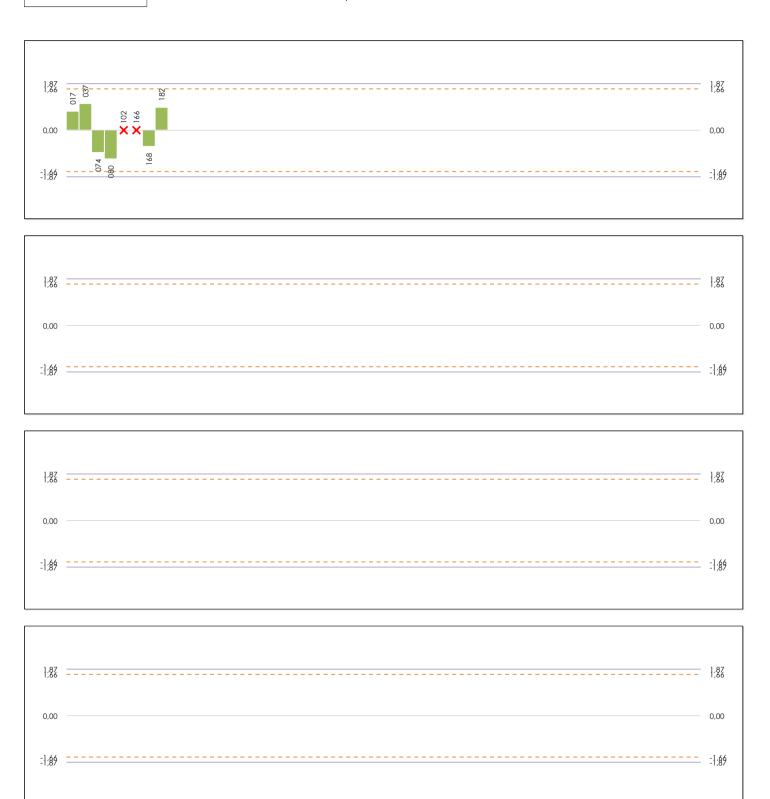
^{01 &}quot;X_{i,j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_Li" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma.

 $^{^{\}rm 04}$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación



DNT FRECUENCIA 400 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

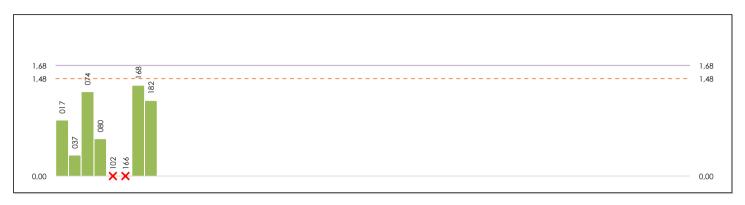
Apartado B.1. Gráfico de consistencia inter-laboratorios "h" de Mandel

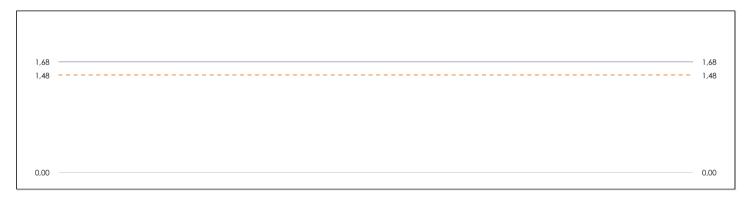
ANALISIS GRAFICO DE CONSISTENCIA INTER-LABORATORIOS

Análisis gráfico de consistencia inter-laboratorios "h" de Mandel. En él se representan las medias aritméticas inter-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación




DNT FRECUENCIA 400 HZ (DB)


Análisis B. Mandel, Cochran y Grubbs

Apartado B.2. Gráfico de consistencia intra-laboratorios "k" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTRA-LABORATORIOS

Análisis gráfico de consistencia intra-laboratorios "k" de Mandel. En él se representan las medias aritméticas intra-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes y el número de ensayos efectuados).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 400 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	h _i	k _i	Ci	$G_{\text{Sim Inf}}$	$G_{\text{Sim Sup}}$	G _{Dob Inf}	G _{Dob Sup}	Pasa B
17	27.40	37 700	38,900	38,000	37,400	37,660	0.053	1.0/	0.75	0,85						√
37	37,40	36,600 38,300	37,800			37,820	0,853	1,06	0,75				1,049		0,4295	
74	37,80 38,04	36,348	35,804	37,400 35,496	37,800 38,275	36,792	1,285	-1,27	1,05 -0,89	0,32 1,28			1,049	0,3698	0,4273	
80	37,50	36,900	36,200	36,600	36,100	36,660	0,568	-1,62	-1,14	0,57		1,145		0,3698		
102	40,40	41,600	41,700	39,500	39,200	40,480		-1,02								X
166	47,48	47,122	47,423	47,482	47,446	47,391										X
168	35,30	37,200	37,900	38,500	35,700	36,920	1,383	-0,93	-0,65	1,38						
182	36,10	37,200	37,800	38,600	39,000	37,740	1,152	1,27	0,90	1,15					0,4295	<u> </u>
102	00,10	07,200	07,000	00,000	07,000	0,,, 10	1,102	1,27	0,70	1,10					0,1270	
	·	·	·	·		·	·	·	·	·		·	·	·	·	·

NOTAS:

 $^{\rm 04}\,$ El código colorimétrico empleado para las celdas es:

[aberrante]

[anómalo]

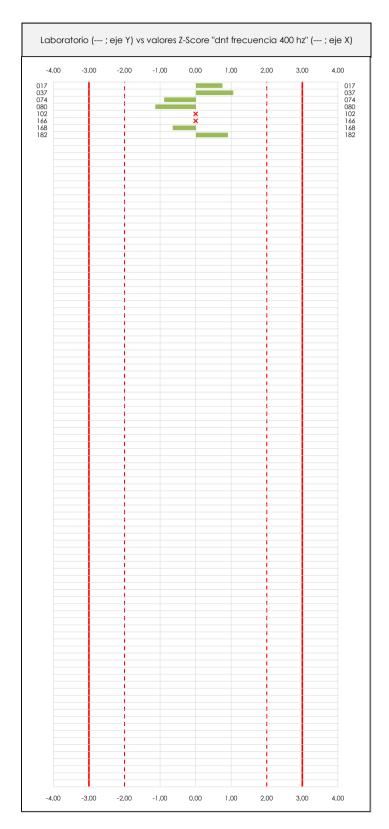
[máximo]

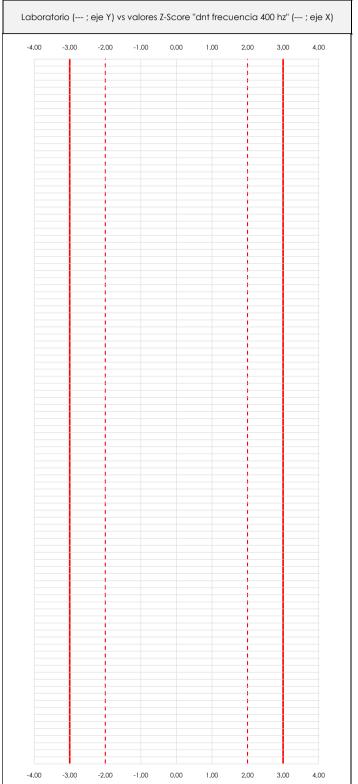
[mínimo]

^{01 &}quot;X_{i j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

^{03 &}quot;h_i y k_i", "C_i", "G_{sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.


Comité de infraestructuras para la Calidad de la Edificación



SACESubcomisión Administrativa para la
Calidad de la Edificación

DNT FRECUENCIA 400 HZ (DB) Análisis C. Evaluación Z-Score

Apartado C.1. Análisis gráfico Altman Z-Score

ANALISIS GRAFICO Z-SCORE

Diagrama Z-Score para los resultados aportados por los laboratorios. Estos se considerarán satisfactorios (S) si el valor absoluto del Z-Score es menor o igual a 2 unidades, dudoso si está comprendido entre 2 y 3 unidades e insatisfactorio si es mayor o igual a 3 unidades.

Los resultados satisfactorios quedan reflejados entre las dos líneas rojas discontinuas, líneas de referencia en la evaluación Z-Score.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 400 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

L	ab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	Pasa A	Pasa B	Total	Causa	Iteración	Z-Score	Evaluación
	17	37,40	36,60	38,90	38,00	37,40	37,66	0,853	1,06	√	√	√			0,746	S
	37	37,80	38,30	37,80	37,40	37,80	37,82	0,319	1,49	<u> </u>					1,049	S
	74	38,04	36,35	35,80	35,50	38,28	36,79	1,285	-1,27			<u> </u>			-0,895	S
	80	37,50	36,90	36,20	36,60	36,10	36,66	0,568	-1,62	<u> </u>	<u> </u>	<u> </u>			-1,145	S
	02	40,40	41,60	41,70	39,50	39,20	40,48				X	X	AN	1		
	66	47,48	47,12	47,42	47,48	47,45	47,39				X	X	AB	0		
	68	35,30	37,20	37,90	38,50	35,70	36,92	1,383	-0,93	√	<u>√</u>	√			-0,653	S
	82	36,10	37,20	37,80	38,60	39,00	37,74	1,152	1,27	√	√	√			0,898	S

NOTAS:

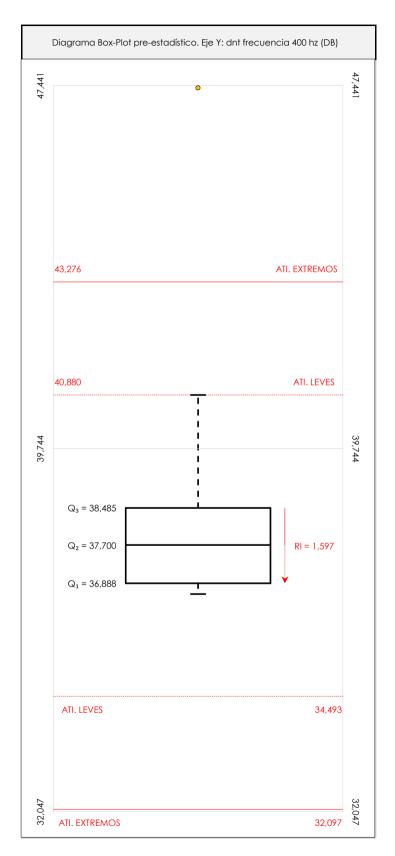
^{01 &}quot;X_{i,j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

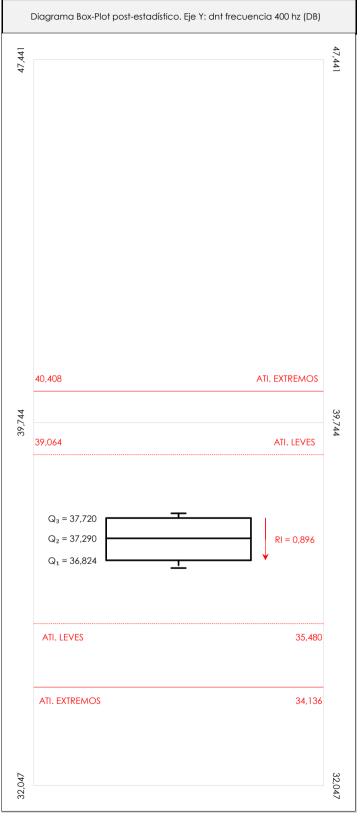
^{02 &}quot;S_{Li}" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

 $^{^{03}}$ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leqslant 2] [Dudoso (D) - si 2 < | ZS | \leqslant 3] [Insatisfactorio (I) - si | ZS | > 3].

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 400 HZ (DB)

Análisis D. Estudios post-estadisticos

Apartado D.3. Diagramas Box-Plot o de Caja y Bigotes

ANALISIS GRAFICO DE CAJA Y BIGOTES (ANTES Y DESPUES DE ANALISIS ESTADISTICO)

Diagramas de caja y bigotes (Box Plot) de las medias aritméticas de los resultados aportados por los laboratorios <u>antes</u> (diagrama de la izquierda. Este incluye valores aberrantes y anómalos) y <u>después</u> (diagrama de la derecha. No incluye los valores descartados a lo largo del estudio) de análisis estadístico.

En ambos se han representado: el primer cuartil (Q_1 ; 25% de los datos), el segundo cuartil o la mediana (Q_2 ; 50% de los datos), el tercer cuartil (Q_3 ; 75% de los datos), el rango intercuartílico (RI ; cuartil tres menos cuartil uno) y los límites de valores atípicos leves (f_3 y f_1 para el máximo y mínimo respectivamente ; líneas discontinuas de color rojo) y extremos (f_3 * y f_1 * para el máximo y mínimo respectivamente ; líneas continuas de color rojo).

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 400 HZ (DB)

Conclusiones

Determinación de la repetibilidad y reproducibilidad

El análisis estadístico ElLA20 para el ensayo "DNT FRECUENCIA 400 HZ", ha contado con la participación de un total de 8 laboratorios, debiendo haber aportado cada uno de ellos, un total de 5 determinaciones individuales además de su valor medio.

Tras analizar los resultados podemos concluir que, para cumplir con los criterios estadísticos establecidos en el informe, un total de 2 laboratorios han sido apartados de la evaluación final: 0 en el Análisis Pre-Estadístico (por no cumplir el criterio de validación y/o el procedimiento de ejecución recogido en la norma de ensayo) y 2 en el Análisis Estadístico (por resultar anómalos o aberrantes en las técnicas gráficas de consistencia de Mandel y en los ensayos de detección de resultados numéricos de Cochran y Grubbs), al cabo de 3 iteraciones.

De cada uno de los análisis (pre-estadístico y estadístico), se obtienen las siguientes tablas:

TIPO DE ANALISIS			PRE-ES	TADISTIC	:0				ESTA	DISTICO		
Variables	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	\overline{X}_{iarit}
Valor Máximo (max ; %)	47,48	47,12	47,42	47,48	47,45	47,39	38,04	38,30	38,90	38,60	39,00	37,82
Valor Mínimo (min ; %)	35,30	36,35	35,80	35,50	35,70	36,66	35,30	36,35	35,80	35,50	35,70	36,66
Valor Promedio (M; %)	38,75	38,91	39,19	38,95	38,87	38,93	37,02	37,09	37,40	37,43	37,38	37,27
Desviación Típica (SDL ;)	3,83	3,72	3,78	3,67	3,69	3,63	1,08	0,68	1,17	1,21	1,27	0,53
Coef. Variación (CV ;)	0,10	0,10	0,10	0,09	0,09	0,09	0,03	0,02	0,03	0,03	0,03	0,01
VARIABLES	S_r^2	r		S_L^2	S_R^{2}	R	S_r^2	r		S _L ²	S_R^2	R
Valor Calculado	0,926	2,66	37 12	2,961	13,886	10,329	1,007	2,78	32 0	,078	1,086	2,888
Valor Referencia												

Asimismo, acompañando a éstas tablas y dependiendo del análisis que se esté llevando a cabo, se introducen los indicadores estadísticos "h y k" de Mandel y los valores críticos "C" de Cochran y " G_{Sim} y G_{Dob} " de Grubbs, todos ellos adimensionales, obtenidos de las tablas 4, 5, 6 y 7 de la norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios y del número de ensayos efectuados por cada uno de ellos:

TIPO DE ANALISIS		PRE	E-ESTADISTI	со			E	STADISTIC)	
VARIABLES	h	k	С	G_{sim}	G_Dob	h	k	С	G_{sim}	G_{Dob}
Nivel de Significación 1%	1,87	1,68	0,463	1,973	0,0116	1,87	1,68	0,564	1,973	0,0116
Nivel de Significación 5%	1,66	1,48	0,391	1,887	0,0349	1,66	1,48	0,480	1,887	0,0349

Con los resultados de los laboratorios, que tras los dos análisis estadísticos son evaluados por Z-Score, se han obtenido: 6 resultados satisfactorios, 0 resultados dudosos y 0 resultados insatisfactorios.

Respecto a los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística recogida en la ISO 17025, sobre las dispersiones de los resultados individuales y su media, en forma de varianzas o desviaciones estándar, también conocida como ANOVA (siglas de analisys of varience).

Sabiendo que una varianza es la suma de cuadrados dividida por un número, que se llama grados de libertad, que depende del número de participantes menos 1, se puede decir que la imprecisión del ensayo se descompone en dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad (variabilidad intralaboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad debida al cambio de laboratorio).

Las condiciones de repetibilidad de este ensayo son: mismo laborante, mismo laboratorio y mismo equipo de medición utilizado dentro de un período de tiempo corto. Por ende, las condiciones de reproducibilidad para la misma muestra y ensayo, cambian en: el laborante, el laboratorio, el equipo y las condiciones de uso y tiempo.

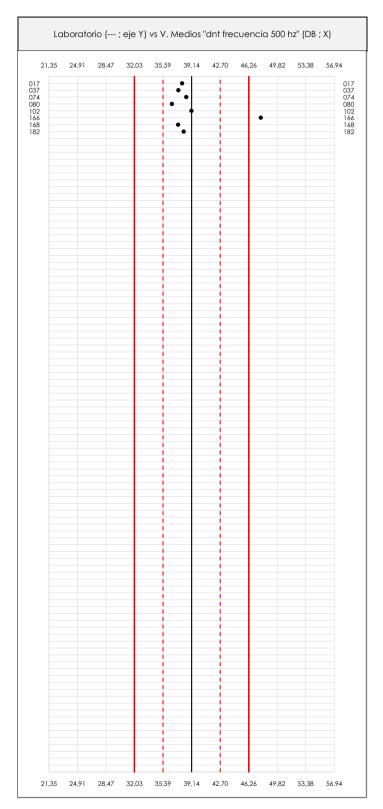
Comité de infraestructuras para la Calidad de la Edificación

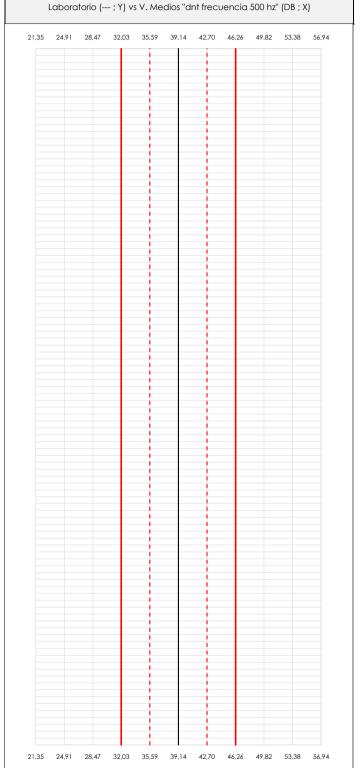
Subcomisión Administrativa para la Calidad de la Edificación

ANÁLISIS ESTADÍSTICO ACÚSTICA

DNT FRECUENCIA 500 HZ

Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 500 HZ (DB) Análisis A. Estudio pre-estadístico

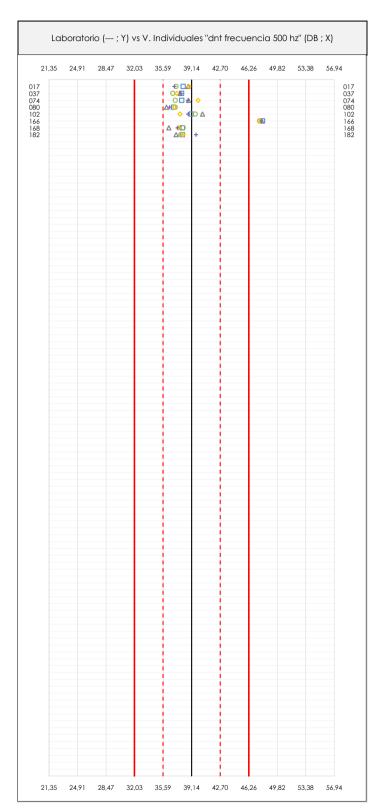
Apartado A.1. Gráficos de dispersión de valores medios

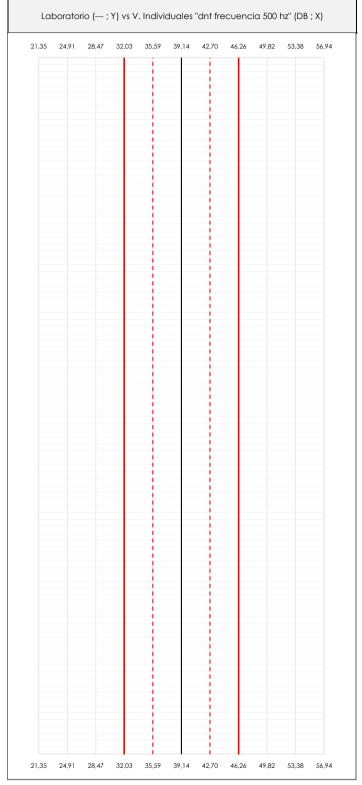
ANALISIS GRAFICO DE DISPERSION MEDIA (ANTES DE ANALISIS ESTADISTICO)

Dispersión de las medias aritméticas intra-laboratorios respecto de la media aritmética inter-laboratorios (39,14 ; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (42,71/35,58 ; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (46,28/32,01 ; líneas rojas de trazo continuo).

En el eje Y (adimensional) quedan reflejados los códigos de los laboratorios participantes y en el eje X (las unidades son las mismas que las del ensayo que se está analizando) las medias aritméticas intra-laboratorios representadas por punto de color negro.

Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 500 HZ (DB) Análisis A. Estudio pre-estadístico

Apartado A.2. Gráficos de dispersión de valores individuales

ANALISIS GRAFICOS DE DISPERSION INDIVIDUAL (ANTES DE ANALISIS ESTADISTICO)

Dispersión de los valores individuales respecto de la media aritmética inter-laboratorios (39,14; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (42,71/35,58; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (46,28/32,01; líneas rojas de trazo continuo).

En el eje Y (adimensional) queda reflejado el código del laboratorio participante y en el eje X (las unidades son las de los resultados del ensayo que se está analizando) los resultados individuales: el primero (X_{1,1}) se representa con un cuadrado azul, el segundo (X_{1,2}) con un círculo verde, el tercero (X_{1,3}) con un triángulo grís y el cuarto (X_{1,4})

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 500 HZ (DB) Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{Li}	Di arit %	Pasa A	Observaciones
		12	10	17	13	- 4 dili		7 (311 76		
17	38,10	37,20	38,70	38,80	37,00	37,96	0,832	-3,03	√	
37	37,90	36,80	37,70	37,30	37,80	37,50	0,453	-4,20	<u> </u>	
74	37,92	37,11	38,75	39,95	38,70	38,49	1,059	-1,68	→	
80	36,90	37,10	36,00	37,00	36,40	36,68	0,466	-6,30	√	
102	39,10	39,60	40,50	37,70	38,70	39,12	1,040	-0,06	✓	
166	48,00	47,62	47,86	47,63	47,84	47,79	0,160	22,09	√	
168	38,00	38,10	36,30	37,50	37,40	37,46	0,716	-4,30	√	
182	38,00	37,80	37,20	38,10	39,70	38,16	0,929	-2,51	√	
-										

NOTAS:

 $^{\rm 04}$ El código colorimétrico empleado para las celdas es:

[máximo]

[mínimo

^{01 &}quot;X_{i j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_{L1}" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma.

Comité de infraestructuras para la Calidad de la Edificación


DNT FRECUENCIA 500 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

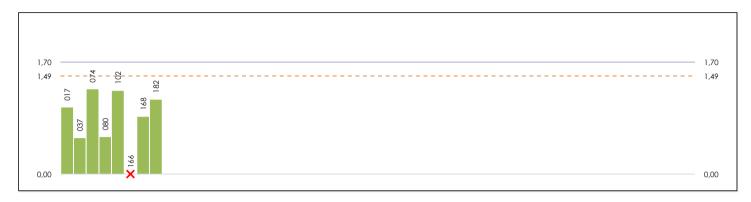
Apartado B.1. Gráfico de consistencia inter-laboratorios "h" de Mandel

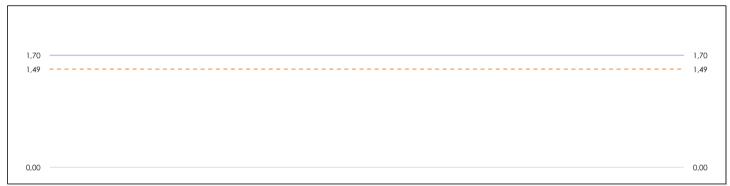
ANALISIS GRAFICO DE CONSISTENCIA INTER-LABORATORIOS

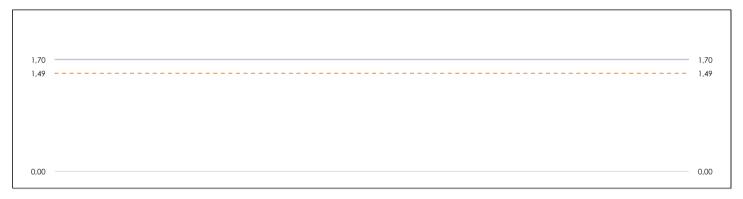
Análisis gráfico de consistencia inter-laboratorios "h" de Mandel. En él se representan las medias aritméticas inter-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación






DNT FRECUENCIA 500 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.2. Gráfico de consistencia intra-laboratorios "k" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTRA-LABORATORIOS

Análisis gráfico de consistencia intra-laboratorios "k" de Mandel. En él se representan las medias aritméticas intra-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes y el número de ensayos efectuados).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 500 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S_{Li}	D _{i arit %}	h _i	k _i	Ci	$G_{\text{Sim Inf}}$	$G_{\text{Sim Sup}}$	$G_{\text{Dob Inf}}$	G _{Dob Sup}	Pasa B
17	38,10	37,200	38,700	38,800	37,000	37,960	0,832	0,13	0,06	1,02						√
37	37,90	36,800	37,700	37,300	37,800	37,500	0,453	-1,08	-0,52	0,55					0.0400	√
74	37,92	37,108	38,749	39,952	38,698	38,485	1,059	1,52	0,73	1,29		1.557		0.2010	0,3493	√
80	36,90	37,100	36,000	37,000 37,700	36,400	36,680	0,466	-3,24	-1,56	0,57		1,556	1 522	0,3918	0.2402	√
102 166	39,10 48,00	39,600 47,624	40,500 47,859	47,630	38,700 47,841	39,120 47,790	1,040	3,19	1,53	1,27			1,533		0,3493	X
168	38,00	38,100	36,300	37,500	37,400	37,460	0,716	-1,19	-0,57	0,87				0,3918		
182	38,00	37,800	37,200	38,100	39,700	38,160	0,929	0,66	0,32	1,13				0,5710		
102	30,00	07,000	37,200	30,100	37,700	30,100	0,727	0,00	0,02	1,10						

NOTAS:

 $^{\rm 04}\,$ El código colorimétrico empleado para las celdas es:

[aberrante]

[anómalo]

[máximo]

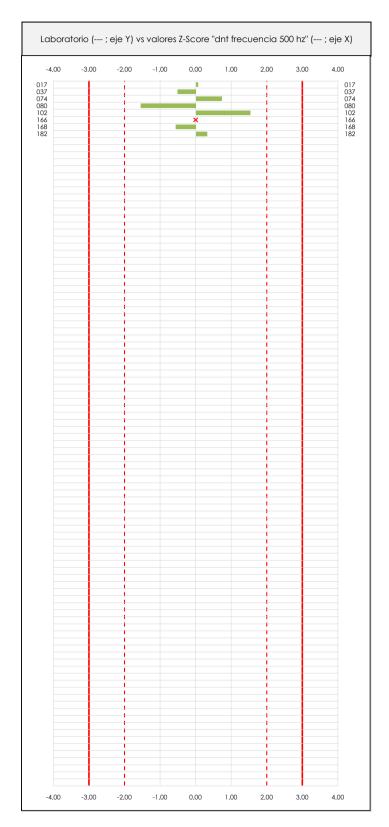
[mínimo]

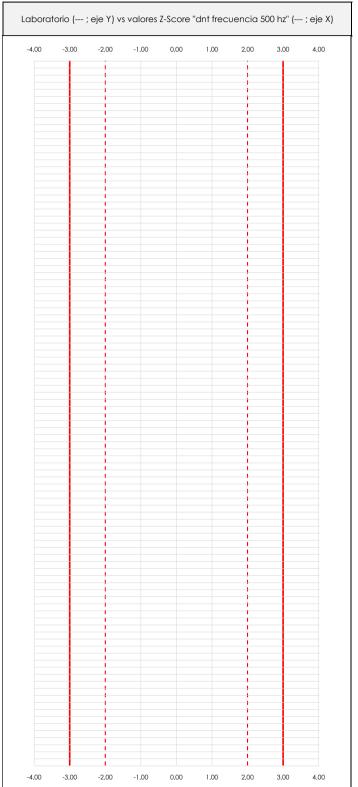
^{01 &}quot;X_{i j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

^{03 &}quot;h_i y k_i", "C_i", "G_{sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.

Comité de infraestructuras para la Calidad de la Edificación




SACESubcomisión Administrativa para la
Calidad de la Edificación

DNT FRECUENCIA 500 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.1. Análisis gráfico Altman Z-Score

ANALISIS GRAFICO Z-SCORE

Diagrama Z-Score para los resultados aportados por los laboratorios. Estos se considerarán satisfactorios (S) si el valor absoluto del Z-Score es menor o igual a 2 unidades, dudoso si está comprendido entre 2 y 3 unidades e insatisfactorio si es mayor o igual a 3 unidades.

Los resultados satisfactorios quedan reflejados entre las dos líneas rojas discontinuas, líneas de referencia en la evaluación Z-Score.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 500 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	Pasa A	Pasa B	Total	Causa	Iteración	Z-Score	Evaluación
17	20.10	27.00	20.70	20.00	27.00	27.07	0.020	0.12						0.074	
17	38,10	37,20	38,70	38,80	37,00	37,96	0,832	0,13	√	√	<u> </u>			0,064	S
37	37,90	36,80	37,70	37,30	37,80	37,50	0,453	-1,08	√	√	√			-0,518	S
74	37,92	37,11	38,75	39,95	38,70	38,49	1,059	1,52	√	√	<u> </u>			0,729	S
80	36,90	37,10 39,60	36,00	37,00	36,40	36,68	0,466	-3,24	√	✓	√			-1,556	S
102 166	39,10 48,00	47,62	40,50 47,86	37,70 47,63	38,70 47,84	39,12 47,79	1,040	3,19	→	X	X	AB	0	1,533	S
168	38,00	38,10	36,30	37,50	37,40	37,46	0,716	-1,19	→			Ab	0	-0,569	S
182	38,00	37,80	37,20	38,10	39,70	38,16	0,718	0,66			-			0,317	S
102	30,00	37,00	37,20	30,10	37,70	30,10	0,727	0,00						0,517	<u> </u>

NOTAS:

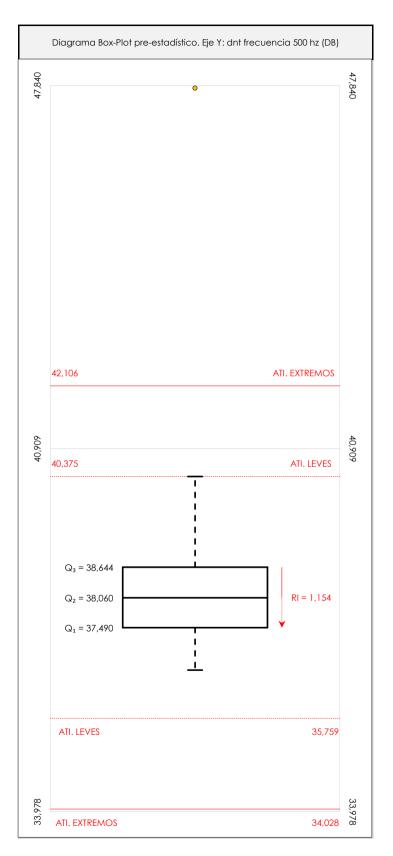
^{01 &}quot;X_{i,j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

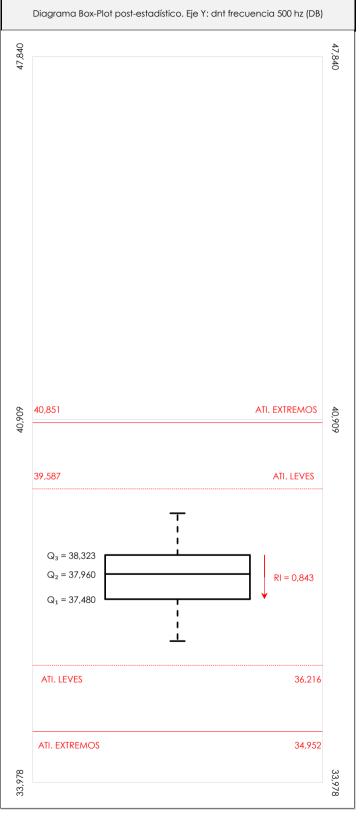
^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

 $^{^{03}}$ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leqslant 2] [Dudoso (D) - si 2 < | ZS | \leqslant 3] [Insatisfactorio (I) - si | ZS | > 3].

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 500 HZ (DB)

Análisis D. Estudios post-estadisticos

Apartado D.3. Diagramas Box-Plot o de Caja y Bigotes

ANALISIS GRAFICO DE CAJA Y BIGOTES (ANTES Y DESPUES DE ANALISIS ESTADISTICO)

Diagramas de caja y bigotes (Box Plot) de las medias aritméticas de los resultados aportados por los laboratorios <u>antes</u> (diagrama de la izquierda. Este incluye valores aberrantes y anómalos) y <u>después</u> (diagrama de la derecha. No incluye los valores descartados a lo largo del estudio) de análisis estadístico.

En ambos se han representado: el primer cuartil (Q_1 ; 25% de los datos), el segundo cuartil o la mediana (Q_2 ; 50% de los datos), el tercer cuartil (Q_3 ; 75% de los datos), el rango intercuartílico (RI ; cuartil tres menos cuartil uno) y los límites de valores atípicos leves (f_3 y f_1 para el máximo y mínimo respectivamente ; líneas discontinuas de color rojo) y extremos (f_3 * y f_1 * para el máximo y mínimo respectivamente ; líneas continuas de color rojo).

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 500 HZ (DB)

Conclusiones

Determinación de la repetibilidad y reproducibilidad

El análisis estadístico EILA20 para el ensayo "DNT FRECUENCIA 500 HZ", ha contado con la participación de un total de 8 laboratorios, debiendo haber aportado cada uno de ellos, un total de 5 determinaciones individuales además de su valor medio.

Tras analizar los resultados podemos concluir que, para cumplir con los criterios estadísticos establecidos en el informe, un total de 1 laboratorios han sido apartados de la evaluación final: 0 en el Análisis Pre-Estadístico (por no cumplir el criterio de validación y/o el procedimiento de ejecución recogido en la norma de ensayo) y 1 en el Análisis Estadístico (por resultar anómalos o aberrantes en las técnicas gráficas de consistencia de Mandel y en los ensayos de detección de resultados numéricos de Cochran y Grubbs), al cabo de 2 iteraciones.

De cada uno de los análisis (pre-estadístico y estadístico), se obtienen las siguientes tablas:

TIPO DE ANALISIS			PRE-ES	TADISTIC	0				ESTA	DISTICO		
Variables	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$
Valor Máximo (max ; %)	48,00	47,62	47,86	47,63	47,84	47,79	39,10	39,60	40,50	39,95	39,70	39,12
Valor Mínimo (min ; %)	36,90	36,80	36,00	37,00	36,40	36,68	36,90	36,80	36,00	37,00	36,40	36,68
Valor Promedio (M; %)	39,24	38,92	39,13	39,25	39,19	39,14	37,99	37,67	37,88	38,05	37,96	37,91
Desviación Típica (SDL ;)	3,59	3,63	3,82	3,52	3,65	3,57	0,64	0,96	1,57	1,02	1,14	0,79
Coef. Variación (CV ;)	0,09	0,09	0,10	0,09	0,09	0,09	0,02	0,03	0,04	0,03	0,03	0,02
VARIABLES	S_r^2	r		$S_L^{\ 2}$	S_R^{-2}	R	S_r^2	r		S_L^2	S_R^{2}	R
Valor Calculado	0,590	2,12	29 1	2,620	13,210	10,074	0,671	2,27	7 0 0	,490	1,160	2,986
Valor Referencia												

Asimismo, acompañando a éstas tablas y dependiendo del análisis que se esté llevando a cabo, se introducen los indicadores estadísticos "h y k" de Mandel y los valores críticos "C" de Cochran y " G_{Sim} y G_{Dob} " de Grubbs, todos ellos adimensionales, obtenidos de las tablas 4, 5, 6 y 7 de la norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios y del número de ensayos efectuados por cada uno de ellos:

TIPO DE ANALISIS		PRE	-ESTADISTI	со			Е	STADISTIC	5	
VARIABLES	h	k	С	G_{sim}	G_Dob	h	k	С	G_{sim}	G_{Dob}
Nivel de Significación 1%	1,98	1,70	0,463	2,139	0,0308	1,98	1,70	0,508	2,139	0,0308
Nivel de Significación 5%	1,71	1,49	0,391	2,020	0,0708	1,71	1,49	0,431	2,020	0,0708

Con los resultados de los laboratorios, que tras los dos análisis estadísticos son evaluados por Z-Score, se han obtenido: 7 resultados satisfactorios, 0 resultados dudosos y 0 resultados insatisfactorios.

Respecto a los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística recogida en la ISO 17025, sobre las dispersiones de los resultados individuales y su media, en forma de varianzas o desviaciones estándar, también conocida como ANOVA (siglas de analisys of varience).

Sabiendo que una varianza es la suma de cuadrados dividida por un número, que se llama grados de libertad, que depende del número de participantes menos 1, se puede decir que la imprecisión del ensayo se descompone en dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad (variabilidad intralaboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad debida al cambio de laboratorio).

Las condiciones de repetibilidad de este ensayo son: mismo laborante, mismo laboratorio y mismo equipo de medición utilizado dentro de un período de tiempo corto. Por ende, las condiciones de reproducibilidad para la misma muestra y ensayo, cambian en: el laborante, el laboratorio, el equipo y las condiciones de uso y tiempo.

Comité de infraestructuras para la Calidad de la Edificación

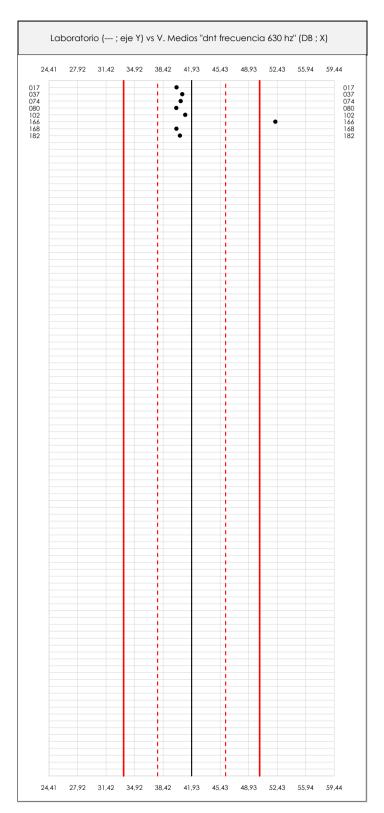
SACE

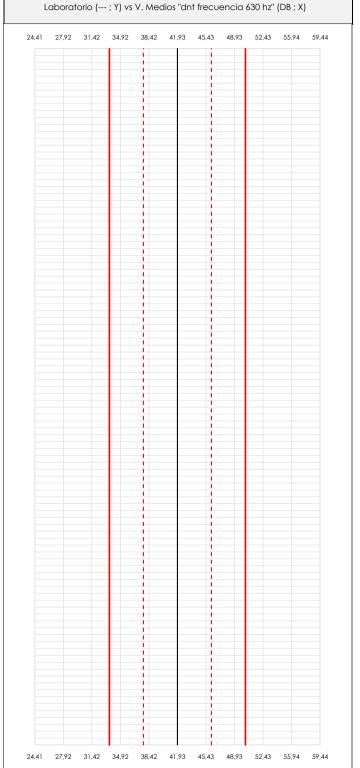
Subcomisión Administrativa para la Calidad de la Edificación

ANÁLISIS ESTADÍSTICO ACÚSTICA

DNT FRECUENCIA 630 HZ

Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 630 HZ (DB) Análisis A. Estudio pre-estadístico

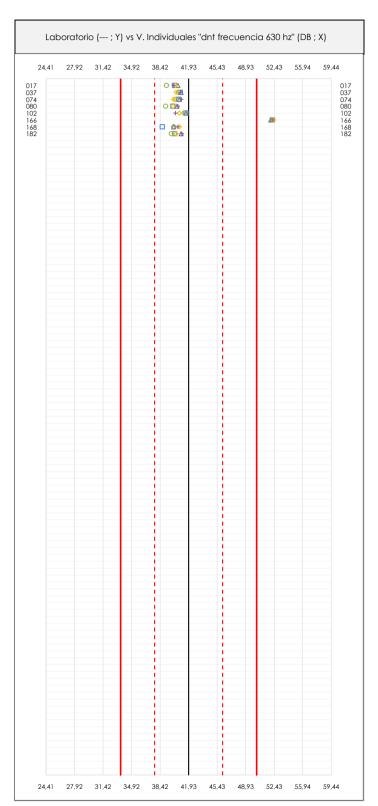
Apartado A.1. Gráficos de dispersión de valores medios

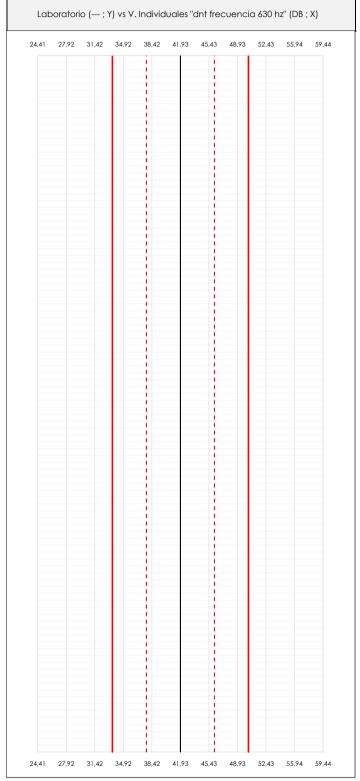
ANALISIS GRAFICO DE DISPERSION MEDIA (ANTES DE ANALISIS ESTADISTICO)

Dispersión de las medias aritméticas intra-laboratorios respecto de la media aritmética inter-laboratorios (41,93; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (46,10/37,75; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (50,28/33,57; líneas rojas de trazo continuo).

En el eje Y (adimensional) quedan reflejados los códigos de los laboratorios participantes y en el eje X (las unidades son las mismas que las del ensayo que se está analizando) las medias aritméticas intra-laboratorios representadas por punto de color negro.

Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 630 HZ (DB) Análisis A. Estudio pre-estadístico

Apartado A.2. Gráficos de dispersión de valores individuales

ANALISIS GRAFICOS DE DISPERSION INDIVIDUAL (ANTES DE ANALISIS ESTADISTICO)

Dispersión de los valores individuales respecto de la media aritmética inter-laboratorios (41,93; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (46,10/37,75; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (50,28/33,57; líneas rojas de trazo continuo).

En el eje Y (adimensional) queda reflejado el código del laboratorio participante y en el eje X (las unidades son las de los resultados del ensayo que se está analizando) los resultados individuales: el primero (X_{1,1}) se representa con un cuadrado azul, el segundo (X_{1,2}) con un círculo verde, el tercero (X_{1,3}) con un triángulo grís y el cuarto (X_{1,4})

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 630 HZ (DB) Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{Li}	D _{i arit %}	Pasa A	Observaciones
17	40,20	39,20	40,60	40,30	40,10	40,08	0,526	-4,40	✓	
37	40,90	40,70	41,00	40,40	40,90	40,78	0,239	-2,73	✓	
74	40,70	40,37	40,78	40,07	41,03	40,59	0,375	-3,19	✓	
80	40,00	39,10	40,50	40,00	40,60	40,04	0,594	-4,50	✓	
102	41,60	41,40	41,60	40,80	40,30	41,14	0,573	-1,87	✓	
166	52,23	52,28	52,01	52,30	52,26	52,22	0,118	24,55	✓	
168	38,70	40,10	40,10	40,80	40,60	40,06	0,820	-4,45	✓	
182	40,20	39,80	41,00	40,40	41,10	40,50	0,548	-3,40	✓	

NOTAS:

[máximo]

[mínimo

^{01 &}quot;X_{i j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_{L1}" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma.

 $^{^{\}rm 04}$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación

DNT FRECUENCIA 630 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

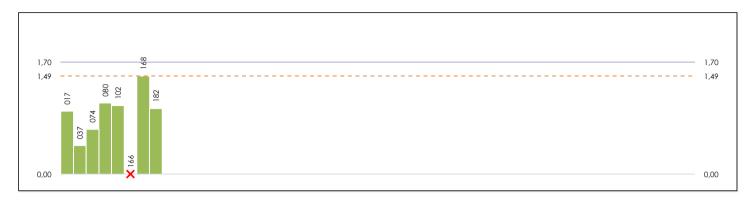
Apartado B.1. Gráfico de consistencia inter-laboratorios "h" de Mandel

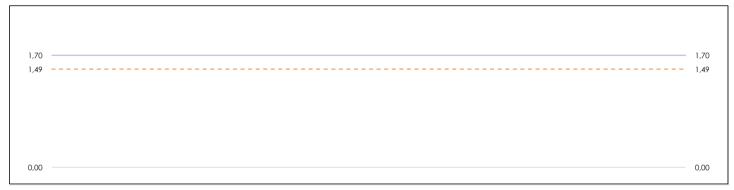
ANALISIS GRAFICO DE CONSISTENCIA INTER-LABORATORIOS

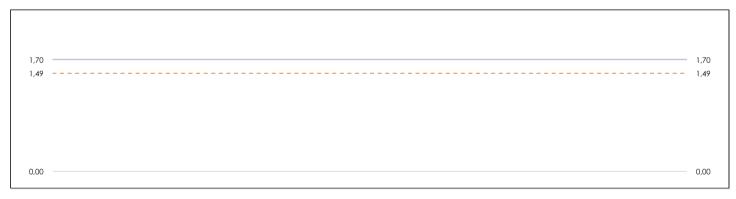
Análisis gráfico de consistencia inter-laboratorios "h" de Mandel. En él se representan las medias aritméticas inter-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación






DNT FRECUENCIA 630 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.2. Gráfico de consistencia intra-laboratorios "k" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTRA-LABORATORIOS

Análisis gráfico de consistencia intra-laboratorios "k" de Mandel. En él se representan las medias aritméticas intra-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes y el número de ensayos efectuados).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 630 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S_{Li}	D _{i arit %}	h _i	k _i	Ci	$G_{\text{Sim Inf}}$	$G_{\text{Sim Sup}}$	$G_{\text{Dob Inf}}$	G_{DobSup}	Pasa B
17	10.00	20.000	10.100	40.000	40.100	10.000	0.507	0.00	0.00	0.05						
17	40,20	39,200	40,600	40,300	40,100	40,080	0,526	-0,93	-0,89	0,95						√
37	40,90	40,700	41,000	40,400	40,900	40,780	0,239	0,80	0,77	0,43					0,2697	√
74	40,70	40,365	40,783	40,072	41,030	40,590	0,375	0,33	0,32	0,68		0.007		0.5//7		1
80	40,00	39,100	40,500	40,000	40,600	40,040	0,594	-1,03	-0,99	1,08		0,987	1 /05	0,5667	0.2/07	✓
102 166	41,60 52,23	41,400 52,285	41,600 52,012	40,800 52,297	40,300 52,261	41,140 52,217	0,573	1,69	1,63	1,04			1,625		0,2697	X
168	38,70	40,100	40,100	40,800	40,600	40,060	0,820	-0,98	-0,94	1,49				0,5667		
182	40,20	39,800	41,000	40,400	41,100	40,500	0,548	0,11	0,11	0,99				0,3007		
102	40,20	37,000	41,000	40,400	41,100	40,500	0,040	0,11	0,11	0,77						

NOTAS:

 $^{\rm 04}\,$ El código colorimétrico empleado para las celdas es:

[aberrante]

[anómalo]

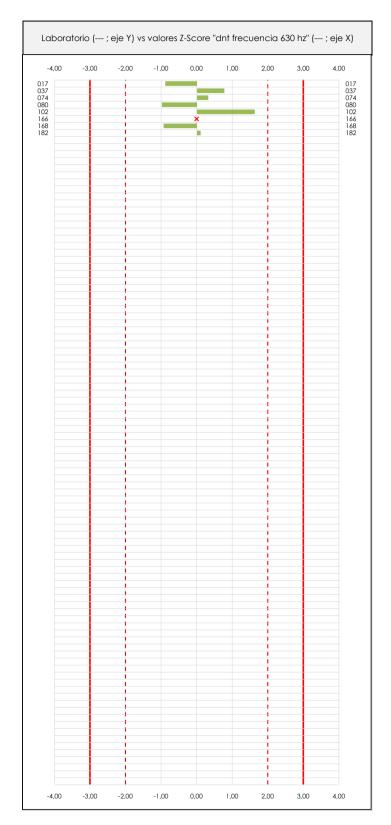
[máximo]

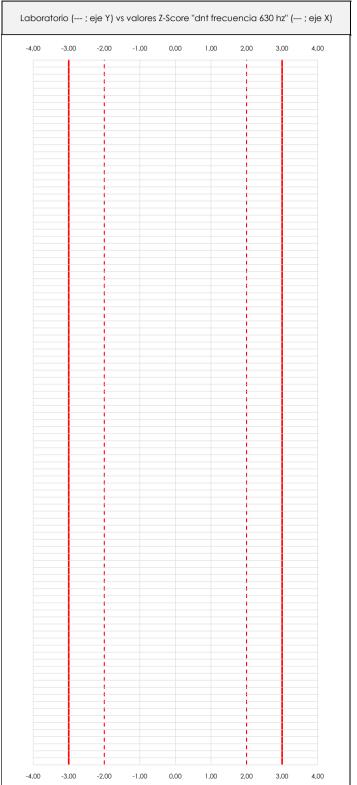
[mínimo]

^{01 &}quot;X_{i j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

^{03 &}quot;h_i y k_i", "C_i", "G_{sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.


Comité de infraestructuras para la Calidad de la Edificación



SACE Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 630 HZ (DB) Análisis C. Evaluación Z-Score

Apartado C.1. Análisis gráfico Altman Z-Score

ANALISIS GRAFICO Z-SCORE

Diagrama Z-Score para los resultados aportados por los laboratorios. Estos se considerarán satisfactorios (S) si el valor absoluto del Z-Score es menor o igual a 2 unidades, dudoso si está comprendido entre 2 y 3 unidades e insatisfactorio si es mayor o igual a 3 unidades.

Los resultados satisfactorios quedan reflejados entre las dos líneas rojas discontinuas, líneas de referencia en la evaluación Z-Score.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 630 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	Pasa A	Pasa B	Total	Causa	Iteración	Z-Score	Evaluación
17	40.00	20.00	10.70	40.00	40.10	10.00	0.507	0.00						0.000	
17	40,20	39,20	40,60	40,30	40,10	40,08	0,526	-0,93	√	√	<u> </u>			-0,892	S
37	40,90	40,70	41,00	40,40	40,90	40,78	0,239	0,80	√	√	√			0,770	S
74	40,70	40,37	40,78	40,07	41,03	40,59	0,375	0,33	√	√	<u> </u>			0,318	S
80	40,00	39,10	40,50	40,00	40,60	40,04	0,594	-1,03	√	√	<u> </u>			-0,987	S
102	41,60 52,23	41,40 52,28	41,60	40,80	40,30	41,14	0,573	1,69	√	√	√	A D	0	1,625	S
166	38,70	40,10	52,01 40,10	52,30 40,80	52,26 40,60	52,22 40,06	0,820	-0,98	√	X	X ✓	AB	U	-0,940	 S
182	40,20	39,80	41,00	40,40	41,10	40,06	0,548	0,11	→	√	√			0,105	S
102	40,20	37,00	41,00	40,40	41,10	40,30	0,346	0,11	-					0,103	3

NOTAS:

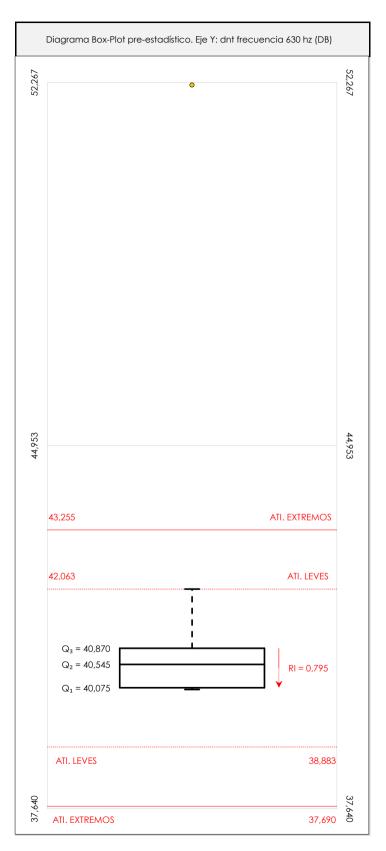
^{01 &}quot;X_{i,j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_{Li}" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

 $^{^{03}}$ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leqslant 2] [Dudoso (D) - si 2 < | ZS | \leqslant 3] [Insatisfactorio (I) - si | ZS | > 3].

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación


SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 630 HZ (DB)

Análisis D. Estudios post-estadisticos

Apartado D.3. Diagramas Box-Plot o de Caja y Bigotes

ANALISIS GRAFICO DE CAJA Y BIGOTES (ANTES Y DESPUES DE ANALISIS ESTADISTICO)

Diagramas de caja y bigotes (Box Plot) de las medias aritméticas de los resultados aportados por los laboratorios <u>antes</u> (diagrama de la izquierda. Este incluye valores aberrantes y anómalos) y <u>después</u> (diagrama de la derecha. No incluye los valores descartados a lo largo del estudio) de análisis estadístico.

En ambos se han representado: el primer cuartil (Q_1 ; 25% de los datos), el segundo cuartil o la mediana (Q_2 ; 50% de los datos), el tercer cuartil (Q_3 ; 75% de los datos), el rango intercuartílico (RI ; cuartil tres menos cuartil uno) y los límites de valores atípicos leves (f_3 y f_1 para el máximo y mínimo respectivamente ; líneas discontinuas de color rojo) y extremos (f_3 * y f_1 * para el máximo y mínimo respectivamente ; líneas continuas de color rojo).

Comité de infraestructuras para la Calidad de la Edificación

DNT FRECUENCIA 630 HZ (DB)

Conclusiones

Determinación de la repetibilidad y reproducibilidad

SACE Subcomisión Administrativa para la Calidad de la Edificación

El análisis estadístico ElLA20 para el ensayo "DNT FRECUENCIA 630 HZ", ha contado con la participación de un total de 8 laboratorios, debiendo haber aportado cada uno de ellos, un total de 5 determinaciones individuales además de su valor medio.

Tras analizar los resultados podemos concluir que, para cumplir con los criterios estadísticos establecidos en el informe, un total de 1 laboratorios han sido apartados de la evaluación final: 0 en el Análisis Pre-Estadístico (por no cumplir el criterio de validación y/o el procedimiento de ejecución recogido en la norma de ensayo) y 1 en el Análisis Estadístico (por resultar anómalos o aberrantes en las técnicas gráficas de consistencia de Mandel y en los ensayos de detección de resultados numéricos de Cochran y Grubbs), al cabo de 2 iteraciones.

De cada uno de los análisis (pre-estadístico y estadístico), se obtienen las siguientes tablas:

TIPO DE ANALISIS			PRE-ES	TADISTIC	:0				ESTADISTICO			
Variables		X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$
Valor Máximo (max ; %)	52,23	52,28	52,01	52,30	52,26	52,22	41,60	41,40	41,60	40,80	41,10	41,14
Valor Mínimo (min ; %)	38,70	39,10	40,10	40,00	40,10	40,04	38,70	39,10	40,10	40,00	40,10	40,04
Valor Promedio (M; %)	41,82	41,62	42,20	41,88	42,11	41,93	40,33	40,10	40,80	40,40	40,66	40,46
Desviación Típica (SDL ;)	4,29	4,38	3,99	4,22	4,12	4,18	0,90	0,82	0,47	0,32	0,37	0,42
Coef. Variación (CV ;)	0,10	0,11	0,09	0,10	0,10	0,10	0,02	0,02	0,01	0,01	0,01	0,01
VARIABLES	S_r^2	r		$S_L^{\ 2}$	S_R^{2}	R	S_r^2	r		S_L^2	S_R^{2}	R
Valor Calculado	0,268	1,43	34 1	7,389	17,656	11,647	0,304	1,52	28 0	,117	0,421	1,798
Valor Referencia												

Asimismo, acompañando a éstas tablas y dependiendo del análisis que se esté llevando a cabo, se introducen los indicadores estadísticos "h y k" de Mandel y los valores críticos "C" de Cochran y " G_{Sim} y G_{Dob} " de Grubbs, todos ellos adimensionales, obtenidos de las tablas 4, 5, 6 y 7 de la norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios y del número de ensayos efectuados por cada uno de ellos:

TIPO DE ANALISIS		PRE	-ESTADISTI	со		ESTADISTICO						
VARIABLES	h	k	С	G_{sim}	G_Dob	h	k	С	G_{sim}	G_{Dob}		
Nivel de Significación 1%	1,98	1,70	0,463	2,139	0,0308	1,98	1,70	0,508	2,139	0,0308		
Nivel de Significación 5%	1,71	1,49	0,391	2,020	0,0708	1,71	1,49	0,431	2,020	0,0708		

Con los resultados de los laboratorios, que tras los dos análisis estadísticos son evaluados por Z-Score, se han obtenido: 7 resultados satisfactorios, 0 resultados dudosos y 0 resultados insatisfactorios.

Respecto a los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística recogida en la ISO 17025, sobre las dispersiones de los resultados individuales y su media, en forma de varianzas o desviaciones estándar, también conocida como ANOVA (siglas de analisys of varience).

Sabiendo que una varianza es la suma de cuadrados dividida por un número, que se llama grados de libertad, que depende del número de participantes menos 1, se puede decir que la imprecisión del ensayo se descompone en dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad (variabilidad intralaboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad debida al cambio de laboratorio).

Las condiciones de repetibilidad de este ensayo son: mismo laborante, mismo laboratorio y mismo equipo de medición utilizado dentro de un período de tiempo corto. Por ende, las condiciones de reproducibilidad para la misma muestra y ensayo, cambian en: el laborante, el laboratorio, el equipo y las condiciones de uso y tiempo.

Comité de infraestructuras para la Calidad de la Edificación

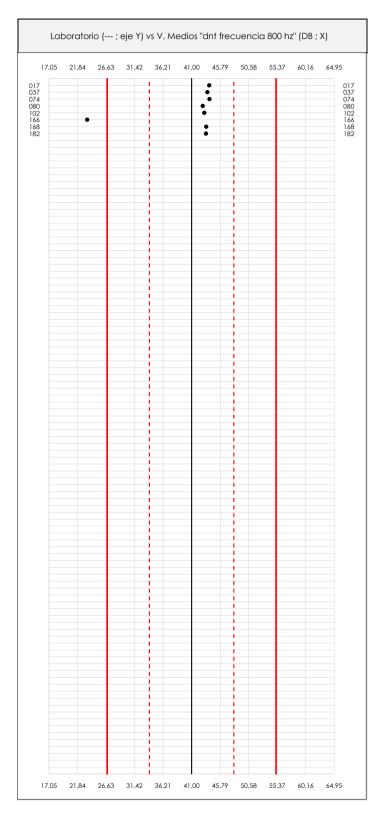
SACE

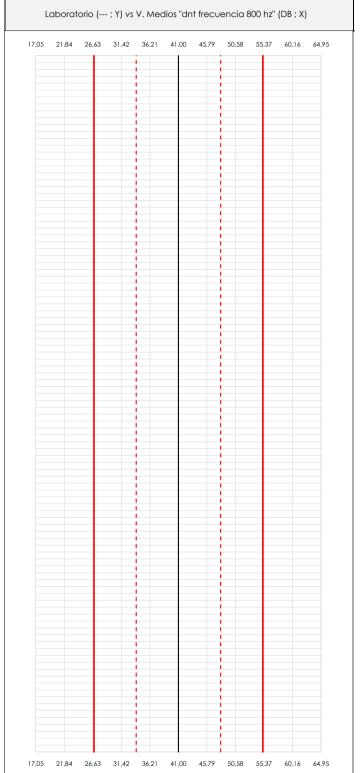
Subcomisión Administrativa para la Calidad de la Edificación

ANÁLISIS ESTADÍSTICO ACÚSTICA

DNT FRECUENCIA 800 HZ

Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 800 HZ (DB) Análisis A. Estudio pre-estadístico

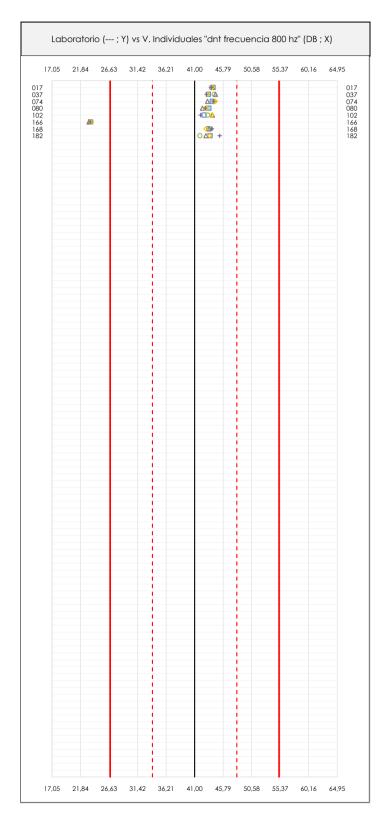
Apartado A.1. Gráficos de dispersión de valores medios

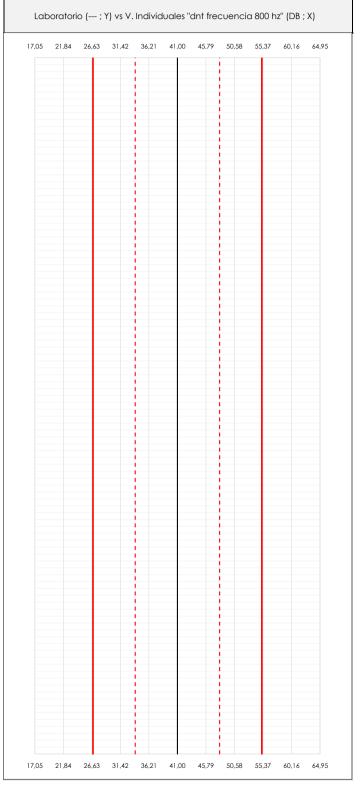
ANALISIS GRAFICO DE DISPERSION MEDIA (ANTES DE ANALISIS ESTADISTICO)

Dispersión de las medias aritméticas intra-laboratorios respecto de la media aritmética inter-laboratorios (41,00 ; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (48,09/33,91 ; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (55,18/26,82 ; líneas rojas de trazo continuo).

En el eje Y (adimensional) quedan reflejados los códigos de los laboratorios participantes y en el eje X (las unidades son las mismas que las del ensayo que se está analizando) las medias aritméticas intra-laboratorios representadas por punto de color negro.

Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 800 HZ (DB) Análisis A. Estudio pre-estadístico

Apartado A.2. Gráficos de dispersión de valores individuales

ANALISIS GRAFICOS DE DISPERSION INDIVIDUAL (ANTES DE ANALISIS ESTADISTICO)

Dispersión de los valores individuales respecto de la media aritmética inter-laboratorios (41,00; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (48,09/33,91; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (55,18/26,82; líneas rojas de trazo continuo).

En el eje Y (adimensional) queda reflejado el código del laboratorio participante y en el eje X (las unidades son las de los resultados del ensayo que se está analizando) los resultados individuales: el primero (X_{1,1}) se representa con un cuadrado azul, el segundo (X_{1,2}) con un círculo verde, el tercero (X_{1,3}) con un triángulo grís y el cuarto (X_{1,4})

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 800 HZ (DB) Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	₹ arit	S _{Li}	D _{i arit %}	Pasa A	Observaciones
		40.00								
17	44,10	43,80	44,10	44,00	43,80	43,96	0,152	7,22	√	
	43,30 43,99	44,30 44,27	44,50 43,16	43,20 44,48	43,00	43,66 44,01	0,688	6,48 7,34	✓	
80	43,40	43,10	42,30	42,80	44,15 42,80	42,88	0,307	4,58	→	
102	42,60	43,20	44,00	43,90	42,00	43,14	0,853	5,22		
166	23,54	23,62	23,25	23,52	23,48	23,48	0,139	-42,73	→	
168	43,40	43,70	43,40	42,90	43,90	43,46	0,378	6,00	<u> </u>	
182	43,60	41,90	42,90	43,50	45,20	43,42	1,203	5,90	<u> </u>	
	,	,.		,				-,		

NOTAS:

 $^{\rm 04}$ El código colorimétrico empleado para las celdas es:

[máximo]

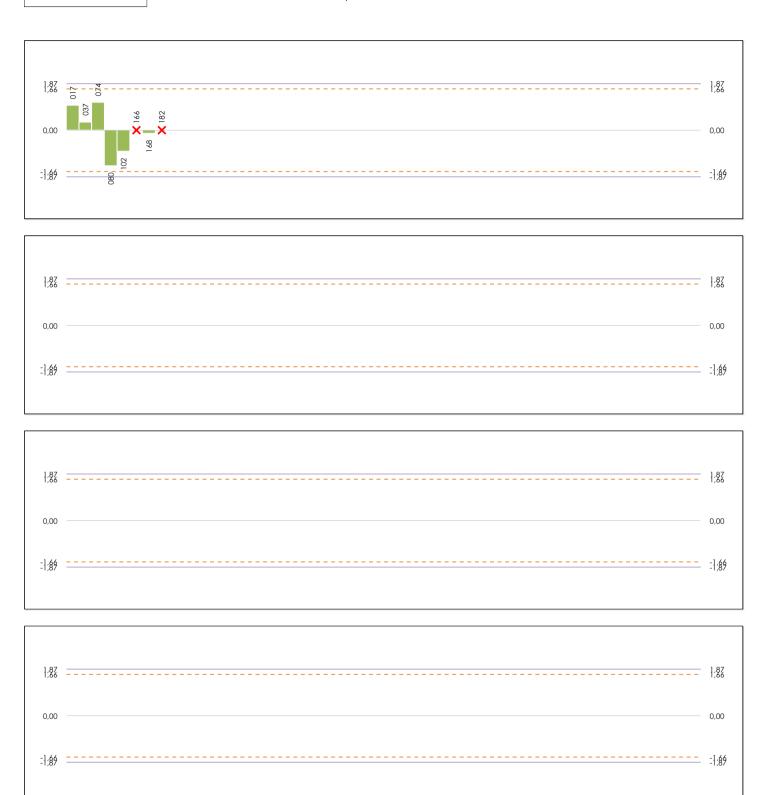
[mínimo

^{01 &}quot;X_{i j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_{L1}" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma.

Comité de infraestructuras para la Calidad de la Edificación



DNT FRECUENCIA 800 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

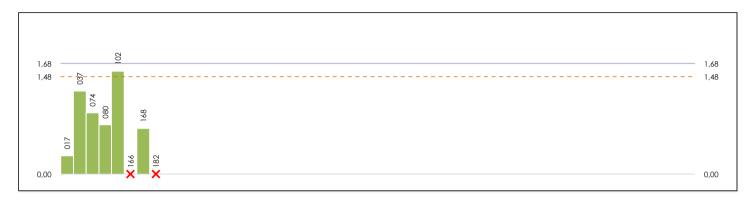
Apartado B.1. Gráfico de consistencia inter-laboratorios "h" de Mandel

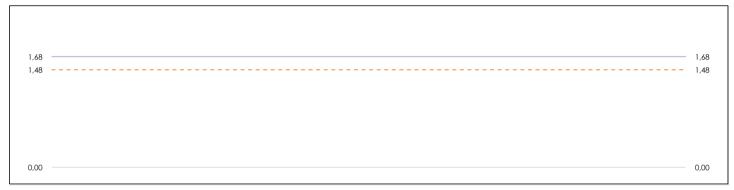
ANALISIS GRAFICO DE CONSISTENCIA INTER-LABORATORIOS

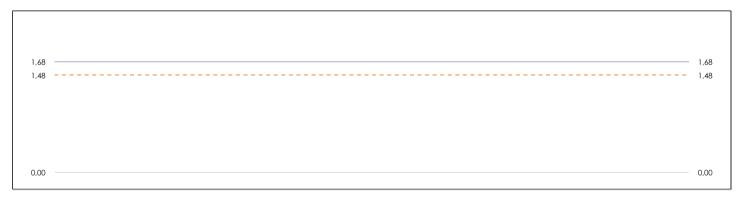
Análisis gráfico de consistencia inter-laboratorios "h" de Mandel. En él se representan las medias aritméticas inter-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación






DNT FRECUENCIA 800 HZ (DB)


Análisis B. Mandel, Cochran y Grubbs

Apartado B.2. Gráfico de consistencia intra-laboratorios "k" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTRA-LABORATORIOS

Análisis gráfico de consistencia intra-laboratorios "k" de Mandel. En él se representan las medias aritméticas intra-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes y el número de ensayos efectuados).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 800 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S_{Li}	D _{i arit %}	h _i	k _i	C _i	$G_{\text{Sim Inf}}$	G_{SimSup}	$G_{\text{Dob Inf}}$	G_{DobSup}	Pasa B
17	4430	10.000	44.100	11.000	40.000	10.010	0.150	1.01	2.22	0.00					0.0515	
17	44,10	43,800	44,100	44,000	43,800	43,960	0,152	1,01	0,98	0,28					0,3515	√
37	43,30	44,300	44,500	43,200	43,000	43,660	0,688	0,32	0,31	1,26			1.007		0.0515	√
74	43,99	44,275	43,164	44,483	44,150	44,013	0,507	1,14	1,10	0,93		1 410	1,097	0.0005	0,3515	√
80	43,40	43,100	42,300	42,800	42,800	42,880	0,409	-1,47	-1,42	0,75		1,419		0,2005		√
102	42,60	43,200	44,000	43,900	42,000	43,140	0,853	-0,87	-0,84	1,56*	0,406			0,2005		√
166	23,54	23,619	23,249	23,517	23,478	23,480										X
168	43,40	43,700	43,400	42,900	43,900	43,460	0,378	-0,14	-0,13	0,69						✓
182	43,60	41,900	42,900	43,500	45,200	43,420										X

NOTAS:

 $^{\rm 04}\,$ El código colorimétrico empleado para las celdas es:

[aberrante]

[anómalo]

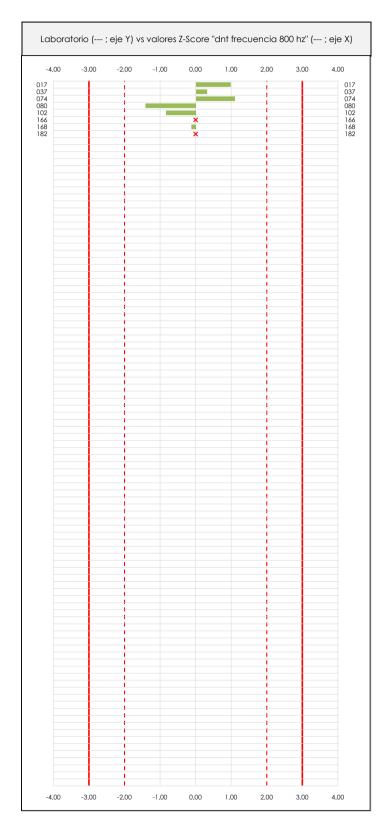
[máximo]

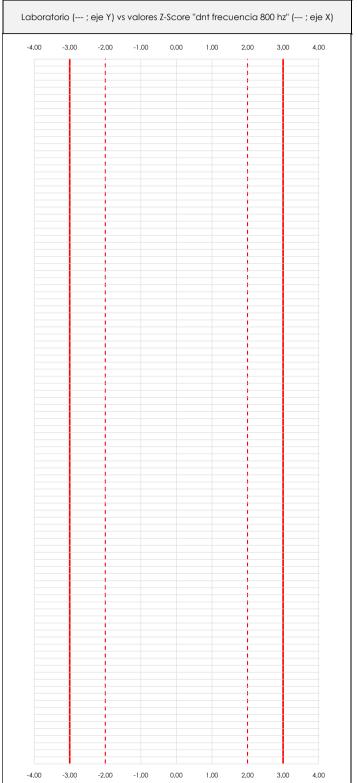
[mínimo]

^{01 &}quot;X_{i j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

^{03 &}quot;h_i y k_i", "C_i", "G_{sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.


Comité de infraestructuras para la Calidad de la Edificación



SACESubcomisión Administrativa para la
Calidad de la Edificación

DNT FRECUENCIA 800 HZ (DB) Análisis C. Evaluación Z-Score

Apartado C.1. Análisis gráfico Altman Z-Score

ANALISIS GRAFICO Z-SCORE

Diagrama Z-Score para los resultados aportados por los laboratorios. Estos se considerarán satisfactorios (S) si el valor absoluto del Z-Score es menor o igual a 2 unidades, dudoso si está comprendido entre 2 y 3 unidades e insatisfactorio si es mayor o igual a 3 unidades.

Los resultados satisfactorios quedan reflejados entre las dos líneas rojas discontinuas, líneas de referencia en la evaluación Z-Score.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 800 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	Pasa A	Pasa B	Total	Causa	Iteración	Z-Score	Evaluación
17	44,10	43,80	44,10	44,00	43,80	43,96	0,152	1,01	√	√	✓			0,980	S
37	43,30	44,30	44,50	43,20			0,132	0,32	→		<u> </u>				S
					43,00	43,66								0,314	
74	43,99	44,27	43,16	44,48	44,15	44,01	0,507	1,14	√	√	<u> </u>			1,097	S
80	43,40	43,10	42,30	42,80	42,80	42,88	0,409	-1,47	√	<u> </u>	√			-1,419	S
102	42,60	43,20	44,00	43,90	42,00	43,14	0,853	-0,87	√	√	√	4 D		-0,841	S
166	23,54	23,62	23,25	23,52	23,48	23,48			√	Х	Х	AB	0		
168	43,40	43,70	43,40	42,90	43,90	43,46	0,378	-0,14	√	√	√			-0,131	S
182	43,60	41,90	42,90	43,50	45,20	43,42			✓	Х	Х	AN	0		

NOTAS:

^{01 &}quot;X_{i,j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

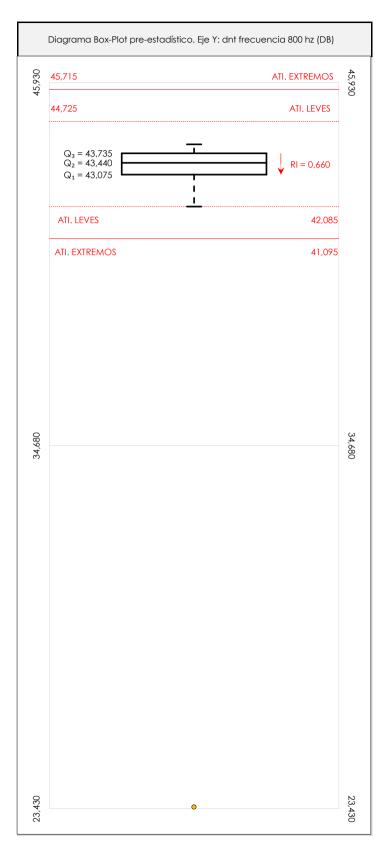
^{02 &}quot;S_{Li}" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

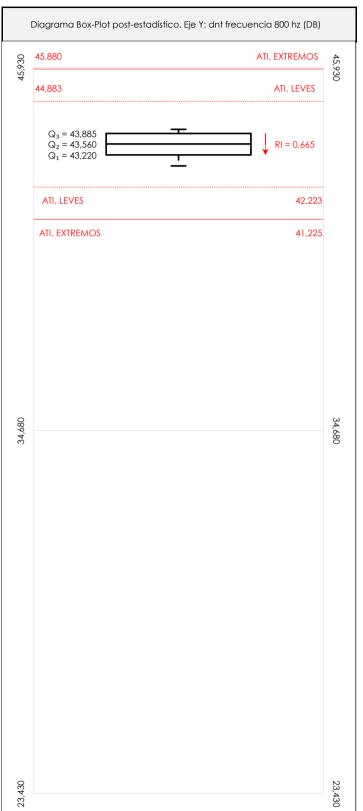
 $^{^{03}}$ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leqslant 2] [Dudoso (D) - si 2 < | ZS | \leqslant 3] [Insatisfactorio (I) - si | ZS | > 3].

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

CICE ité de infraestructuras p

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 800 HZ (DB)

Análisis D. Estudios post-estadisticos

Apartado D.3. Diagramas Box-Plot o de Caja y Bigotes

ANALISIS GRAFICO DE CAJA Y BIGOTES (ANTES Y DESPUES DE ANALISIS ESTADISTICO)

Diagramas de caja y bigotes (Box Plot) de las medias aritméticas de los resultados aportados por los laboratorios <u>antes</u> (diagrama de la izquierda. Este incluye valores aberrantes y anómalos) y <u>después</u> (diagrama de la derecha. No incluye los valores descartados a lo largo del estudio) de análisis estadístico.

En ambos se han representado: el primer cuartil (Q_1 ; 25% de los datos), el segundo cuartil o la mediana (Q_2 ; 50% de los datos), el tercer cuartil (Q_3 ; 75% de los datos), el rango intercuartílico (RI ; cuartil tres menos cuartil uno) y los límites de valores atípicos leves (f_3 y f_1 para el máximo y mínimo respectivamente ; líneas discontinuas de color rojo) y extremos (f_3 * y f_1 * para el máximo y mínimo respectivamente ; líneas continuas de color rojo).

Comité de infraestructuras para la Calidad de la Edificación

DNT FRECUENCIA 800 HZ (DB)

Conclusiones

Determinación de la repetibilidad y reproducibilidad

SACE
Subcomisión Administrativa para la
Calidad de la Edificación

El análisis estadístico EILA20 para el ensayo "DNT FRECUENCIA 800 HZ", ha contado con la participación de un total de 8 laboratorios, debiendo haber aportado cada uno de ellos, un total de 5 determinaciones individuales además de su valor medio.

Tras analizar los resultados podemos concluir que, para cumplir con los criterios estadísticos establecidos en el informe, un total de 2 laboratorios han sido apartados de la evaluación final: 0 en el Análisis Pre-Estadístico (por no cumplir el criterio de validación y/o el procedimiento de ejecución recogido en la norma de ensayo) y 2 en el Análisis Estadístico (por resultar anómalos o aberrantes en las técnicas gráficas de consistencia de Mandel y en los ensayos de detección de resultados numéricos de Cochran y Grubbs), al cabo de 2 iteraciones.

De cada uno de los análisis (pre-estadístico y estadístico), se obtienen las siguientes tablas:

TIPO DE ANALISIS			PRE-ES	TADISTIC	0				ESTA	DISTICO		
Variables	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$
Valor Máximo (max ; %)	44,10	44,30	44,50	44,48	45,20	44,01	44,10	44,30	44,50	44,48	44,15	44,01
Valor Mínimo (min ; %)	23,54	23,62	23,25	23,52	23,48	23,48	42,60	43,10	42,30	42,80	42,00	42,88
Valor Promedio (M; %)	40,99	40,99	40,95	41,04	41,04	41,00	43,47	43,73	43,58	43,55	43,28	43,52
Desviación Típica (SDL ;)	7,07	7,06	7,19	7,10	7,16	7,09	0,54	0,51	0,79	0,68	0,82	0,45
Coef. Variación (CV ;)	0,17	0,17	0,18	0,17	0,17	0,17	0,01	0,01	0,02	0,02	0,02	0,01
VARIABLES	S_r^2	r		S _L ²	S_R^{-2}	R	S_r^2	r		S_L^2	S_R^{2}	R
Valor Calculado	0,407	1,76	59 50	0,187	50,594	19,716	0,299	1,51	5 0	,143	0,442	1,842
Valor Referencia												

Asimismo, acompañando a éstas tablas y dependiendo del análisis que se esté llevando a cabo, se introducen los indicadores estadísticos "h y k" de Mandel y los valores críticos "C" de Cochran y " G_{Sim} y G_{Dob} " de Grubbs, todos ellos adimensionales, obtenidos de las tablas 4, 5, 6 y 7 de la norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios y del número de ensayos efectuados por cada uno de ellos:

TIPO DE ANALISIS		PRE	-ESTADISTI	со			E	STADISTIC)	
VARIABLES	h	k	С	G_{sim}	G_{Dob}	h	k	С	G_{sim}	G_{Dob}
Nivel de Significación 1%	1,87	1,68	0,463	1,973	0,0116	1,87	1,68	0,564	1,973	0,0116
Nivel de Significación 5%	1,66	1,48	0,391	1,887	0,0349	1,66	1,48	0,480	1,887	0,0349

Con los resultados de los laboratorios, que tras los dos análisis estadísticos son evaluados por Z-Score, se han obtenido: 6 resultados satisfactorios, 0 resultados dudosos y 0 resultados insatisfactorios.

Respecto a los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística recogida en la ISO 17025, sobre las dispersiones de los resultados individuales y su media, en forma de varianzas o desviaciones estándar, también conocida como ANOVA (siglas de analisys of varience).

Sabiendo que una varianza es la suma de cuadrados dividida por un número, que se llama grados de libertad, que depende del número de participantes menos 1, se puede decir que la imprecisión del ensayo se descompone en dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad (variabilidad intralaboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad debida al cambio de laboratorio).

Las condiciones de repetibilidad de este ensayo son: mismo laborante, mismo laboratorio y mismo equipo de medición utilizado dentro de un período de tiempo corto. Por ende, las condiciones de reproducibilidad para la misma muestra y ensayo, cambian en: el laborante, el laboratorio, el equipo y las condiciones de uso y tiempo.

Comité de infraestructuras para la Calidad de la Edificación

SACE

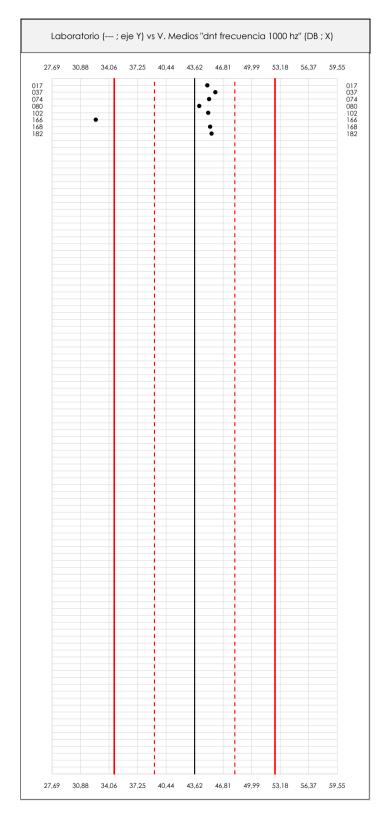
Subcomisión Administrativa para la Calidad de la Edificación

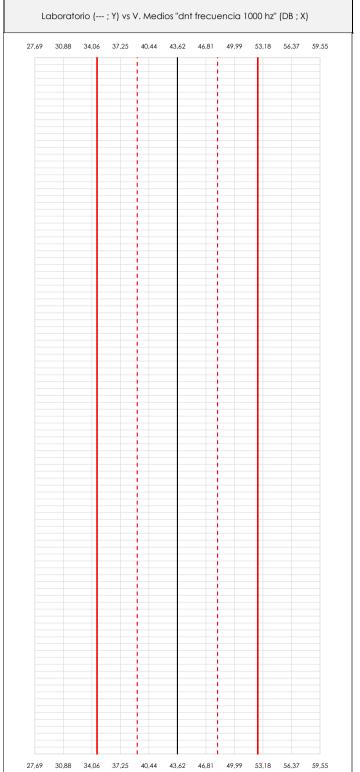
ANÁLISIS ESTADÍSTICO ACÚSTICA

DNT FRECUENCIA 1000 HZ

CICE e infraestructuras para la

Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 1000 HZ (DB) Análisis A. Estudio pre-estadístico

Apartado A.1. Gráficos de dispersión de valores medios

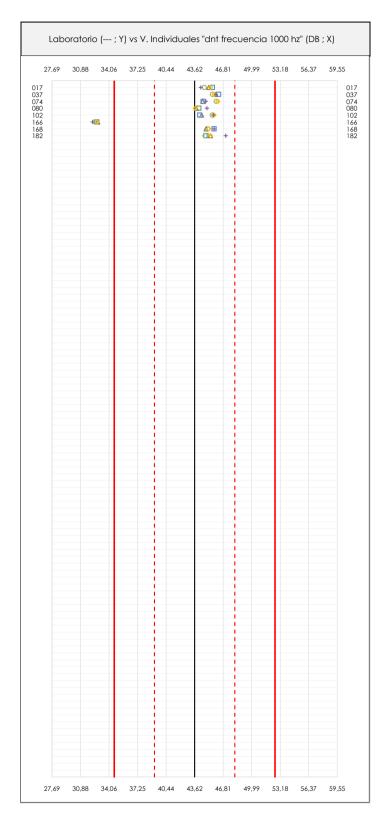
ANALISIS GRAFICO DE DISPERSION MEDIA (ANTES DE ANALISIS ESTADISTICO)

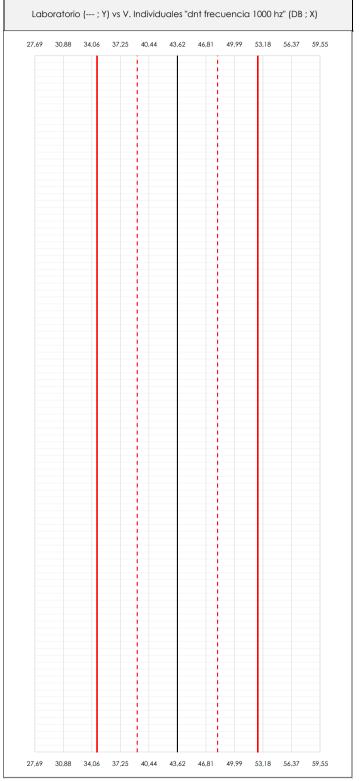
Dispersión de las medias aritméticas intra-laboratorios respecto de la media aritmética inter-laboratorios (43,62 ; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (48,11/39,13 ; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (52,60/34,64 ; líneas rojas de trazo continuo).

En el eje Y (adimensional) quedan reflejados los códigos de los laboratorios participantes y en el eje X (las unidades son las mismas que las del ensayo que se está analizando) las medias aritméticas intra-laboratorios representadas por punto de color negro.

CICE Comité de infraestructuras para la Calidad de la Edificación

CSIC EDUAR DO TOR ROJA


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 1000 HZ (DB)

Análisis A. Estudio pre-estadístico

Apartado A.2. Gráficos de dispersión de valores individuales

ANALISIS GRAFICOS DE DISPERSION INDIVIDUAL (ANTES DE ANALISIS ESTADISTICO)

Dispersión de los valores individuales respecto de la media aritmética inter-laboratorios (43,62; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (48,11/39,13; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (52,60/34,64; líneas rojas de trazo continuo).

En el eje Y (adimensional) queda reflejado el código del laboratorio participante y en el eje X (las unidades son las de los resultados del ensayo que se está analizando) los resultados individuales: el primero (X_{i,1}) se representa con un cuadrado azul, el segundo (X_{i,2}) con un círculo verde, el tercero (X_{i,3}) con un triángulo grís y el cuarto (X_{i,4}) con un rombo amarillo.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 1000 HZ (DB)

Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{Li}	D _{i arit %}	Pasa A	Observaciones
17	45,60	44,70	45,20	45,40	44,30	45,04	0,532	3,25	✓	
37	46,30	45,60	46,00	45,80	46,00	45,94	0,261	5,32	✓	
74	44,58	46,04	44,53	46,21	44,87	45,25	0,814	3,73	✓	
80	44,10	44,10	43,80	43,70	45,00	44,14	0,513	1,19	✓	
102	44,20	45,60	44,40	45,80	45,70	45,14	0,773	3,48	✓	
166	32,70	32,48	32,80	32,71	32,23	32,58	0,232	-25,30	✓	
168	45,80	45,10	44,90	45,20	45,80	45,36	0,416	3,99	✓	
182	44,90	44,80	45,40	45,40	47,10	45,52	0,926	4,35	✓	

NOTAS:

 $^{\rm 04}$ El código colorimétrico empleado para las celdas es:

[máximo]

[mínimo

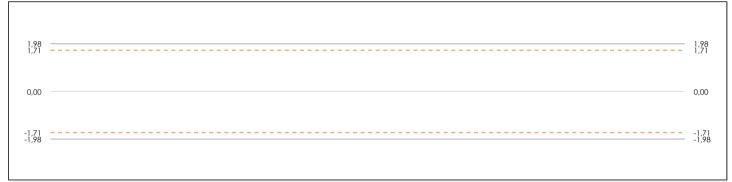
^{01 &}quot;X_{i j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_Li" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma.

CICE Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 1000 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

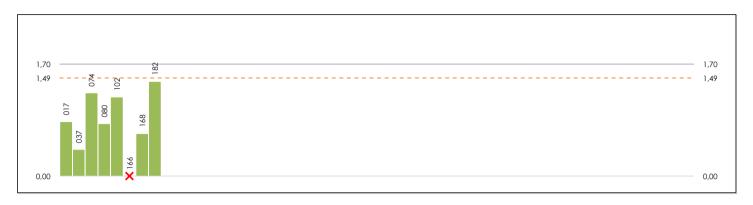
Apartado B.1. Gráfico de consistencia inter-laboratorios "h" de Mandel

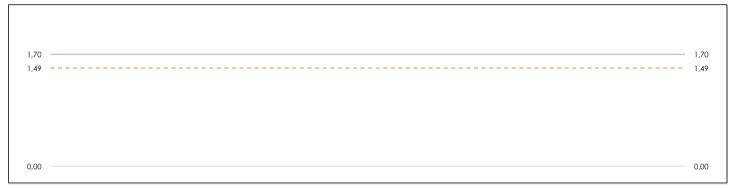
ANALISIS GRAFICO DE CONSISTENCIA INTER-LABORATORIOS

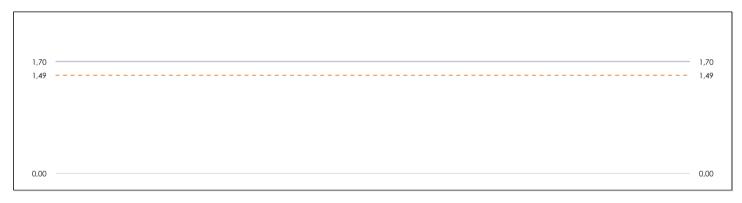
Análisis gráfico de consistencia inter-laboratorios "h" de Mandel. En él se representan las medias aritméticas inter-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación






DNT FRECUENCIA 1000 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.2. Gráfico de consistencia intra-laboratorios "k" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTRA-LABORATORIOS

Análisis gráfico de consistencia intra-laboratorios "k" de Mandel. En él se representan las medias aritméticas intra-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes y el número de ensayos efectuados).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 1000 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	h _i	k _i	C _i	G _{Sim Inf}	G _{Sim Sup}	$G_{\text{Dob Inf}}$	G _{Dob Sup}	Pasa B
17	45,60	44,700	45,200	45,400	44,300	45,040	0,532	-0,35	-0,29	0,83				0,2132		√
37	46,30	45,600	46,000	45,800	46,000	45,940	0,261	1,64	1,34	0,40			1,343		0,5190	√
74	44,58	46,039	44,534	46,208	44,874	45,247	0,814	0,11	0,09	1,26						√
80	44,10	44,100	43,800	43,700	45,000	44,140	0,513	-2,34	-1,92*	0,80	0,295	1,916		0,2132		<u> </u>
102	44,20	45,600	44,400	45,800	45,700	45,140	0,773	-0,13	-0,11	1,20						<u> </u>
166	32,70	32,477	32,800	32,715	32,227	32,583										X
168	45,80	45,100	44,900	45,200	45,800	45,360	0,416	0,36	0,29	0,65					0.5100	√
182	44,90	44,800	45,400	45,400	47,100	45,520	0,926	0,71	0,58	1,44					0,5190	√

NOTAS:

 $^{\rm 04}$ El código colorimétrico empleado para las celdas es:

[aberrante]

[anómalo]

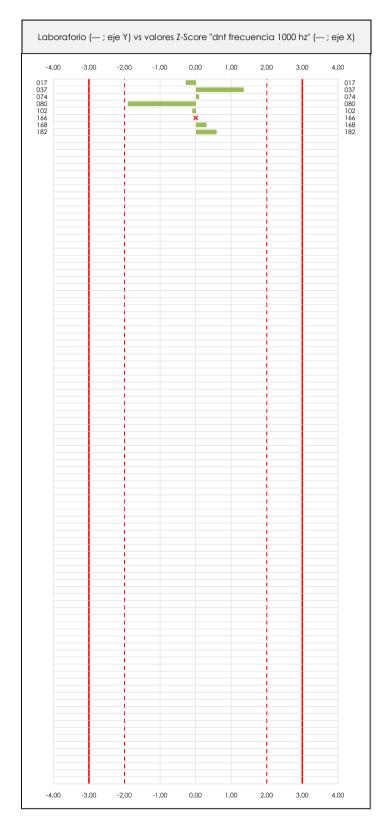
[máximo]

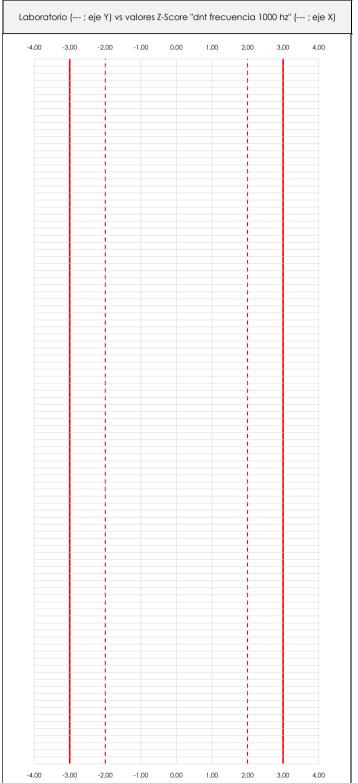
[mínimo]

^{01 &}quot;X_{i j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

^{03 &}quot;h_i y k_i", "C_i", "G_{sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.


Comité de infraestructuras para la Calidad de la Edificación



SACESubcomisión Administrativa para la
Calidad de la Edificación

DNT FRECUENCIA 1000 HZ (DB) Análisis C. Evaluación Z-Score

Apartado C.1. Análisis gráfico Altman Z-Score

ANALISIS GRAFICO Z-SCORE

Diagrama Z-Score para los resultados aportados por los laboratorios. Estos se considerarán satisfactorios (S) si el valor absoluto del Z-Score es menor o igual a 2 unidades, dudoso si está comprendido entre 2 y 3 unidades e insatisfactorio si es mayor o igual a 3 unidades.

Los resultados satisfactorios quedan reflejados entre las dos líneas rojas discontinuas, líneas de referencia en la evaluación Z-Score.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 1000 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{Li}	D _{i arit %}	Pasa A	Pasa B	Total	Causa	Iteración	Z-Score	Evaluación
17	45.70	44.70	45.00	45.40	44.20	45.04	0.520	0.25	√	√	√			0.207	
	45,60	44,70	45,20	45,40	44,30	45,04	0,532	-0,35						-0,286	S
37	46,30	45,60	46,00	45,80	46,00	45,94	0,261	1,64	√	√	√			1,343	S
74	44,58	46,04	44,53	46,21	44,87	45,25	0,814	0,11	√	<u> </u>	√			0,088	S
80	44,10	44,10	43,80	43,70	45,00	44,14	0,513	-2,34	√	√	√			-1,916	S
102	44,20	45,60	44,40	45,80	45,70	45,14	0,773	-0,13	✓	√	✓			-0,105	S
166	32,70	32,48	32,80	32,71	32,23	32,58			✓	X	X	AB	0		
168	45,80	45,10	44,90	45,20	45,80	45,36	0,416	0,36	✓	✓	✓			0,293	S
182	44,90	44,80	45,40	45,40	47,10	45,52	0,926	0,71	✓	√	✓			0,583	S

NOTAS:

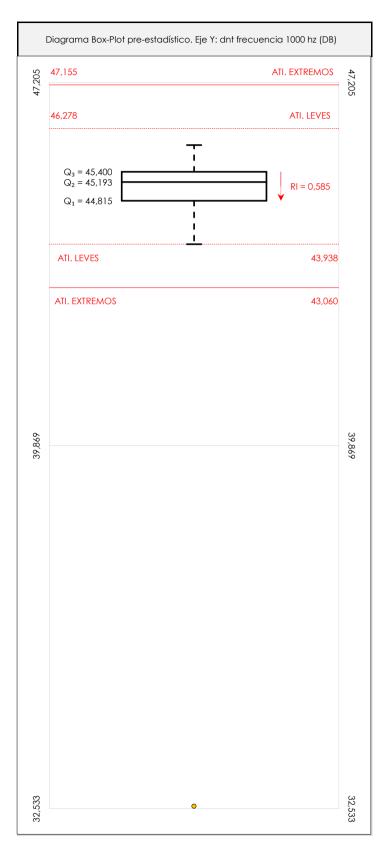
^{01 &}quot;X_{i,j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_{Li}" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

 $^{^{03}}$ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leqslant 2] [Dudoso (D) - si 2 < | ZS | \leqslant 3] [Insatisfactorio (I) - si | ZS | > 3].

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación


SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 1000 HZ (DB)

Análisis D. Estudios post-estadisticos

Apartado D.3. Diagramas Box-Plot o de Caja y Bigotes

ANALISIS GRAFICO DE CAJA Y BIGOTES (ANTES Y DESPUES DE ANALISIS ESTADISTICO)

Diagramas de caja y bigotes (Box Plot) de las medias aritméticas de los resultados aportados por los laboratorios antes (diagrama de la izquierda. Este incluye valores aberrantes y anómalos) y después (diagrama de la derecha. No incluye los valores descartados a lo largo del estudio) de análisis estadístico.

En ambos se han representado: el primer cuartil (Q_1 ; 25% de los datos), el segundo cuartil o la mediana (Q_2 ; 50% de los datos), el tercer cuartil (Q_3 ; 75% de los datos), el rango intercuartílico (RI ; cuartil tres menos cuartil uno) y los límites de valores atípicos leves (f_3 y f_1 para el máximo y mínimo respectivamente ; líneas discontinuas de color rojo) y extremos (f_3 * y f_1 * para el máximo y mínimo respectivamente ; líneas continuas de color rojo).

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 1000 HZ (DB)

Conclusiones

Determinación de la repetibilidad y reproducibilidad

El análisis estadístico EILA20 para el ensayo "DNT FRECUENCIA 1000 HZ", ha contado con la participación de un total de 8 laboratorios, debiendo haber aportado cada uno de ellos, un total de 5 determinaciones individuales además de su valor medio.

Tras analizar los resultados podemos concluir que, para cumplir con los criterios estadísticos establecidos en el informe, un total de 1 laboratorios han sido apartados de la evaluación final: 0 en el Análisis Pre-Estadístico (por no cumplir el criterio de validación y/o el procedimiento de ejecución recogido en la norma de ensayo) y 1 en el Análisis Estadístico (por resultar anómalos o aberrantes en las técnicas gráficas de consistencia de Mandel y en los ensayos de detección de resultados numéricos de Cochran y Grubbs), al cabo de 2 iteraciones.

De cada uno de los análisis (pre-estadístico y estadístico), se obtienen las siguientes tablas:

TIPO DE ANALISIS			PRE-ES	TADISTIC	0				ESTA	DISTICO		
Variables	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$
Valor Máximo (max ; %)	46,30	46,04	46,00	46,21	47,10	45,94	46,30	46,04	46,00	46,21	47,10	45,94
Valor Mínimo (min ; %)	32,70	32,48	32,80	32,71	32,23	32,58	44,10	44,10	43,80	43,70	44,30	44,14
Valor Promedio (M; %)	43,52	43,55	43,38	43,78	43,88	43,62	45,07	45,13	44,89	45,36	45,54	45,20
Desviación Típica (SDL ;)	4,44	4,52	4,33	4,53	4,78	4,49	0,85	0,66	0,72	0,81	0,91	0,55
Coef. Variación (CV ;)	0,10	0,10	0,10	0,10	0,11	0,10	0,02	0,01	0,02	0,02	0,02	0,01
VARIABLES	S_r^2	r		$S_L^{\ 2}$	S_R^{2}	R	S_r^2	r		S_L^2	S_R^{2}	R
Valor Calculado	0,370	1,68	35 2	0,080	20,450	12,535	0,415	1,78	35 0	,222	0,637	2,212
Valor Referencia												

Asimismo, acompañando a éstas tablas y dependiendo del análisis que se esté llevando a cabo, se introducen los indicadores estadísticos "h y k" de Mandel y los valores críticos "C" de Cochran y " G_{Sim} y G_{Dob} " de Grubbs, todos ellos adimensionales, obtenidos de las tablas 4, 5, 6 y 7 de la norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios y del número de ensayos efectuados por cada uno de ellos:

TIPO DE ANALISIS		PRE	-ESTADISTI	со			E	STADISTIC	5	
VARIABLES	h	k	С	G_{sim}	G_Dob	h	k	С	G_{sim}	G_{Dob}
Nivel de Significación 1%	1,98	1,70	0,463	2,139	0,0308	1,98	1,70	0,508	2,139	0,0308
Nivel de Significación 5%	1,71	1,49	0,391	2,020	0,0708	1,71	1,49	0,431	2,020	0,0708

Con los resultados de los laboratorios, que tras los dos análisis estadísticos son evaluados por Z-Score, se han obtenido: 7 resultados satisfactorios, 0 resultados dudosos y 0 resultados insatisfactorios.

Respecto a los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística recogida en la ISO 17025, sobre las dispersiones de los resultados individuales y su media, en forma de varianzas o desviaciones estándar, también conocida como ANOVA (siglas de analisys of varience).

Sabiendo que una varianza es la suma de cuadrados dividida por un número, que se llama grados de libertad, que depende del número de participantes menos 1, se puede decir que la imprecisión del ensayo se descompone en dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad (variabilidad intralaboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad debida al cambio de laboratorio).

Las condiciones de repetibilidad de este ensayo son: mismo laborante, mismo laboratorio y mismo equipo de medición utilizado dentro de un período de tiempo corto. Por ende, las condiciones de reproducibilidad para la misma muestra y ensayo, cambian en: el laborante, el laboratorio, el equipo y las condiciones de uso y tiempo.

Comité de infraestructuras para la Calidad de la Edificación

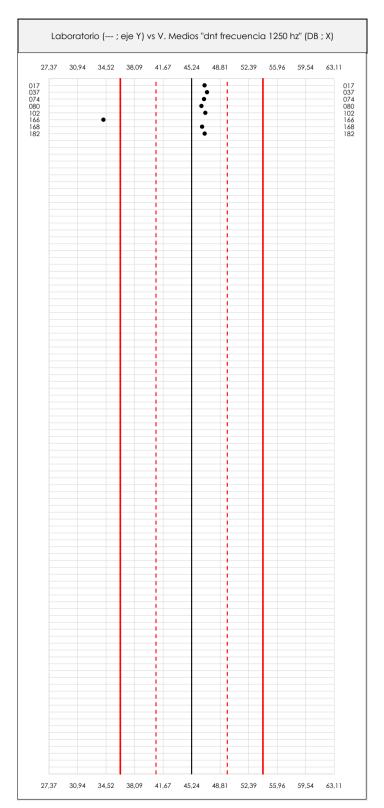
SACE

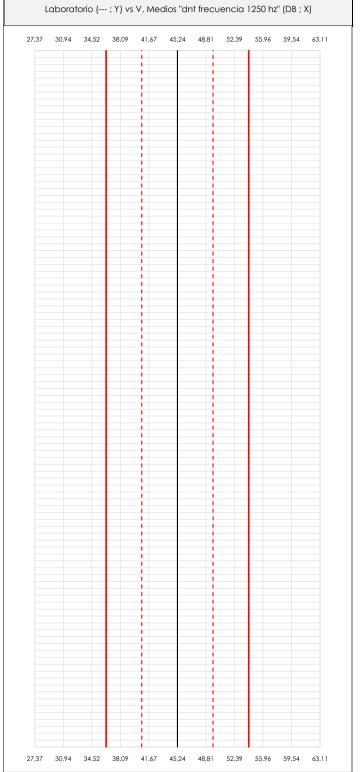
Subcomisión Administrativa para la Calidad de la Edificación

ANÁLISIS ESTADÍSTICO ACÚSTICA

DNT FRECUENCIA 1250 HZ

Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 1250 HZ (DB) Análisis A. Estudio pre-estadístico

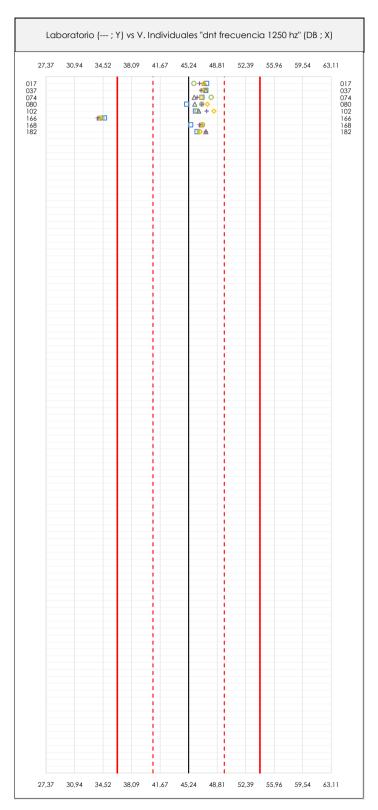
Apartado A.1. Gráficos de dispersión de valores medios

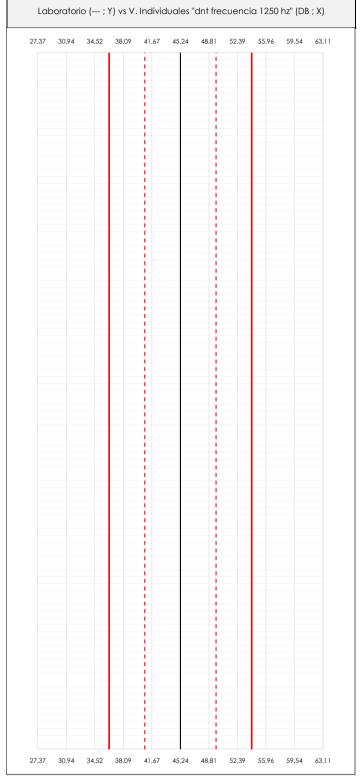
ANALISIS GRAFICO DE DISPERSION MEDIA (ANTES DE ANALISIS ESTADISTICO)

Dispersión de las medias aritméticas intra-laboratorios respecto de la media aritmética inter-laboratorios (45,24 ; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (49,71/40,77 ; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (54,18/36,30 ; líneas rojas de trazo continuo).

En el eje Y (adimensional) quedan reflejados los códigos de los laboratorios participantes y en el eje X (las unidades son las mismas que las del ensayo que se está analizando) las medias aritméticas intra-laboratorios representadas por punto de color negro.

CICE Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 1250 HZ (DB)

Análisis A. Estudio pre-estadístico

Apartado A.2. Gráficos de dispersión de valores individuales

ANALISIS GRAFICOS DE DISPERSION INDIVIDUAL (ANTES DE ANALISIS ESTADISTICO)

Dispersión de los valores individuales respecto de la media aritmética inter-laboratorios (45,24; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (49,71/40,77; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (54,18/36,30; líneas rojas de trazo continuo).

En el eje Y (adimensional) queda reflejado el código del laboratorio participante y en el eje X (las unidades son las de los resultados del ensayo que se está analizando) los resultados individuales: el primero (X_{i,1}) se representa con un cuadrado azul, el segundo (X_{i,2}) con un círculo verde, el tercero (X_{i,3}) con un triángulo grís y el cuarto (X_{i,4}) con un rombo amarillo.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 1250 HZ (DB) Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{Li}	D _{i arit %}	Pasa A	Observaciones
17	47,50	45,90	47,20	47,10	46,60	46,86	0,627	3,58	✓	
37	47,40	47,40	47,40	46,90	46,80	47,18	0,303	4,29	✓	
74	46,91	48,06	45,94	46,80	46,31	46,80	0,805	3,46	✓	
80	45,00	46,90	46,00	47,60	46,90	46,48	1,003	2,74	✓	
102	46,10	46,30	46,50	48,40	47,50	46,96	0,969	3,80	✓	
166	34,70	34,38	34,02	34,04	33,84	34,20	0,341	-24,41	✓	
168	45,50	47,00	46,80	46,90	46,60	46,56	0,611	2,92	✓	
182	46,30	46,60	47,40	46,70	47,40	46,88	0,497	3,63	✓	

NOTAS:

 $^{\rm 04}$ El código colorimétrico empleado para las celdas es:

[máximo]

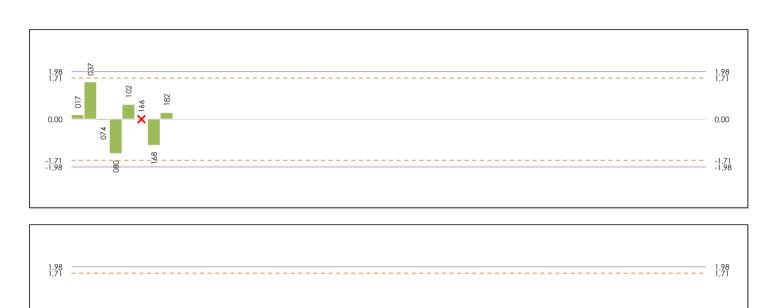
[mínimo

^{01 &}quot;X_{i j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_{L1}" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma.

SACE Subcomisión Administrativa para la Calidad de la Edificación



DNT FRECUENCIA 1250 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

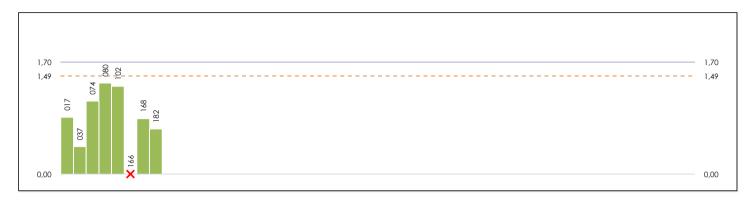
Apartado B.1. Gráfico de consistencia inter-laboratorios "h" de Mandel

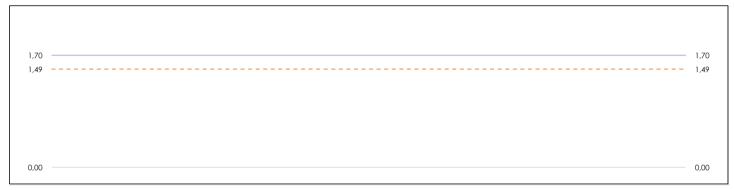
ANALISIS GRAFICO DE CONSISTENCIA INTER-LABORATORIOS

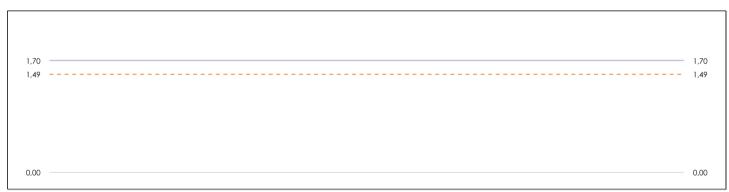
Análisis gráfico de consistencia inter-laboratorios "h" de Mandel. En él se representan las medias aritméticas inter-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes).

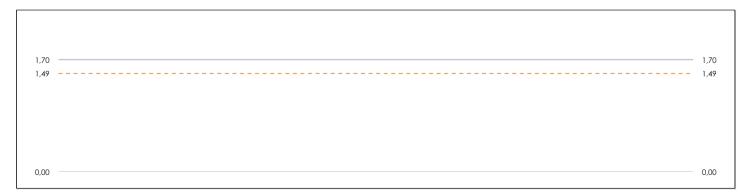
Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación


SACESubcomisión Administrativa para la
Calidad de la Edificación




DNT FRECUENCIA 1250 HZ (DB)


Análisis B. Mandel, Cochran y Grubbs

Apartado B.2. Gráfico de consistencia intra-laboratorios "k" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTRA-LABORATORIOS

Análisis gráfico de consistencia intra-laboratorios "k" de Mandel. En él se representan las medias aritméticas intra-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes y el número de ensayos efectuados).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 1250 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	h _i	k _i	C _i	$G_{\text{Sim Inf}}$	$G_{\text{Sim Sup}}$	$G_{\text{Dob Inf}}$	$G_{\text{Dob Sup}}$	Pasa B
	17.50	45.000	47.000	47.100	11.100	11.010	0.407	2.00	0.10	0.04						
17	47,50	45,900	47,200	47,100	46,600	46,860	0,627	0,09	0,18	0,86						√
37	47,40	47,400	47,400	46,900	46,800	47,180	0,303	0,77	1,53	0,42			1,527		0,4008	√
74	46,91	48,064	45,936	46,795	46,315	46,804	0,805	-0,03	-0,06	1,11		1 400		0.05/0		√
80	45,00	46,900	46,000	47,600	46,900	46,480	1,003	-0,72	-1,42	1,38		1,423		0,2560	0.4009	→
102 166	46,10 34,70	46,300 34,380	46,500 34,022	48,400 34,037	47,500 33,841	46,960 34,195	0,969	0,30	0,60	1,33					0,4008	X
168	45,50	47,000	46,800	46,900	46,600	46,560	0,611	-0,55	-1,09	0,84				0,2560		
182	46,30	46,600	47,400	46,700	47,400	46,880	0,497	0,13	0,26	0,68				0,2300		
102	40,00	40,000	47,400	40,700	47,400	40,000	0,477	0,10	0,20	0,00						

NOTAS:

 $^{\rm 04}$ El código colorimétrico empleado para las celdas es:

[aberrante]

[anómalo]

[máximo]

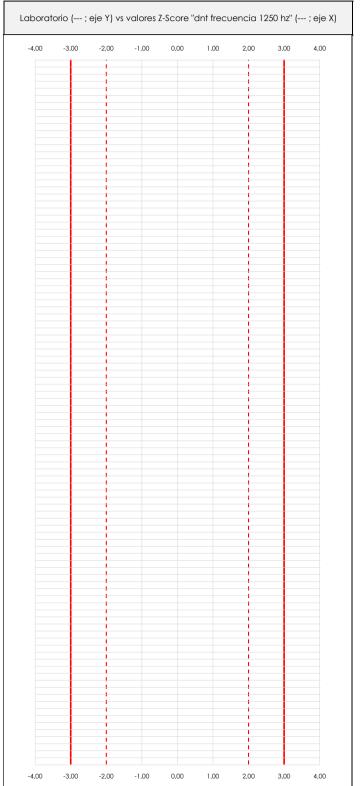
[mínimo]

^{01 &}quot;X_{i j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

^{03 &}quot;h_i y k_i", "C_i", "G_{sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.

Comité de infraestructuras para la Calidad de la Edificación


SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 1250 HZ (DB) Análisis C. Evaluación Z-Score

Apartado C.1. Análisis gráfico Altman Z-Score

ANALISIS GRAFICO Z-SCORE

Diagrama Z-Score para los resultados aportados por los laboratorios. Estos se considerarán satisfactorios (S) si el valor absoluto del Z-Score es menor o igual a 2 unidades, dudoso si está comprendido entre 2 y 3 unidades e insatisfactorio si es mayor o igual a 3 unidades.

Los resultados satisfactorios quedan reflejados entre las dos líneas rojas discontinuas, líneas de referencia en la evaluación Z-Score.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 1250 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	Pasa A	Pasa B	Total	Causa	Iteración	Z-Score	Evaluación
17	47.50	45.00	17.00	47.10	47.70	4/.0/	0.407	0.00						0.170	
17	47,50	45,90	47,20	47,10	46,60	46,86	0,627	0,09	√	<u> </u>	√			0,178	S
37	47,40	47,40	47,40	46,90	46,80	47,18	0,303	0,77	√	√	<u> </u>			1,527	S
74	46,91	48,06	45,94	46,80	46,31	46,80	0,805	-0,03	√	√	<u> </u>			-0,058	S
80	45,00	46,90	46,00	47,60	46,90	46,48	1,003	-0,72	√	√	<u> </u>			-1,423	S
102	46,10 34,70	46,30	46,50	48,40	47,50	46,96	0,969	0,30	√	√	√	A D	0	0,600	S
166		34,38 47,00	34,02	34,04	33,84	34,20	0,611	0.55	√	X	X	AB	0	1.00/	 S
168 182	45,50 46,30	46,60	46,80 47,40	46,90 46,70	46,60 47,40	46,56 46,88	0,497	-0,55 0,13	✓	√	√			-1,086 0,263	S
102	40,30	40,00	47,40	40,70	47,40	40,00	0,477	0,13		<u> </u>				0,263	3

NOTAS:

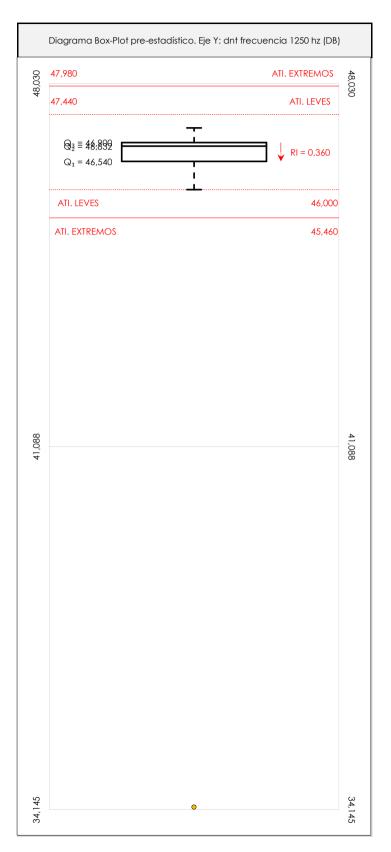
^{01 &}quot;X_{i,j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

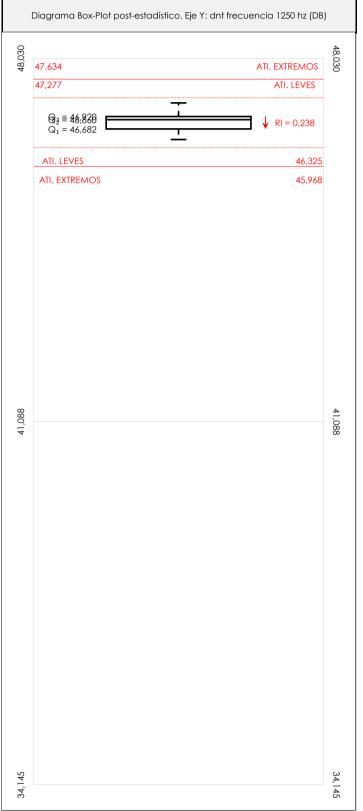
^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

 $^{^{03}}$ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leqslant 2] [Dudoso (D) - si 2 < | ZS | \leqslant 3] [Insatisfactorio (I) - si | ZS | > 3].

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 1250 HZ (DB)

Análisis D. Estudios post-estadisticos

Apartado D.3. Diagramas Box-Plot o de Caja y Bigotes

ANALISIS GRAFICO DE CAJA Y BIGOTES (ANTES Y DESPUES DE ANALISIS ESTADISTICO)

Diagramas de caja y bigotes (Box Plot) de las medias aritméticas de los resultados aportados por los laboratorios antes (diagrama de la izquierda. Este incluye valores aberrantes y anómalos) y después (diagrama de la derecha. No incluye los valores descartados a lo largo del estudio) de análisis estadístico.

En ambos se han representado: el primer cuartil (Q_1 ; 25% de los datos), el segundo cuartil o la mediana (Q_2 ; 50% de los datos), el tercer cuartil (Q_3 ; 75% de los datos), el rango intercuartílico (RI ; cuartil tres menos cuartil uno) y los límites de valores atípicos leves (f_3 y f_1 para el máximo y mínimo respectivamente ; líneas discontinuas de color rojo) y extremos (f_3 * y f_1 * para el máximo y mínimo respectivamente ; líneas continuas de color rojo).

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 1250 HZ (DB)

Conclusiones

Determinación de la repetibilidad y reproducibilidad

El análisis estadístico EILA20 para el ensayo "DNT FRECUENCIA 1250 HZ", ha contado con la participación de un total de 8 laboratorios, debiendo haber aportado cada uno de ellos, un total de 5 determinaciones individuales además de su valor medio.

Tras analizar los resultados podemos concluir que, para cumplir con los criterios estadísticos establecidos en el informe, un total de 1 laboratorios han sido apartados de la evaluación final: 0 en el Análisis Pre-Estadístico (por no cumplir el criterio de validación y/o el procedimiento de ejecución recogido en la norma de ensayo) y 1 en el Análisis Estadístico (por resultar anómalos o aberrantes en las técnicas gráficas de consistencia de Mandel y en los ensayos de detección de resultados numéricos de Cochran y Grubbs), al cabo de 2 iteraciones.

De cada uno de los análisis (pre-estadístico y estadístico), se obtienen las siguientes tablas:

TIPO DE ANALISIS			PRE-ES	TADISTIC	0				ESTA	DISTICO		
Variables	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$
Valor Máximo (max ; %)	47,50	48,06	47,40	48,40	47,50	47,18	47,50	48,06	47,40	48,40	47,50	47,18
Valor Mínimo (min ; %)	34,70	34,38	34,02	34,04	33,84	34,20	45,00	45,90	45,94	46,70	46,31	46,48
Valor Promedio (M; %)	44,93	45,32	45,16	45,55	45,24	45,24	46,39	46,88	46,75	47,20	46,87	46,82
Desviación Típica (SDL ;)	4,22	4,47	4,54	4,69	4,63	4,47	0,94	0,71	0,62	0,61	0,44	0,24
Coef. Variación (CV ;)	0,09	0,10	0,10	0,10	0,10	0,10	0,02	0,02	0,01	0,01	0,01	0,01
VARIABLES	S_r^2	r		$S_L^{\ 2}$	S_R^{2}	R	S_r^2	r		S_L^2	S_R^{2}	R
Valor Calculado	0,477	1,91	14 1	9,868	20,345	12,503	0,528	2,01	5 -0	,049	0,479	1,918
Valor Referencia												

Asimismo, acompañando a éstas tablas y dependiendo del análisis que se esté llevando a cabo, se introducen los indicadores estadísticos "h y k" de Mandel y los valores críticos "C" de Cochran y " G_{Sim} y G_{Dob} " de Grubbs, todos ellos adimensionales, obtenidos de las tablas 4, 5, 6 y 7 de la norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios y del número de ensayos efectuados por cada uno de ellos:

TIPO DE ANALISIS		PRE	-ESTADISTI	со		ESTADISTICO							
VARIABLES	h	k	С	G_{sim}	G_{Dob}	h	k	С	G_{sim}	G_{Dob}			
Nivel de Significación 1%	1,98	1,70	0,463	2,139	0,0308	1,98	1,70	0,508	2,139	0,0308			
Nivel de Significación 5%	1,71	1,49	0,391	2,020	0,0708	1,71	1,49	0,431	2,020	0,0708			

Con los resultados de los laboratorios, que tras los dos análisis estadísticos son evaluados por Z-Score, se han obtenido: 7 resultados satisfactorios, 0 resultados dudosos y 0 resultados insatisfactorios.

Respecto a los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística recogida en la ISO 17025, sobre las dispersiones de los resultados individuales y su media, en forma de varianzas o desviaciones estándar, también conocida como ANOVA (siglas de analisys of varience).

Sabiendo que una varianza es la suma de cuadrados dividida por un número, que se llama grados de libertad, que depende del número de participantes menos 1, se puede decir que la imprecisión del ensayo se descompone en dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad (variabilidad intralaboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad debida al cambio de laboratorio).

Las condiciones de repetibilidad de este ensayo son: mismo laborante, mismo laboratorio y mismo equipo de medición utilizado dentro de un período de tiempo corto. Por ende, las condiciones de reproducibilidad para la misma muestra y ensayo, cambian en: el laborante, el laboratorio, el equipo y las condiciones de uso y tiempo.

Comité de infraestructuras para la Calidad de la Edificación

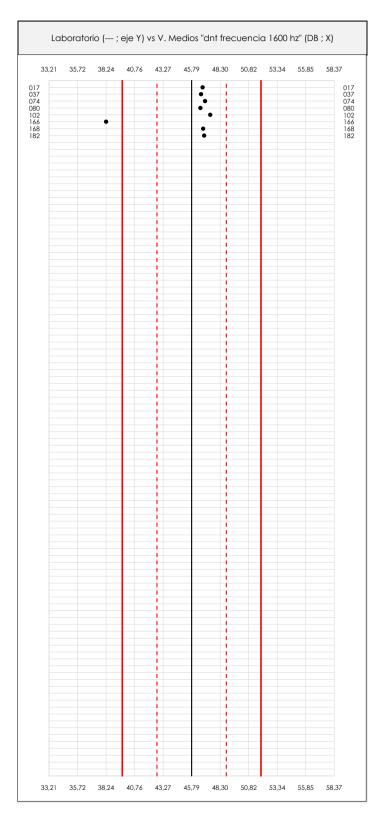
SACE

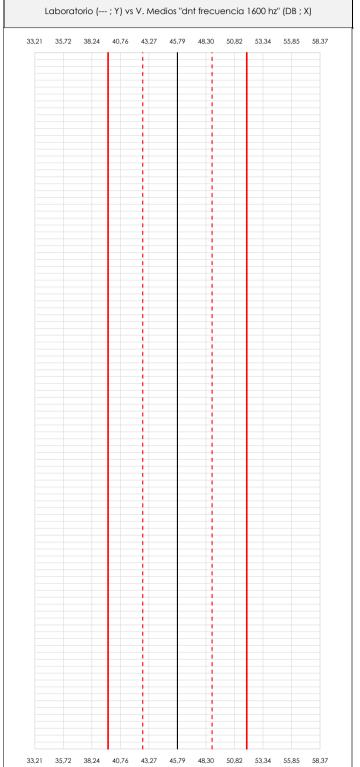
Subcomisión Administrativa para la Calidad de la Edificación

ANÁLISIS ESTADÍSTICO ACÚSTICA

DNT FRECUENCIA 1600 HZ

Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 1600 HZ (DB) Análisis A. Estudio pre-estadístico

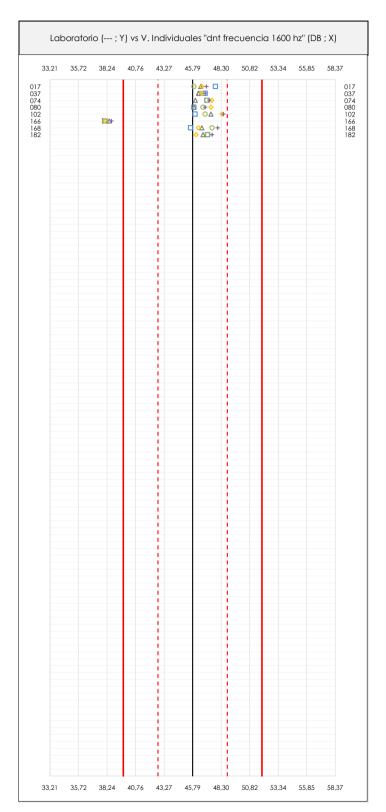
Apartado A.1. Gráficos de dispersión de valores medios

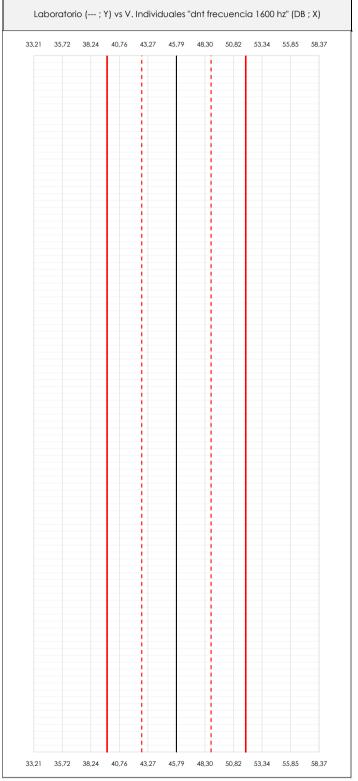
ANALISIS GRAFICO DE DISPERSION MEDIA (ANTES DE ANALISIS ESTADISTICO)

Dispersión de las medias aritméticas intra-laboratorios respecto de la media aritmética inter-laboratorios (45,79 ; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (48,85/42,73 ; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (51,90/39,67 ; líneas rojas de trazo continuo).

En el eje Y (adimensional) quedan reflejados los códigos de los laboratorios participantes y en el eje X (las unidades son las mismas que las del ensayo que se está analizando) las medias aritméticas intra-laboratorios representadas por punto de color negro.

CICE Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 1600 HZ (DB) Análisis A. Estudio pre-estadístico

Apartado A.2. Gráficos de dispersión de valores individuales

ANALISIS GRAFICOS DE DISPERSION INDIVIDUAL (ANTES DE ANALISIS ESTADISTICO)

Dispersión de los valores individuales respecto de la media aritmética inter-laboratorios (45,79; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (48,85/42,73; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (51,90/39,67; líneas rojas de trazo continuo).

En el eje Y (adimensional) queda reflejado el código del laboratorio participante y en el eje X (las unidades son las de los resultados del ensayo que se está analizando) los resultados individuales: el primero (X_{i,1}) se representa con un cuadrado azul, el segundo (X_{i,2}) con un círculo verde, el tercero (X_{i,3}) con un triángulo grís y el cuarto (X_{i,4}) con un rombo amarillo.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 1600 HZ (DB) Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{Li}	D _{i arit %}	Pasa A	Observaciones
17	47,80	45,90	46,50	46,60	47,00	46,76	0,702	2,12	✓	
37	46,90	46,40	46,30	46,60	46,90	46,62	0,277	1,82	✓	
74	47,05	47,04	46,03	47,48	47,26	46,97	0,558	2,59	✓	
80	45,90	46,70	45,90	47,40	46,90	46,56	0,654	1,69	✓	
102	46,00	46,90	47,40	48,40	48,50	47,44	1,050	3,61	✓	
166	38,02	38,14	38,43	38,02	38,62	38,25	0,269	-16,47	✓	
168	45,60	47,50	46,60	46,30	48,00	46,80	0,957	2,21	✓	
182	47,10	47,10	46,70	46,10	47,50	46,90	0,529	2,43	✓	

NOTAS:

 $^{\rm 04}$ El código colorimétrico empleado para las celdas es:

[máximo]

[mínimo

^{01 &}quot;X_{i j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_{L1}" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma.

CICE Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 1600 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

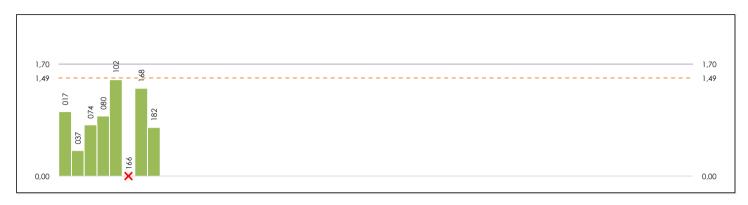
Apartado B.1. Gráfico de consistencia inter-laboratorios "h" de Mandel

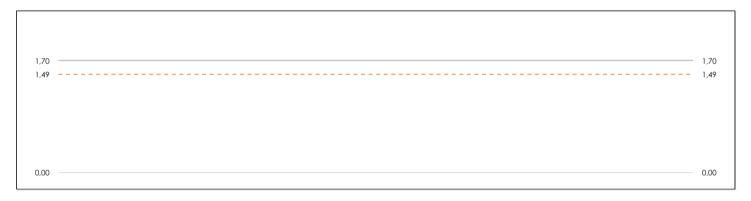
ANALISIS GRAFICO DE CONSISTENCIA INTER-LABORATORIOS

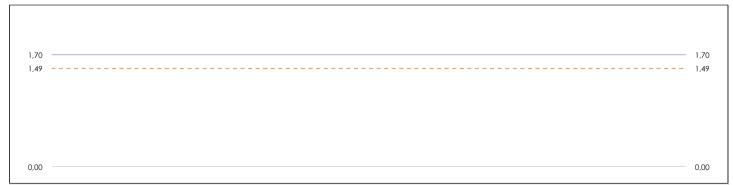
Análisis gráfico de consistencia inter-laboratorios "h" de Mandel. En él se representan las medias aritméticas inter-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación




DNT FRECUENCIA 1600 HZ (DB)


Análisis B. Mandel, Cochran y Grubbs

Apartado B.2. Gráfico de consistencia intra-laboratorios "k" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTRA-LABORATORIOS

Análisis gráfico de consistencia intra-laboratorios "k" de Mandel. En él se representan las medias aritméticas intra-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes y el número de ensayos efectuados).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 1600 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{Li}	D _{i arit %}	h _i	k _i	Ci	G _{Sim Inf}	G _{Sim Sup}	G _{Dob Inf}	G _{Dob Sup}	Pasa B
	47.00	45.000	44.500	44.400	47.000	11.710	0.700	0.00	0.04	0.00						
17	47,80	45,900	46,500	46,600	47,000	46,760	0,702	-0,22	-0,36	0,98						√
37	46,90	46,400	46,300	46,600	46,900	46,620	0,277	-0,52	-0,84	0,39				0,5838		√
74	47,05	47,040	46,030	47,485	47,261	46,972	0,558	0,23	0,37	0,78					0,1479	√
80	45,90	46,700	45,900	47,400	46,900	46,560	0,654	-0,65	-1,04	0,91	0.007	1,043	1.070	0,5838	0.1.470	√
102	46,00	46,900	47,400	48,400	48,500	47,440	1,050	1,23	1,97*	1,46	0,306		1,970		0,1479	√
166	38,02	38,145	38,432	38,020	38,624	38,248				1.00						X
168	45,60	47,500	46,600	46,300	48,000	46,800	0,957	-0,14	-0,22	1,33						√
182	47,10	47,100	46,700	46,100	47,500	46,900	0,529	0,08	0,12	0,74						✓

NOTAS:

 $^{\rm 04}$ El código colorimétrico empleado para las celdas es:

[aberrante]

[anómalo]

[máximo]

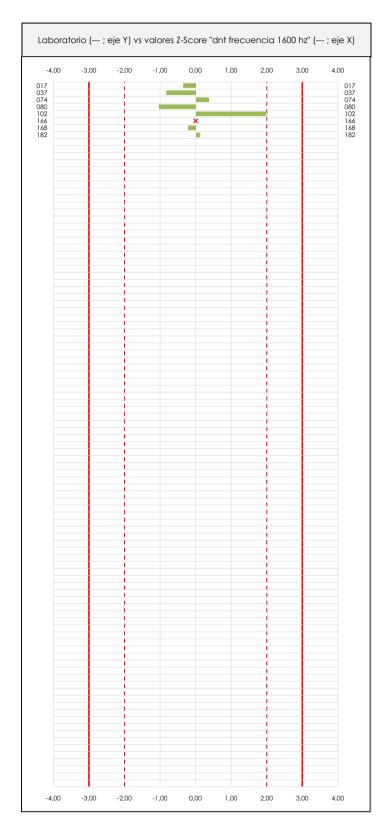
[mínimo]

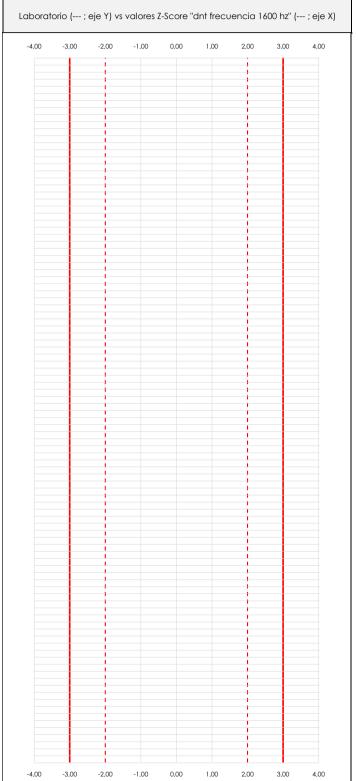
^{01 &}quot;X_{i j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

^{03 &}quot;h_i y k_i", "C_i", "G_{sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.

Comité de infraestructuras para la Calidad de la Edificación




SACESubcomisión Administrativa para la
Calidad de la Edificación

DNT FRECUENCIA 1600 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.1. Análisis gráfico Altman Z-Score

ANALISIS GRAFICO Z-SCORE

Diagrama Z-Score para los resultados aportados por los laboratorios. Estos se considerarán satisfactorios (S) si el valor absoluto del Z-Score es menor o igual a 2 unidades, dudoso si está comprendido entre 2 y 3 unidades e insatisfactorio si es mayor o igual a 3 unidades.

Los resultados satisfactorios quedan reflejados entre las dos líneas rojas discontinuas, líneas de referencia en la evaluación Z-Score.

Comité de infraestructuras para la Calidad de la Edificación

SACE Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 1600 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

Lab	$X_{i \; 1}$	X _{i 2}	X_{i3}	X _{i 4}	X_{i5}	$\overline{X}_{i \; \text{arit}}$	S_{Li}	$D_{i arit \%}$	Pasa A	Pasa B	Total	Causa	Iteración	Z-Score	Evaluación
17	47,80	45,90	46,50	46,60	47,00	46,76	0,702	-0,22	✓	✓	✓			-0,358	S
37	46,90	46,40	46,30	46,60	46,90	46,62	0,277	-0,52	✓	✓	✓			-0,838	S
74	47,05	47,04	46,03	47,48	47,26	46,97	0,558	0,23	✓	✓	✓			0,369	S
80	45,90	46,70	45,90	47,40	46,90	46,56	0,654	-0,65	✓	✓	✓			-1,043	S
102	46,00	46,90	47,40	48,40	48,50	47,44	1,050	1,23	✓	✓	✓			1,970	S
166	38,02	38,14	38,43	38,02	38,62	38,25			✓	X	X	AB	0		
168	45,60	47,50	46,60	46,30	48,00	46,80	0,957	-0,14	✓	✓	✓			-0,221	S
182	47,10	47,10	46,70	46,10	47,50	46,90	0,529	0,08	✓	✓	✓			0,121	S

NOTAS:

 $^{^{01}}$ "X_{i j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, " $\overline{\chi}_{i \text{ arit}}$ " es la media aritmética intralaboratorio calculada sin redondear.

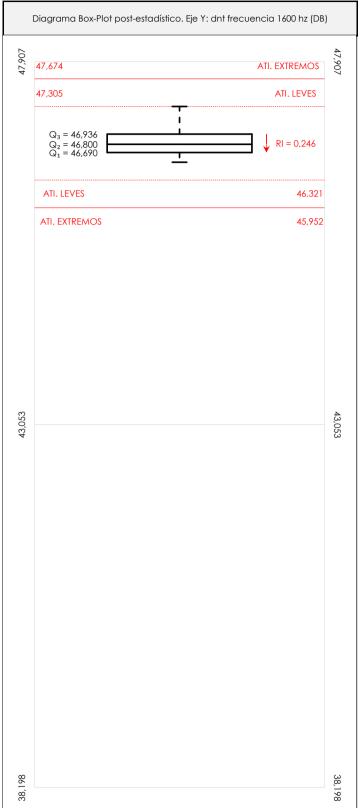
^{02 &}quot;S_{L i}" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

 $^{^{03}}$ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leqslant 2] [Dudoso (D) - si 2 < | ZS | \leqslant 3] [Insatisfactorio (I) - si | ZS | > 3].

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación

SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 1600 HZ (DB)

Análisis D. Estudios post-estadisticos

Apartado D.3. Diagramas Box-Plot o de Caja y Bigotes

ANALISIS GRAFICO DE CAJA Y BIGOTES (ANTES Y DESPUES DE ANALISIS ESTADISTICO)

Diagramas de caja y bigotes (Box Plot) de las medias aritméticas de los resultados aportados por los laboratorios <u>antes</u> (diagrama de la izquierda. Este incluye valores aberrantes y anómalos) y <u>después</u> (diagrama de la derecha. No incluye los valores descartados a lo largo del estudio) de análisis estadístico.

En ambos se han representado: el primer cuartil (Q_1 ; 25% de los datos), el segundo cuartil o la mediana (Q_2 ; 50% de los datos), el tercer cuartil (Q_3 ; 75% de los datos), el rango intercuartílico (RI ; cuartil tres menos cuartil uno) y los límites de valores atípicos leves (f_3 y f_1 para el máximo y mínimo respectivamente ; líneas discontinuas de color rojo) y extremos (f_3 * y f_1 * para el máximo y mínimo respectivamente ; líneas continuas de color rojo).

Comité de infraestructuras para la Calidad de la Edificación

DNT FRECUENCIA 1600 HZ (DB)

Conclusiones

Determinación de la repetibilidad y reproducibilidad

SACE Subcomisión Administrativa para la Calidad de la Edificación

El análisis estadístico EILA20 para el ensayo "DNT FRECUENCIA 1600 HZ", ha contado con la participación de un total de 8 laboratorios, debiendo haber aportado cada uno de ellos, un total de 5 determinaciones individuales además de su valor medio.

Tras analizar los resultados podemos concluir que, para cumplir con los criterios estadísticos establecidos en el informe, un total de 1 laboratorios han sido apartados de la evaluación final: 0 en el Análisis Pre-Estadístico (por no cumplir el criterio de validación y/o el procedimiento de ejecución recogido en la norma de ensayo) y 1 en el Análisis Estadístico (por resultar anómalos o aberrantes en las técnicas gráficas de consistencia de Mandel y en los ensayos de detección de resultados numéricos de Cochran y Grubbs), al cabo de 2 iteraciones.

De cada uno de los análisis (pre-estadístico y estadístico), se obtienen las siguientes tablas:

TIPO DE ANALISIS			PRE-ES	TADISTIC	:0		ESTADISTICO						
Variables	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$	
Valor Máximo (max ; %)	47,80	47,50	47,40	48,40	48,50	47,44	47,80	47,50	47,40	48,40	48,50	47,44	
Valor Mínimo (min ; %)	38,02	38,14	38,43	38,02	38,62	38,25	45,60	45,90	45,90	46,10	46,90	46,56	
Valor Promedio (M; %)	45,55	45,71	45,48	45,86	46,34	45,79	46,62	46,79	46,49	46,98	47,44	46,86	
Desviación Típica (SDL ;)	3,13	3,09	2,89	3,26	3,17	3,06	0,80	0,52	0,50	0,81	0,61	0,29	
Coef. Variación (CV ;)	0,07	0,07	0,06	0,07	0,07	0,07	0,02	0,01	0,01	0,02	0,01	0,01	
VARIABLES	S_r^2	r		$S_L^{\ 2}$	S_R^2	R	S_r^2	r		S_L^2	S_R^{2}	R	
Valor Calculado	0,460	1,88	30	9,261	9,721	8,642	0,515	1,99	PO -C	,018	0,498	1,955	
Valor Referencia													

Asimismo, acompañando a éstas tablas y dependiendo del análisis que se esté llevando a cabo, se introducen los indicadores estadísticos "h y k" de Mandel y los valores críticos "C" de Cochran y " G_{Sim} y G_{Dob} " de Grubbs, todos ellos adimensionales, obtenidos de las tablas 4, 5, 6 y 7 de la norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios y del número de ensayos efectuados por cada uno de ellos:

TIPO DE ANALISIS		PRE	-ESTADISTI	со		ESTADISTICO							
VARIABLES	h	k	С	G_{sim}	G_Dob	h	k	С	G_{sim}	G_{Dob}			
Nivel de Significación 1%	1,98	1,70	0,463	2,139	0,0308	1,98	1,70	0,508	2,139	0,0308			
Nivel de Significación 5%	1,71	1,49	0,391	2,020	0,0708	1,71	1,49	0,431	2,020	0,0708			

Con los resultados de los laboratorios, que tras los dos análisis estadísticos son evaluados por Z-Score, se han obtenido: 7 resultados satisfactorios, 0 resultados dudosos y 0 resultados insatisfactorios.

Respecto a los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística recogida en la ISO 17025, sobre las dispersiones de los resultados individuales y su media, en forma de varianzas o desviaciones estándar, también conocida como ANOVA (siglas de analisys of varience).

Sabiendo que una varianza es la suma de cuadrados dividida por un número, que se llama grados de libertad, que depende del número de participantes menos 1, se puede decir que la imprecisión del ensayo se descompone en dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad (variabilidad intralaboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad debida al cambio de laboratorio).

Las condiciones de repetibilidad de este ensayo son: mismo laborante, mismo laboratorio y mismo equipo de medición utilizado dentro de un período de tiempo corto. Por ende, las condiciones de reproducibilidad para la misma muestra y ensayo, cambian en: el laborante, el laboratorio, el equipo y las condiciones de uso y tiempo.

Comité de infraestructuras para la Calidad de la Edificación

SACE

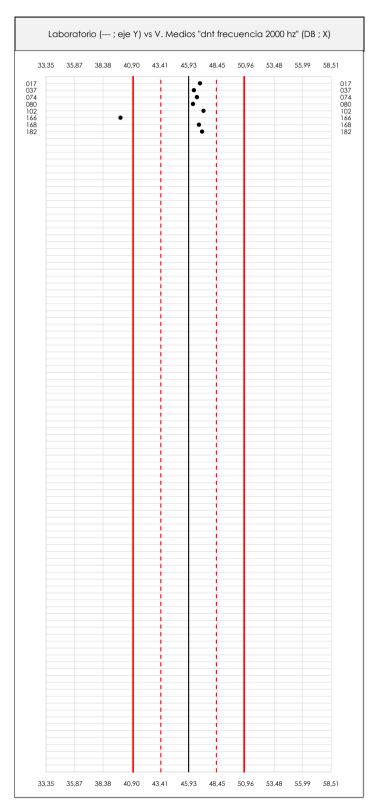
Subcomisión Administrativa para la Calidad de la Edificación

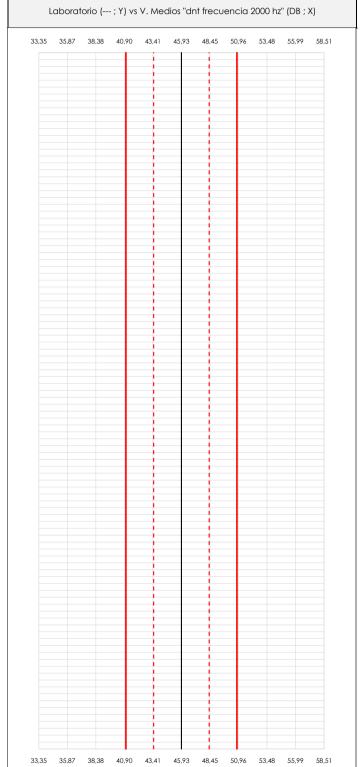
ANÁLISIS ESTADÍSTICO ACÚSTICA

DNT FRECUENCIA 2000 HZ

CICE de infraestructuras para la

Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 2000 HZ (DB) Análisis A. Estudio pre-estadístico

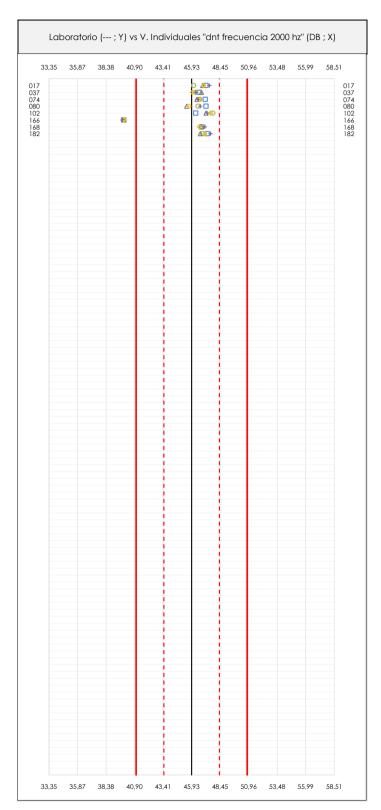
Apartado A.1. Gráficos de dispersión de valores medios

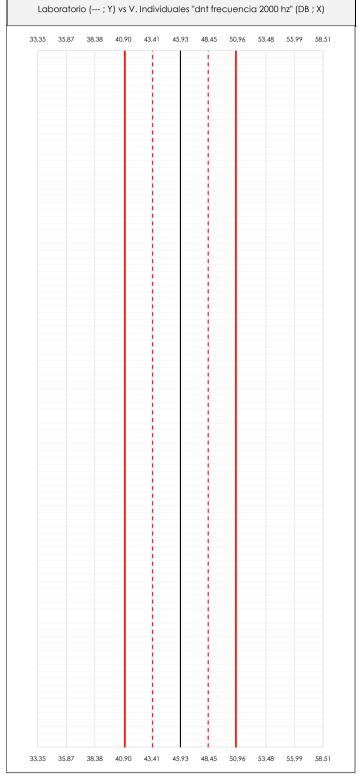
ANALISIS GRAFICO DE DISPERSION MEDIA (ANTES DE ANALISIS ESTADISTICO)

Dispersión de las medias aritméticas intra-laboratorios respecto de la media aritmética inter-laboratorios (45,93; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (48,38/43,48; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (50,83/41,03; líneas rojas de trazo continuo).

En el eje Y (adimensional) quedan reflejados los códigos de los laboratorios participantes y en el eje X (las unidades son las mismas que las del ensayo que se está analizando) las medias aritméticas intra-laboratorios representadas por punto de color negro.

Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 2000 HZ (DB) Análisis A. Estudio pre-estadístico

Apartado A.2. Gráficos de dispersión de valores individuales

ANALISIS GRAFICOS DE DISPERSION INDIVIDUAL (ANTES DE ANALISIS ESTADISTICO)

Dispersión de los valores individuales respecto de la media aritmética inter-laboratorios (45,93; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (48,38/43,48 ; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (50,83/41,03; líneas rojas de trazo continuo).

En el eje Y (adimensional) queda reflejado el código del laboratorio participante y en el eje X (las unidades son las de los resultados del ensayo que se está analizando) los resultados individuales: el primero (X_{1,1}) se representa con un cuadrado azul, el segundo (X_{1,2}) con un círculo verde, el tercero (X_{1,3}) con un triángulo grís y el cuarto (X_{1,4})

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 2000 HZ (DB) Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i2}	X _{i 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{Li}	D _{i arit %}	Pasa A	Observaciones
17	47,20	46,10	46,90	47,00	47,50	46,94	0,522	2,20	✓	
37	46,60	46,30	46,80	46,00	46,30	46,40	0,308	1,02	✓	
74	47,13	46,64	46,40	46,60	46,50	46,66	0,283	1,58	✓	
80	47,20	46,50	45,50	45,70	46,70	46,32	0,709	0,85	✓	
102	46,30	47,80	47,20	47,60	47,30	47,24	0,577	2,85	✓	
166	39,94	39,97	39,95	39,93	39,82	39,92	0,060	-13,08	✓	
168	46,80	46,90	46,80	46,60	47,10	46,84	0,182	1,98	✓	
182	47,30	46,90	46,70	47,10	47,60	47,12	0,349	2,59	✓	

NOTAS:

 $^{\rm 04}$ El código colorimétrico empleado para las celdas es:

[máximo]

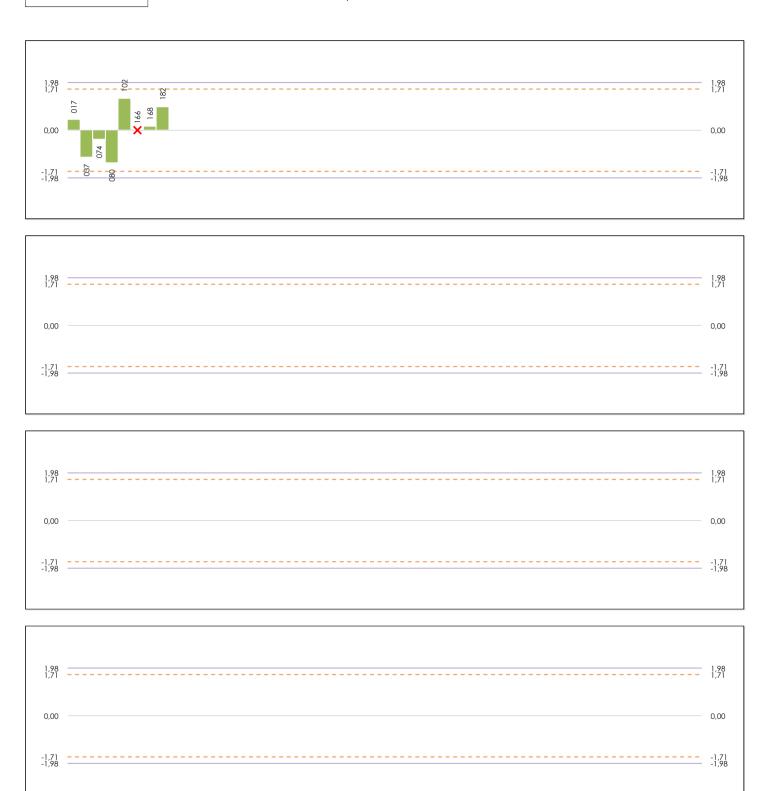
[mínimo

^{01 &}quot;X_{i j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_{L1}" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma.

CICE Comité de infraestructuras para la Calidad de la Edificación



SACE Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 2000 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

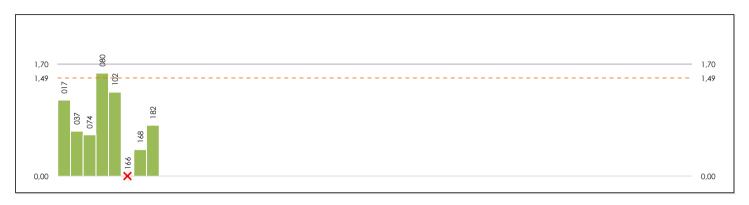
Apartado B.1. Gráfico de consistencia inter-laboratorios "h" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTER-LABORATORIOS

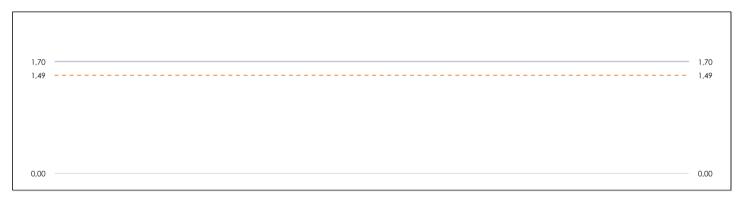
Análisis gráfico de consistencia inter-laboratorios "h" de Mandel. En él se representan las medias aritméticas inter-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

CICE Comité de infraestructuras para la Calidad de la Edificación


SACESubcomisión Administrativa para la


Calidad de la Edificación


DNT FRECUENCIA 2000 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.2. Gráfico de consistencia intra-laboratorios "k" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTRA-LABORATORIOS

Análisis gráfico de consistencia intra-laboratorios "k" de Mandel. En él se representan las medias aritméticas intra-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes y el número de ensayos efectuados).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 2000 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	h _i	k _i	Ci	G _{Sim Inf}	$G_{\text{Sim Sup}}$	G _{Dob Inf}	G _{Dob Sup}	Pasa B
17	47,20	46,100	46,900	47,000	47,500	46,940	0,522	0,32	0,44	1,15						√
37	46,60	46,300	46,800	46,000	46,300	46,400	0,308	-0,83	-1,11	0,68				0,2906		
74	47,13	46,637	46,399	46,604	46,504	46,656	0,283	-0,28	-0,38	0,62				0,2700		<u> </u>
80	47,13	46,500	45,500	45,700	46,700	46,320	0,709	-1,00	-1,34	1,56*	0,349	1,344		0,2906		
102	46,30	47,800	47,200	47,600	47,300	47,240	0,577	0,97	1,30	1,27	0,547	1,044	1,298	0,2700	0,3985	<u> </u>
166	39,94	39,974	39,951	39,931	39,819	39,922										X
168	46,80	46,900	46,800	46,600	47,100	46,840	0,182	0,11	0,15	0,40						
182	47,30	46,900	46,700	47,100	47,600	47,120	0,349	0,71	0,15	0,77					0,3985	√
102	47,50	40,700	40,700	47,100	47,000	47,120	0,347	0,71	0,73	0,77					0,3703	

NOTAS:

 $^{\rm 04}\,$ El código colorimétrico empleado para las celdas es:

[aberrante]

[anómalo]

[máximo]

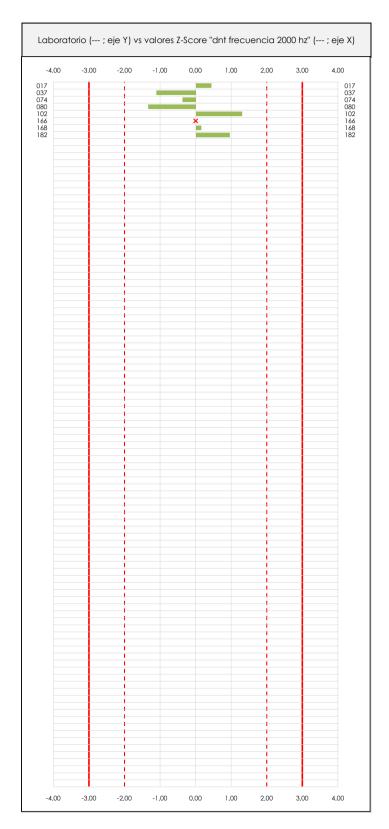
[mínimo]

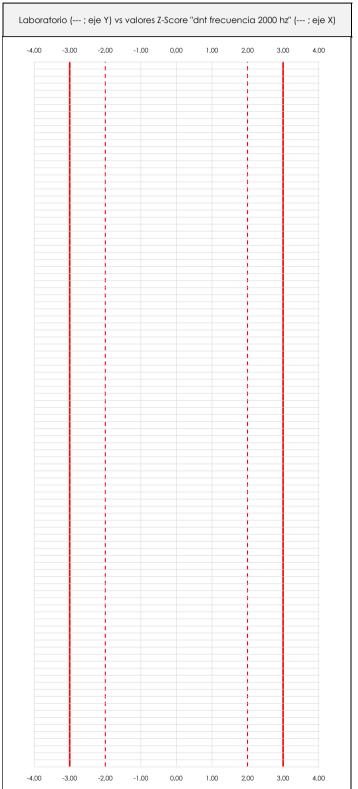
^{01 &}quot;X_{i j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

^{03 &}quot;h_i y k_i", "C_i", "G_{sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.

Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 2000 HZ (DB) Análisis C. Evaluación Z-Score

Apartado C.1. Análisis gráfico Altman Z-Score

ANALISIS GRAFICO Z-SCORE

Diagrama Z-Score para los resultados aportados por los laboratorios. Estos se considerarán satisfactorios (S) si el valor absoluto del Z-Score es menor o igual a 2 unidades, dudoso si está comprendido entre 2 y 3 unidades e insatisfactorio si es mayor o igual a 3 unidades.

Los resultados satisfactorios quedan reflejados entre las dos líneas rojas discontinuas, líneas de referencia en la evaluación Z-Score.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 2000 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

Lab	X _{i 1}	X _{i2}	X _{i 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{Li}	D _{i arit %}	Pasa A	Pasa B	Total	Causa	Iteración	Z-Score	Evaluación
17	47.00	4/ 10	47.00	47.00	47.50	4/.04	0.500	0.20						0.407	
17	47,20	46,10	46,90	47,00	47,50	46,94	0,522	0,32	√	√	√			0,437	S
37	46,60	46,30	46,80	46,00	46,30	46,40	0,308	-0,83	√	√	√				S
74	47,13	46,64	46,40	46,60	46,50	46,66	0,283	-0,28	√	√	<u> </u>			-0,380	S
80	47,20	46,50 47,80	45,50	45,70	46,70	46,32	0,709	-1,00	√	✓	√			-1,344	S
102	46,30 39,94	39,97	47,20 39,95	47,60 39,93	47,30 39,82	47,24 39,92	0,577	0,97	→		X	AB	0	1,298	S
168	46,80	46,90	46,80	46,60	47,10	46,84	0,182	0,11	- ✓	X		Ab	0	0,149	S
182	47,30	46,90	46,70	47,10	47,60	47,12	0,349	0,71			-			0,954	S
102	47,50	40,70	40,70	47,10	47,00	47,12	0,547	0,71						0,754	<u> </u>

NOTAS:

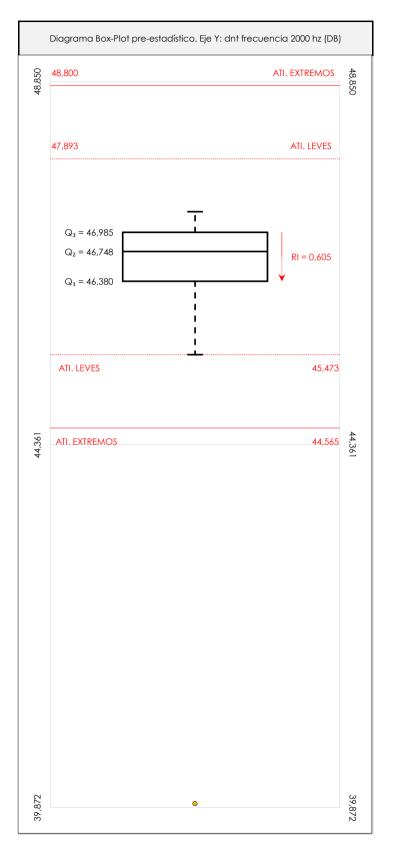
^{01 &}quot;X_{i,j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

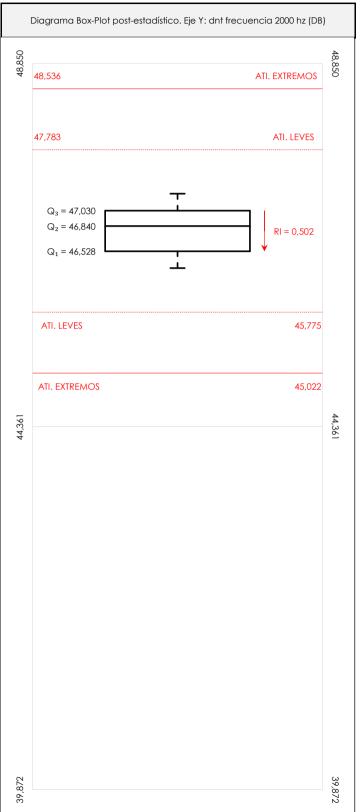
^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

 $^{^{03}}$ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leqslant 2] [Dudoso (D) - si 2 < | ZS | \leqslant 3] [Insatisfactorio (I) - si | ZS | > 3].

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

CICE Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 2000 HZ (DB)

Análisis D. Estudios post-estadisticos

Apartado D.3. Diagramas Box-Plot o de Caja y Bigotes

ANALISIS GRAFICO DE CAJA Y BIGOTES (ANTES Y DESPUES DE ANALISIS ESTADISTICO)

Diagramas de caja y bigotes (Box Plot) de las medias aritméticas de los resultados aportados por los laboratorios <u>antes</u> (diagrama de la izquierda. Este incluye valores aberrantes y anómalos) y <u>después</u> (diagrama de la derecha. No incluye los valores descartados a lo largo del estudio) de análisis estadístico.

En ambos se han representado: el primer cuartil (Q_1 ; 25% de los datos), el segundo cuartil o la mediana (Q_2 ; 50% de los datos), el tercer cuartil (Q_3 ; 75% de los datos), el rango intercuartílico (RI ; cuartil tres menos cuartil uno) y los límites de valores atípicos leves (f_3 y f_1 para el máximo y mínimo respectivamente ; líneas discontinuas de color rojo) y extremos (f_3 * y f_1 * para el máximo y mínimo respectivamente ; líneas continuas de color rojo).

Comité de infraestructuras para la Calidad de la Edificación

DNT FRECUENCIA 2000 HZ (DB)

Conclusiones

Determinación de la repetibilidad y reproducibilidad

SACE Subcomisión Administrativa para la Calidad de la Edificación

El análisis estadístico EILA20 para el ensayo "DNT FRECUENCIA 2000 HZ", ha contado con la participación de un total de 8 laboratorios, debiendo haber aportado cada uno de ellos, un total de 5 determinaciones individuales además de su valor medio.

Tras analizar los resultados podemos concluir que, para cumplir con los criterios estadísticos establecidos en el informe, un total de 1 laboratorios han sido apartados de la evaluación final: 0 en el Análisis Pre-Estadístico (por no cumplir el criterio de validación y/o el procedimiento de ejecución recogido en la norma de ensayo) y 1 en el Análisis Estadístico (por resultar anómalos o aberrantes en las técnicas gráficas de consistencia de Mandel y en los ensayos de detección de resultados numéricos de Cochran y Grubbs), al cabo de 2 iteraciones.

De cada uno de los análisis (pre-estadístico y estadístico), se obtienen las siguientes tablas:

TIPO DE ANALISIS			PRE-ES	TADISTIC	:0				ESTA	DISTICO		
Variables	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$
Valor Máximo (max ; %)	47,30	47,80	47,20	47,60	47,60	47,24	47,30	47,80	47,20	47,60	47,60	47,24
Valor Mínimo (min ; %)	39,94	39,97	39,95	39,93	39,82	39,92	46,30	46,10	45,50	45,70	46,30	46,32
Valor Promedio (M; %)	46,06	45,89	45,78	45,82	46,10	45,93	46,93	46,73	46,61	46,66	47,00	46,79
Desviación Típica (SDL ;)	2,50	2,44	2,41	2,45	2,58	2,45	0,38	0,55	0,55	0,65	0,51	0,35
Coef. Variación (CV ;)	0,05	0,05	0,05	0,05	0,06	0,05	0,01	0,01	0,01	0,01	0,01	0,01
VARIABLES	S_r^2	r		$S_L^{\ 2}$	S_R^2	R	S_r^2	r		S_L^2	S_R^{2}	R
Valor Calculado	0,180	1,17	77 .	5,960	6,141	6,869	0,205	1,25	56 0	,080,	0,286	1,481
Valor Referencia												

Asimismo, acompañando a éstas tablas y dependiendo del análisis que se esté llevando a cabo, se introducen los indicadores estadísticos "h y k" de Mandel y los valores críticos "C" de Cochran y " G_{Sim} y G_{Dob} " de Grubbs, todos ellos adimensionales, obtenidos de las tablas 4, 5, 6 y 7 de la norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios y del número de ensayos efectuados por cada uno de ellos:

TIPO DE ANALISIS		PRE	-ESTADISTI	со			Е	STADISTIC	5	
VARIABLES	h	k	С	G_{sim}	G_Dob	h	k	С	G_{sim}	G_{Dob}
Nivel de Significación 1%	1,98	1,70	0,463	2,139	0,0308	1,98	1,70	0,508	2,139	0,0308
Nivel de Significación 5%	1,71	1,49	0,391	2,020	0,0708	1,71	1,49	0,431	2,020	0,0708

Con los resultados de los laboratorios, que tras los dos análisis estadísticos son evaluados por Z-Score, se han obtenido: 7 resultados satisfactorios, 0 resultados dudosos y 0 resultados insatisfactorios.

Respecto a los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística recogida en la ISO 17025, sobre las dispersiones de los resultados individuales y su media, en forma de varianzas o desviaciones estándar, también conocida como ANOVA (siglas de analisys of varience).

Sabiendo que una varianza es la suma de cuadrados dividida por un número, que se llama grados de libertad, que depende del número de participantes menos 1, se puede decir que la imprecisión del ensayo se descompone en dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad (variabilidad intralaboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad debida al cambio de laboratorio).

Las condiciones de repetibilidad de este ensayo son: mismo laborante, mismo laboratorio y mismo equipo de medición utilizado dentro de un período de tiempo corto. Por ende, las condiciones de reproducibilidad para la misma muestra y ensayo, cambian en: el laborante, el laboratorio, el equipo y las condiciones de uso y tiempo.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

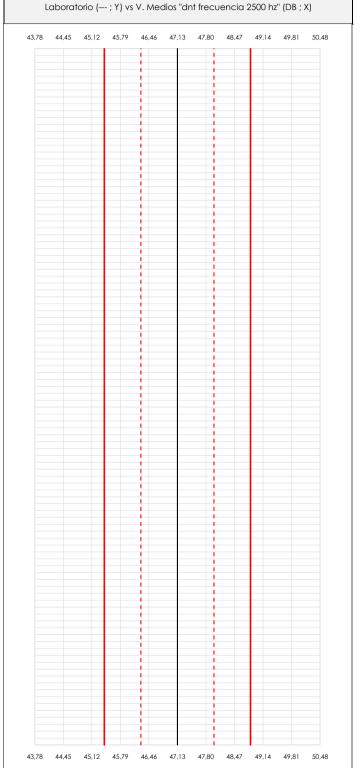
ANÁLISIS ESTADÍSTICO ACÚSTICA

DNT FRECUENCIA 2500 HZ

CICE e infraestructuras para la

Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 2500 HZ (DB) Análisis A. Estudio pre-estadístico

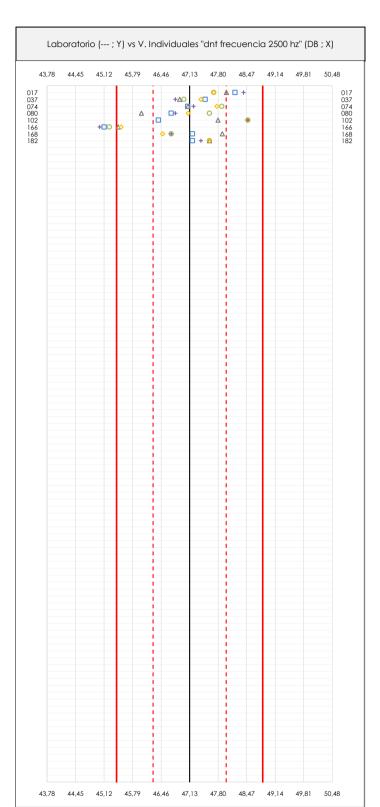
Apartado A.1. Gráficos de dispersión de valores medios

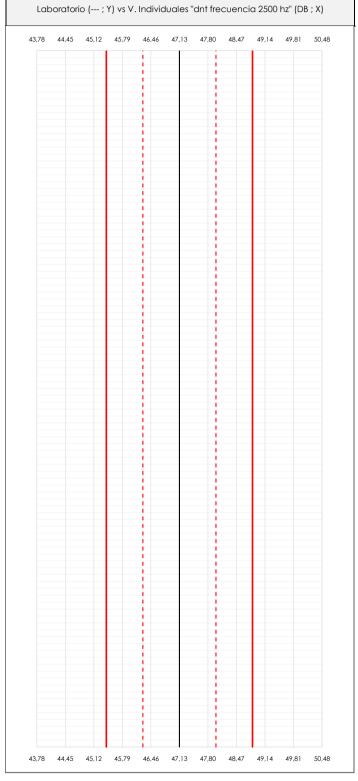
ANALISIS GRAFICO DE DISPERSION MEDIA (ANTES DE ANALISIS ESTADISTICO)

Dispersión de las medias aritméticas intra-laboratorios respecto de la media aritmética inter-laboratorios (47,13; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (47,99/46,28; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (48,85/45,42; líneas rojas de trazo continuo).

En el eje Y (adimensional) quedan reflejados los códigos de los laboratorios participantes y en el eje X (las unidades son las mismas que las del ensayo que se está analizando) las medias aritméticas intra-laboratorios representadas por punto de color negro.

CICE Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 2500 HZ (DB) Análisis A. Estudio pre-estadístico

Apartado A.2. Gráficos de dispersión de valores individuales

ANALISIS GRAFICOS DE DISPERSION INDIVIDUAL (ANTES DE ANALISIS ESTADISTICO)

Dispersión de los valores individuales respecto de la media aritmética inter-laboratorios (47,13; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (47,99/46,28; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (48,85/45,42; líneas rojas de trazo continuo).

En el eje Y (adimensional) queda reflejado el código del laboratorio participante y en el eje X (las unidades son las de los resultados del ensayo que se está analizando) los resultados individuales: el primero (X_{i,1}) se representa con un cuadrado azul, el segundo (X_{i,2}) con un círculo verde, el tercero (X_{i,3}) con un triángulo grís y el cuarto (X_{i,4}) con un rombo amarillo.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 2500 HZ (DB) Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{Li}	D _{i arit %}	Pasa A	Observaciones
17	48,20	47,70	48,00	47,70	48,40	48,00	0,308	1,84	✓	
37	47,50	47,00	46,90	47,40	46,80	47,12	0,311	-0,03	✓	
74	47,09	47,89	47,09	47,77	47,23	47,41	0,387	0,60	✓	
80	46,70	47,60	46,00	47,10	46,80	46,84	0,586	-0,62	✓	
102	46,40	48,50	47,80	48,50	48,50	47,94	0,913	1,71	✓	
166	45,13	45,25	45,45	45,52	45,02	45,28	0,213	-3,94	✓	
168	47,20	46,70	47,90	46,50	46,70	47,00	0,566	-0,28	✓	
182	47,20	47,60	47,60	47,60	47,40	47,48	0,179	0,73	✓	
	·	·	·						·	

NOTAS:

 $^{\rm 04}$ El código colorimétrico empleado para las celdas es:

[máximo]

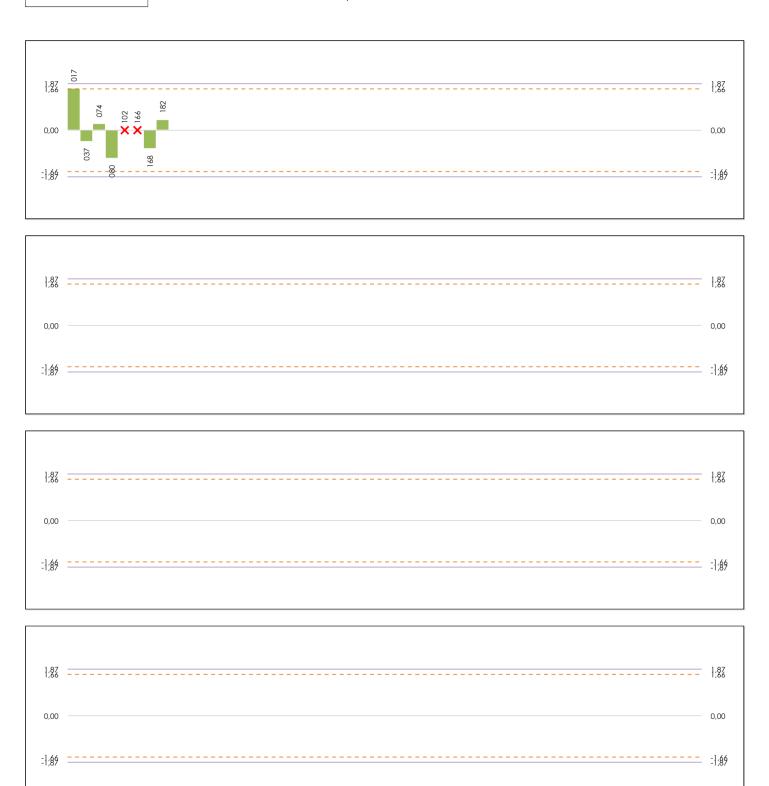
[mínimo

^{01 &}quot;X_{i j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_{L1}" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma.

CICE Comité de infraestructuras para la Calidad de la Edificación


SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 2500 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

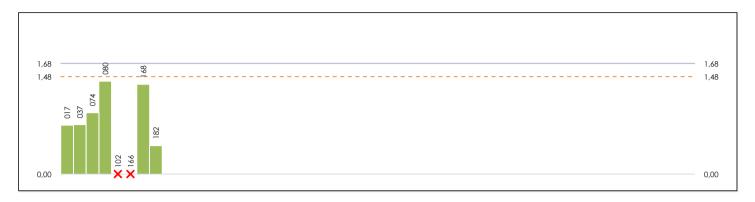
Apartado B.1. Gráfico de consistencia inter-laboratorios "h" de Mandel

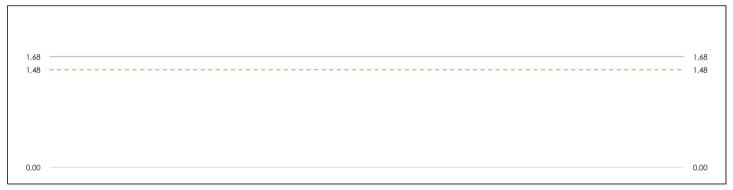
ANALISIS GRAFICO DE CONSISTENCIA INTER-LABORATORIOS

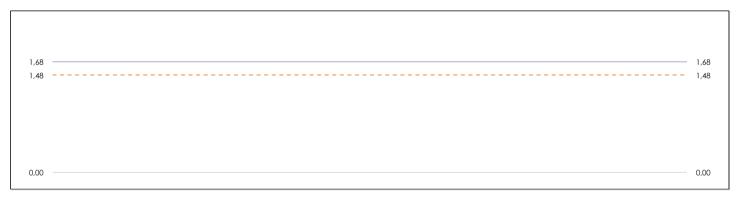
Análisis gráfico de consistencia inter-laboratorios "h" de Mandel. En él se representan las medias aritméticas inter-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes).

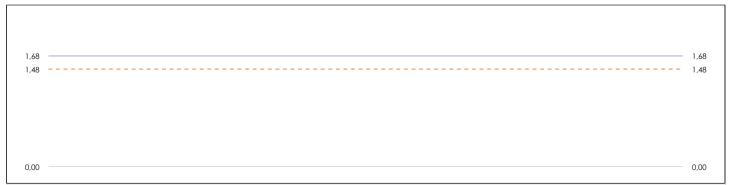
Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación






DNT FRECUENCIA 2500 HZ (DB)


Análisis B. Mandel, Cochran y Grubbs

Apartado B.2. Gráfico de consistencia intra-laboratorios "k" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTRA-LABORATORIOS

Análisis gráfico de consistencia intra-laboratorios "k" de Mandel. En él se representan las medias aritméticas intra-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes y el número de ensayos efectuados).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 2500 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	h _i	k _i	Ci	$G_{\text{Sim Inf}}$	G _{Sim Sup}	G _{Dob Inf}	G _{Dob Sup}	Pasa B
17	48,20	47,700	48,000	47,700	48,400	48,000	0,308	1,46	1,66	0,74			1,657		0,2034	✓
37	47,50	47,000	46,900	47,400	46,800	47,120	0,311	-0,40	-0,45	0,75			1,007		0,2004	<u> </u>
74	47,09	47,889	47,094	47,774	47,226	47,415	0,311	0,22	0,25	0,73						
80	46,70	47,600	46,000	47,100	46,800	46,840	0,586	-0,99	-1,13	1,41		1,125		0,4627		<u> </u>
102	46,40	48,500	47,800	48,500	48,500	47,940										Х
166	45,13	45,249	45,454	45,525	45,021	45,275										X
168	47,20	46,700	47,900	46,500	46,700	47,000	0,566	-0,65	-0,74	1,36				0,4627		<u>√</u>
182	47,20	47,600	47,600	47,600	47,400	47,480	0,179	0,36	0,41	0,43					0,2034	√

NOTAS:

 $^{\rm 04}\,$ El código colorimétrico empleado para las celdas es:

[aberrante]

[anómalo]

[máximo]

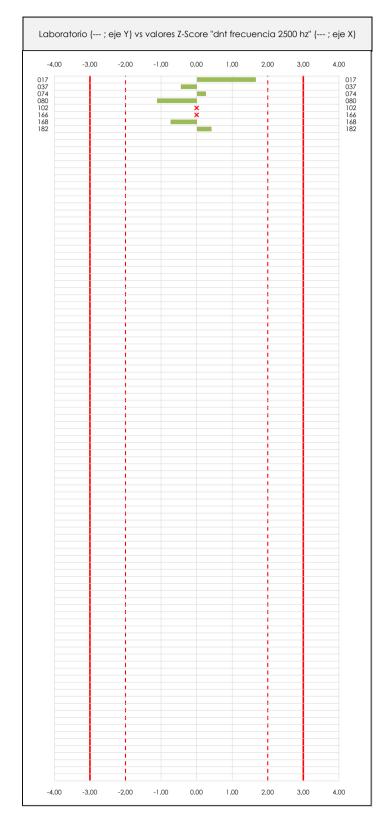
[mínimo]

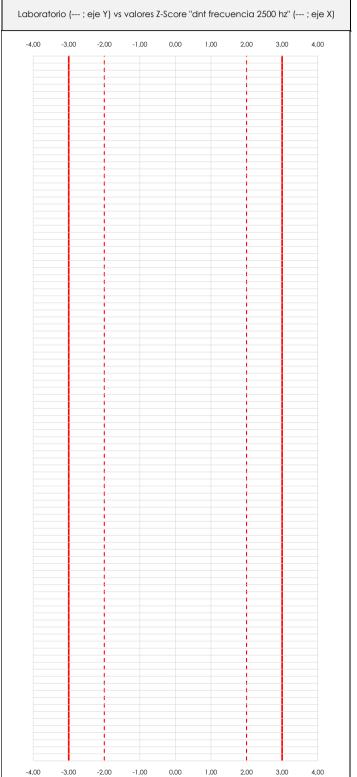
^{01 &}quot;X_{i j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

^{03 &}quot;h_i y k_i", "C_i", "G_{sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.

Comité de infraestructuras para la Calidad de la Edificación




SACESubcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 2500 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.1. Análisis gráfico Altman Z-Score

ANALISIS GRAFICO Z-SCORE

Diagrama Z-Score para los resultados aportados por los laboratorios. Estos se considerarán satisfactorios (S) si el valor absoluto del Z-Score es menor o igual a 2 unidades, dudoso si está comprendido entre 2 y 3 unidades e insatisfactorio si es mayor o igual a 3 unidades.

Los resultados satisfactorios quedan reflejados entre las dos líneas rojas discontinuas, líneas de referencia en la evaluación Z-Score.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 2500 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	Pasa A	Pasa B	Total	Causa	Iteración	Z-Score	Evaluación
17	40.00	47.70	40.00	47.70	40.40	40.00	0.200	1.47						1 /57	
17	48,20	47,70	48,00	47,70	48,40	48,00	0,308	1,46	√	√	√			1,657	S
37	47,50	47,00	46,90	47,40	46,80	47,12	0,311	-0,40	√	√	<u> </u>			-0,454	S
74	47,09	47,89	47,09	47,77	47,23	47,41	0,387	0,22	√	√	√			0,253	S
80	46,70 46,40	47,60 48,50	46,00	47,10	46,80	46,84	0,586	-0,99	√	X	X	AN	0	-1,125	S
102 166	45,13	45,25	47,80 45,45	48,50 45,52	48,50 45,02	47,94 45,28			→	X	X	AN	0		
168	47,20	46,70	47,90	46,50	46,70	47,00	0,566	-0,65				AN	0	-0,741	S
182	47,20	47,60	47,60	47,60	47,40	47,48	0,179	0,36		<u> </u>	<u> </u>			0,410	s
102	47,20	47,00	47,00	47,00	47,40	47,40	0,177	0,00						0,410	3

NOTAS:

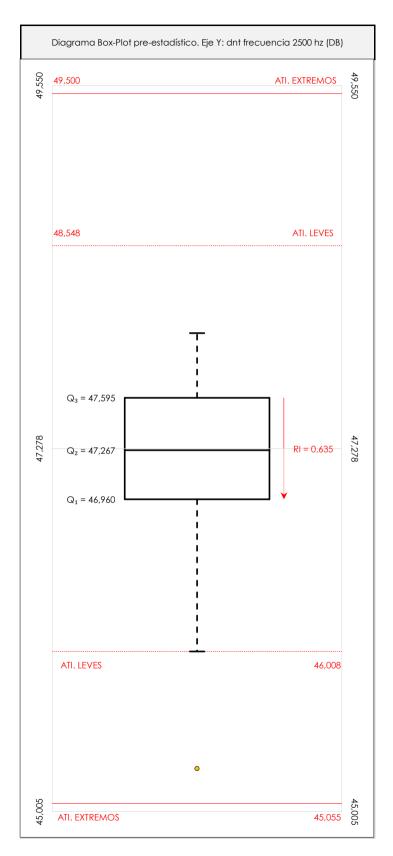
^{01 &}quot;X_{i,j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

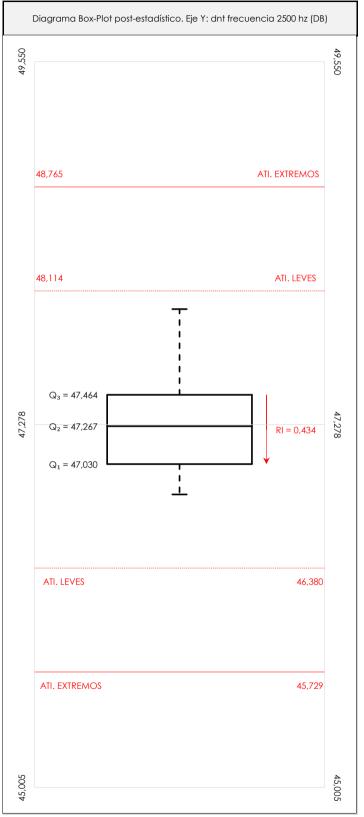
^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

 $^{^{03}}$ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leqslant 2] [Dudoso (D) - si 2 < | ZS | \leqslant 3] [Insatisfactorio (I) - si | ZS | > 3].

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

CICE Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 2500 HZ (DB)

Análisis D. Estudios post-estadisticos

Apartado D.3. Diagramas Box-Plot o de Caja y Bigotes

ANALISIS GRAFICO DE CAJA Y BIGOTES (ANTES Y DESPUES DE ANALISIS ESTADISTICO)

Diagramas de caja y bigotes (Box Plot) de las medias aritméticas de los resultados aportados por los laboratorios <u>antes</u> (diagrama de la izquierda. Este incluye valores aberrantes y anómalos) y <u>después</u> (diagrama de la derecha. No incluye los valores descartados a lo largo del estudio) de análisis estadístico.

En ambos se han representado: el primer cuartil (Q_1 ; 25% de los datos), el segundo cuartil o la mediana (Q_2 ; 50% de los datos), el tercer cuartil (Q_3 ; 75% de los datos), el rango intercuartílico (RI ; cuartil tres menos cuartil uno) y los límites de valores atípicos leves (f_3 y f_1 para el máximo y mínimo respectivamente ; líneas discontinuas de color rojo) y extremos (f_3 * y f_1 * para el máximo y mínimo respectivamente ; líneas continuas de color rojo).

Comité de infraestructuras para la Calidad de la Edificación

DNT FRECUENCIA 2500 HZ (DB)

Conclusiones

Determinación de la repetibilidad y reproducibilidad

SACE Subcomisión Administrativa para la Calidad de la Edificación

El análisis estadístico EILA20 para el ensayo "DNT FRECUENCIA 2500 HZ", ha contado con la participación de un total de 8 laboratorios, debiendo haber aportado cada uno de ellos, un total de 5 determinaciones individuales además de su valor medio.

Tras analizar los resultados podemos concluir que, para cumplir con los criterios estadísticos establecidos en el informe, un total de 2 laboratorios han sido apartados de la evaluación final: 0 en el Análisis Pre-Estadístico (por no cumplir el criterio de validación y/o el procedimiento de ejecución recogido en la norma de ensayo) y 2 en el Análisis Estadístico (por resultar anómalos o aberrantes en las técnicas gráficas de consistencia de Mandel y en los ensayos de detección de resultados numéricos de Cochran y Grubbs), al cabo de 2 iteraciones.

De cada uno de los análisis (pre-estadístico y estadístico), se obtienen las siguientes tablas:

TIPO DE ANALISIS			PRE-ES	TADISTIC	:0				ESTA	DISTICO		
Variables	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	\overline{X}_{iarit}
Valor Máximo (max ; %)	48,20	48,50	48,00	48,50	48,50	48,00	48,20	47,89	48,00	47,77	48,40	48,00
Valor Mínimo (min ; %)	45,13	45,25	45,45	45,52	45,02	45,28	46,70	46,70	46,00	46,50	46,70	46,84
Valor Promedio (M; %)	46,93	47,28	47,09	47,26	47,11	47,13	47,31	47,41	47,25	47,35	47,22	47,31
Desviación Típica (SDL ;)	0,90	0,98	0,94	0,91	1,10	0,86	0,50	0,46	0,75	0,48	0,64	0,42
Coef. Variación (CV ;)	0,02	0,02	0,02	0,02	0,02	0,02	0,01	0,01	0,02	0,01	0,01	0,01
VARIABLES	S_r^2	r		$S_L^{\ 2}$	S_R^2	R	S_r^2	r		S _L ²	S_R^{2}	R
Valor Calculado	0,239	1,35	56 (0,689	0,928	2,671	0,173	1,15	52 0	,139	0,312	1,548
Valor Referencia												

Asimismo, acompañando a éstas tablas y dependiendo del análisis que se esté llevando a cabo, se introducen los indicadores estadísticos "h y k" de Mandel y los valores críticos "C" de Cochran y " G_{Sim} y G_{Dob} " de Grubbs, todos ellos adimensionales, obtenidos de las tablas 4, 5, 6 y 7 de la norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios y del número de ensayos efectuados por cada uno de ellos:

TIPO DE ANALISIS		PRE	E-ESTADISTI	со			Е	STADISTIC)	
VARIABLES	h	k	С	G_{sim}	G_Dob	h	k	С	G_{sim}	G_{Dob}
Nivel de Significación 1%	1,87	1,68	0,463	1,973	0,0116	1,87	1,68	0,564	1,973	0,0116
Nivel de Significación 5%	1,66	1,48	0,391	1,887	0,0349	1,66	1,48	0,480	1,887	0,0349

Con los resultados de los laboratorios, que tras los dos análisis estadísticos son evaluados por Z-Score, se han obtenido: 6 resultados satisfactorios, 0 resultados dudosos y 0 resultados insatisfactorios.

Respecto a los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística recogida en la ISO 17025, sobre las dispersiones de los resultados individuales y su media, en forma de varianzas o desviaciones estándar, también conocida como ANOVA (siglas de analisys of varience).

Sabiendo que una varianza es la suma de cuadrados dividida por un número, que se llama grados de libertad, que depende del número de participantes menos 1, se puede decir que la imprecisión del ensayo se descompone en dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad (variabilidad intralaboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad debida al cambio de laboratorio).

Las condiciones de repetibilidad de este ensayo son: mismo laborante, mismo laboratorio y mismo equipo de medición utilizado dentro de un período de tiempo corto. Por ende, las condiciones de reproducibilidad para la misma muestra y ensayo, cambian en: el laborante, el laboratorio, el equipo y las condiciones de uso y tiempo.

Comité de infraestructuras para la Calidad de la Edificación

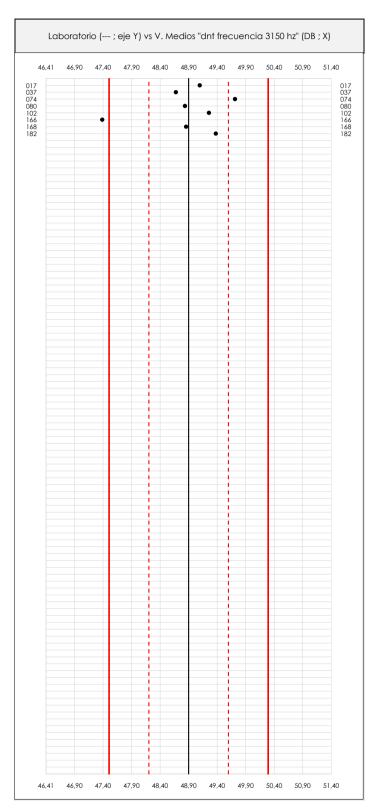
SACE

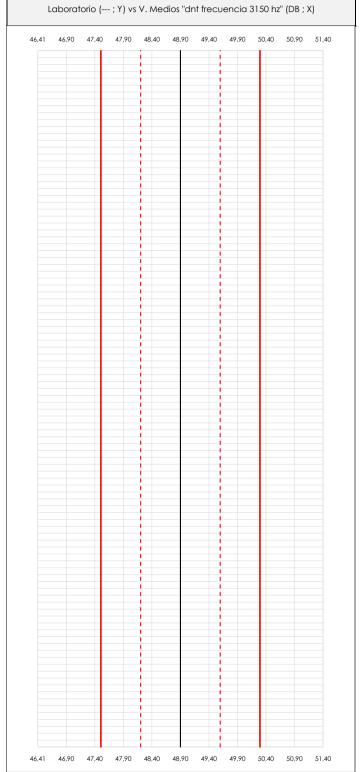
Subcomisión Administrativa para la Calidad de la Edificación

ANÁLISIS ESTADÍSTICO ACÚSTICA

DNT FRECUENCIA 3150 HZ

Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 3150 HZ (DB) Análisis A. Estudio pre-estadístico

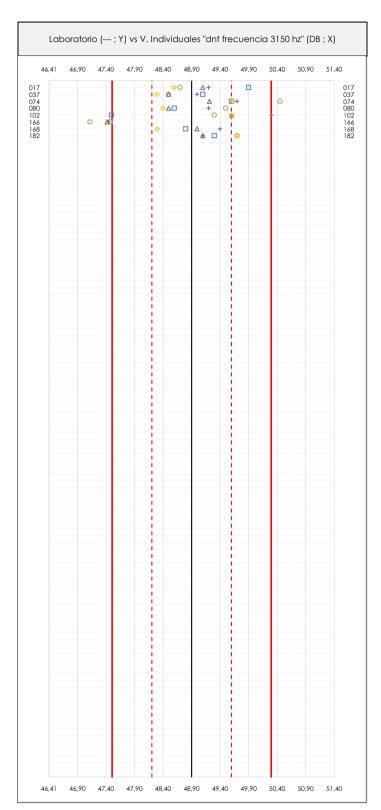
Apartado A.1. Gráficos de dispersión de valores medios

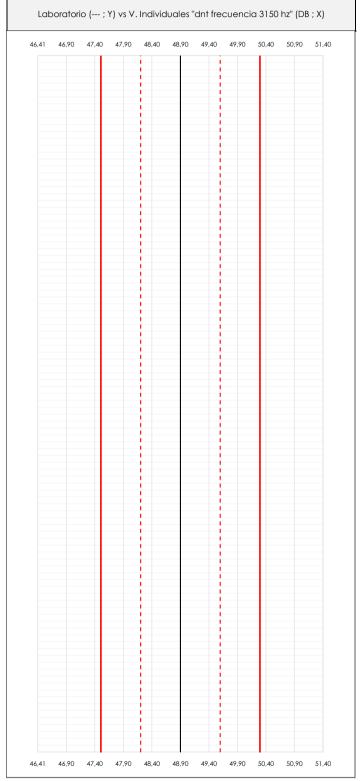
ANALISIS GRAFICO DE DISPERSION MEDIA (ANTES DE ANALISIS ESTADISTICO)

Dispersión de las medias aritméticas intra-laboratorios respecto de la media aritmética inter-laboratorios (48,90 ; línea negra de trazo continuo), la media aritmética interlaboratorios más/menos la desviación típica (49,60/48,21; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (50,30/47,51; líneas rojas de trazo continuo).

En el eje Y (adimensional) quedan reflejados los códigos de los laboratorios participantes y en el eje X (las unidades son las mismas que las del ensayo que se está analizando) las medias aritméticas intra-laboratorios representadas por punto de color negro.

CICE Comité de infraestructuras para la Calidad de la Edificación


CSIC EDUAR DO TOR ROJA


SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 3150 HZ (DB) Análisis A. Estudio pre-estadístico

Apartado A.2. Gráficos de dispersión de valores individuales

ANALISIS GRAFICOS DE DISPERSION INDIVIDUAL (ANTES DE ANALISIS ESTADISTICO)

Dispersión de los valores individuales respecto de la media aritmética inter-laboratorios (48,90; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (49,60/48,21; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (50,30/47,51; líneas rojas de trazo continuo).

En el eje Y (adimensional) queda reflejado el código del laboratorio participante y en el eje X (las unidades son las de los resultados del ensayo que se está analizando) los resultados individuales: el primero (X_{i,1}) se representa con un cuadrado azul, el segundo (X_{i,2}) con un círculo verde, el tercero (X_{i,3}) con un triángulo grís y el cuarto (X_{i,4}) con un rombo amarillo.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 3150 HZ (DB) Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	Pasa A	Observaciones
17	49,90	48,70	49,10	48,60	49,20	49,10	0,515	0,40	✓	
37	49,10	48,50	48,50	48,30	49,00	48,68	0,349	-0,46	✓	
74	49,60	50,45	49,21	49,62	49,70	49,72	0,452	1,66	✓	
80	48,60	49,50	48,50	48,40	49,20	48,84	0,483	-0,13	✓	
102	47,50	49,30	49,60	49,60	50,30	49,26	1,050	0,73	✓	
166	47,48	47,12	47,42	47,48	47,45	47,39	0,153	-3,09	✓	
168	48,80	48,80	49,00	48,30	49,40	48,86	0,397	-0,09	✓	
182	49,30	49,70	49,10	49,70	49,10	49,38	0,303	0,97	✓	

NOTAS:

[máxim	0
--------	---

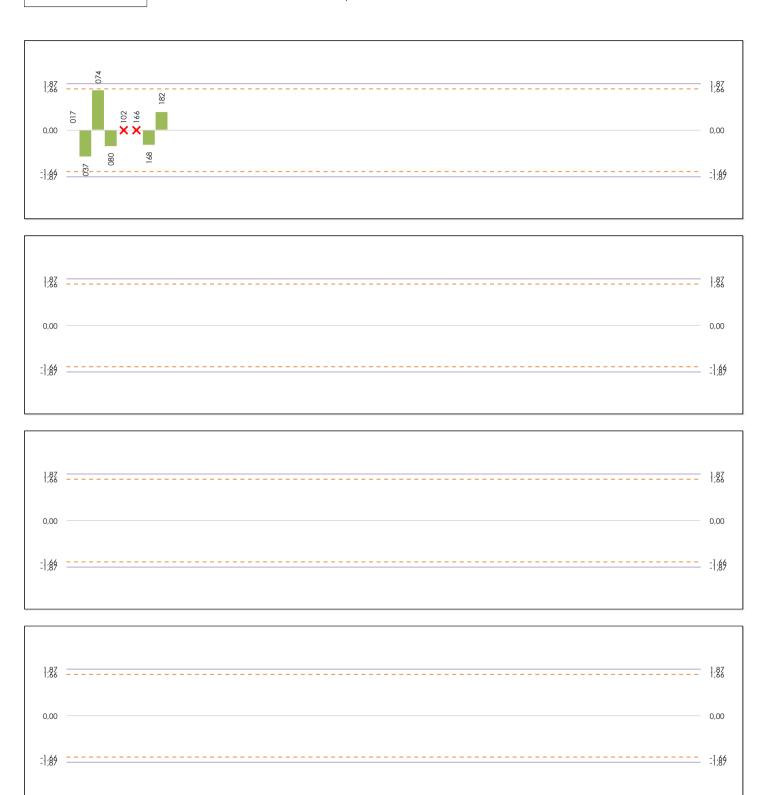
^{01 &}quot;X_{i j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_{L1}" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma.

 $^{^{\}rm 04}$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación



DNT FRECUENCIA 3150 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

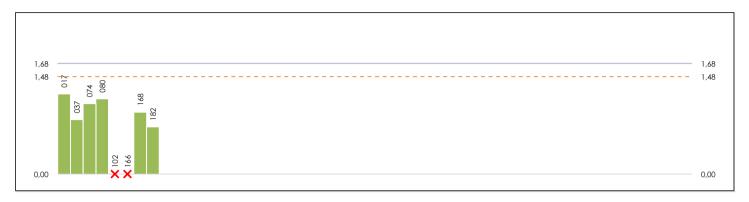
Apartado B.1. Gráfico de consistencia inter-laboratorios "h" de Mandel

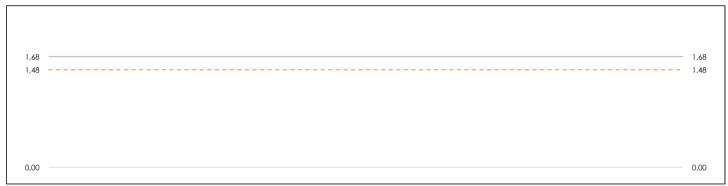
ANALISIS GRAFICO DE CONSISTENCIA INTER-LABORATORIOS

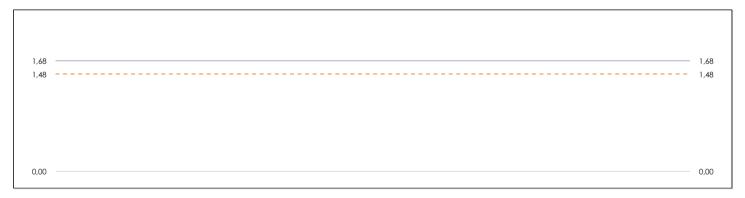
Análisis gráfico de consistencia inter-laboratorios "h" de Mandel. En él se representan las medias aritméticas inter-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación






DNT FRECUENCIA 3150 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.2. Gráfico de consistencia intra-laboratorios "k" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTRA-LABORATORIOS

Análisis gráfico de consistencia intra-laboratorios "k" de Mandel. En él se representan las medias aritméticas intra-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes y el número de ensayos efectuados).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 3150 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	h _i	k _i	Ci	$G_{\text{Sim Inf}}$	G _{Sim Sup}	G _{Dob Inf}	G _{Dob Sup}	Pasa B
17	49,90	48,700	49,100	48,600	49,200	49,100	0,515	0,01	0,01	1,22						✓
37	49,10	48,500	48,500	48,300	49,000	48,680	0,349	-0,85	-1,07	0,83		1,067		0,5377		✓
74	49,60	50,453	49,214	49,622	49,698	49,718	0,452	1,27	1,59	1,07			1,592		0,1182	✓
80	48,60	49,500	48,500	48,400	49,200	48,840	0,483	-0,52	-0,66	1,14				0,5377		✓
102	47,50	49,300	49,600	49,600	50,300	49,260										X
166	47,48	47,122	47,423	47,482	47,446	47,391										X
168	48,80	48,800	49,000	48,300	49,400	48,860	0,397	-0,48	-0,61	0,94						✓
182	49,30	49,700	49,100	49,700	49,100	49,380	0,303	0,58	0,73	0,72					0,1182	✓

NOTAS:

 $^{\rm 04}\,$ El código colorimétrico empleado para las celdas es:

[aberrante]

[anómalo]

[máximo]

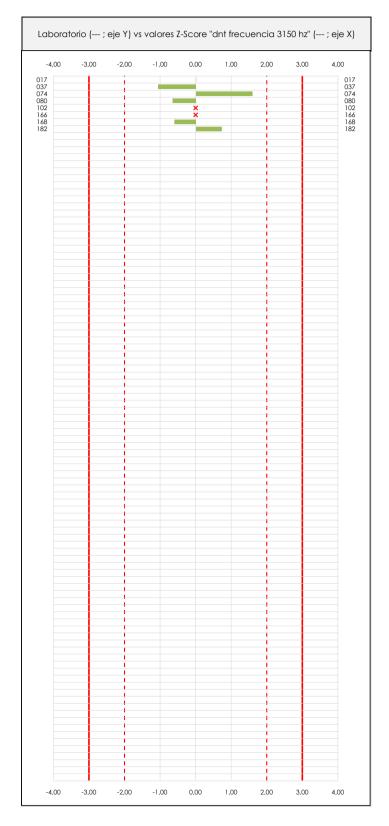
[mínimo]

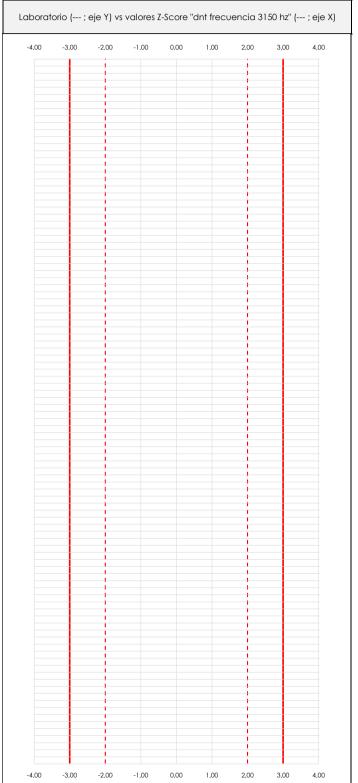
^{01 &}quot;X_{i j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

^{03 &}quot;h_i y k_i", "C_i", "G_{sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.

Comité de infraestructuras para la Calidad de la Edificación




SACESubcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 3150 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.1. Análisis gráfico Altman Z-Score

ANALISIS GRAFICO Z-SCORE

Diagrama Z-Score para los resultados aportados por los laboratorios. Estos se considerarán satisfactorios (S) si el valor absoluto del Z-Score es menor o igual a 2 unidades, dudoso si está comprendido entre 2 y 3 unidades e insatisfactorio si es mayor o igual a 3 unidades.

Los resultados satisfactorios quedan reflejados entre las dos líneas rojas discontinuas, líneas de referencia en la evaluación Z-Score.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 3150 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	Pasa A	Pasa B	Total	Causa	Iteración	Z-Score	Evaluación
17	40.00	10.70	40.10	10.10	40.00	10.10	0.515	0.01						0.010	
17	49,90	48,70	49,10	48,60	49,20	49,10	0,515	0,01	√	√	√			0,010	S
37	49,10	48,50	48,50	48,30	49,00	48,68	0,349	-0,85	√	√	√			-1,067	S
74	49,60	50,45	49,21	49,62	49,70	49,72	0,452	1,27	√	√	√			1,592	S
80	48,60	49,50	48,50	48,40	49,20	48,84	0,483	-0,52	√	√	√ 	A.D.	0	-0,657	S
102	47,50 47,48	49,30 47,12	49,60	49,60	50,30	49,26				X	X	AB AB	0		
166	48,80	48,80	47,42 49,00	47,48 48,30	47,45 49,40	47,39 48,86	0,397	-0,48	√			Ab	0	-0,605	S
182	49,30	49,70	49,10	49,70	49,10	49,38	0,303	0,58		√	√			0,727	S
102	47,50	47,70	47,10	47,70	47,10	47,30	0,303	0,50						0,727	<u> </u>

NOTAS:

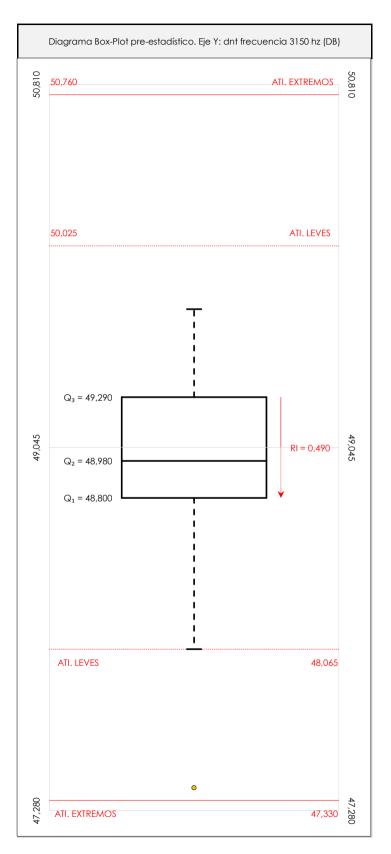
^{01 &}quot;X_{i,j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

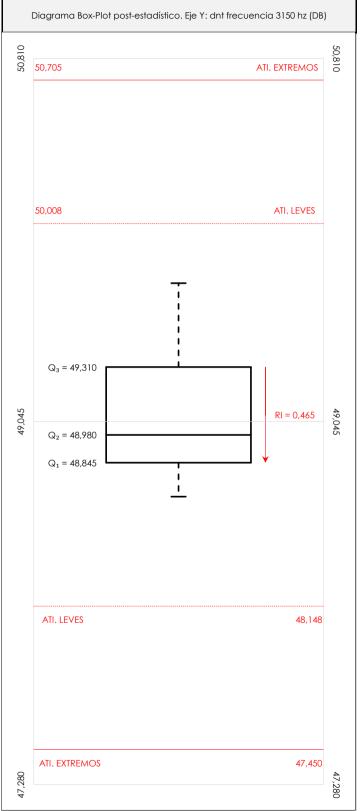
^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

 $^{^{03}}$ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leqslant 2] [Dudoso (D) - si 2 < | ZS | \leqslant 3] [Insatisfactorio (I) - si | ZS | > 3].

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 3150 HZ (DB)

Análisis D. Estudios post-estadisticos

Apartado D.3. Diagramas Box-Plot o de Caja y Bigotes

ANALISIS GRAFICO DE CAJA Y BIGOTES (ANTES Y DESPUES DE ANALISIS ESTADISTICO)

Diagramas de caja y bigotes (Box Plot) de las medias aritméticas de los resultados aportados por los laboratorios <u>antes</u> (diagrama de la izquierda. Este incluye valores aberrantes y anómalos) y <u>después</u> (diagrama de la derecha. No incluye los valores descartados a lo largo del estudio) de análisis estadístico.

En ambos se han representado: el primer cuartil (Q_1 ; 25% de los datos), el segundo cuartil o la mediana (Q_2 ; 50% de los datos), el tercer cuartil (Q_3 ; 75% de los datos), el rango intercuartílico (RI ; cuartil tres menos cuartil uno) y los límites de valores atípicos leves (f_3 y f_1 para el máximo y mínimo respectivamente ; líneas discontinuas de color rojo) y extremos (f_3 * y f_1 * para el máximo y mínimo respectivamente ; líneas continuas de color rojo).

Comité de infraestructuras para la Calidad de la Edificación

DNT FRECUENCIA 3150 HZ (DB)

Conclusiones

Determinación de la repetibilidad y reproducibilidad

SACE Subcomisión Administrativa para la Calidad de la Edificación

El análisis estadístico EILA20 para el ensayo "DNT FRECUENCIA 3150 HZ", ha contado con la participación de un total de 8 laboratorios, debiendo haber aportado cada uno de ellos, un total de 5 determinaciones individuales además de su valor medio.

Tras analizar los resultados podemos concluir que, para cumplir con los criterios estadísticos establecidos en el informe, un total de 2 laboratorios han sido apartados de la evaluación final: 0 en el Análisis Pre-Estadístico (por no cumplir el criterio de validación y/o el procedimiento de ejecución recogido en la norma de ensayo) y 2 en el Análisis Estadístico (por resultar anómalos o aberrantes en las técnicas gráficas de consistencia de Mandel y en los ensayos de detección de resultados numéricos de Cochran y Grubbs), al cabo de 2 iteraciones.

De cada uno de los análisis (pre-estadístico y estadístico), se obtienen las siguientes tablas:

TIPO DE ANALISIS			PRE-ES	TADISTIC	:0				ESTA	DISTICO		
Variables	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$
Valor Máximo (max ; %)	49,90	50,45	49,60	49,70	50,30	49,72	49,90	50,45	49,21	49,70	49,70	49,72
Valor Mínimo (min ; %)	47,48	47,12	47,42	47,48	47,45	47,39	48,60	48,50	48,50	48,30	49,00	48,68
Valor Promedio (M; %)	48,79	49,01	48,80	48,75	49,17	48,90	49,22	49,28	48,90	48,82	49,27	49,10
Desviación Típica (SDL ;)	0,90	0,99	0,67	0,81	0,81	0,70	0,49	0,75	0,32	0,66	0,25	0,39
Coef. Variación (CV ;)	0,02	0,02	0,01	0,02	0,02	0,01	0,01	0,02	0,01	0,01	0,01	0,01
VARIABLES	S_r^2	r		$S_L^{\ 2}$	S_R^2	R	S_r^2	r		S_L^2	S_R^{2}	R
Valor Calculado	0,275	1,45	54 (0,430	0,705	2,328	0,179	1,17	73 0	,116	0,296	1,507
Valor Referencia												

Asimismo, acompañando a éstas tablas y dependiendo del análisis que se esté llevando a cabo, se introducen los indicadores estadísticos "h y k" de Mandel y los valores críticos "C" de Cochran y " G_{Sim} y G_{Dob} " de Grubbs, todos ellos adimensionales, obtenidos de las tablas 4, 5, 6 y 7 de la norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios y del número de ensayos efectuados por cada uno de ellos:

TIPO DE ANALISIS		PRE	-ESTADISTI	со						
VARIABLES	h	k	С	G_{sim}	G_{Dob}	h	k	С	G_{sim}	G_{Dob}
Nivel de Significación 1%	1,87	1,68	0,463	1,973	0,0116	1,87	1,68	0,564	1,973	0,0116
Nivel de Significación 5%	1,66	1,48	0,391	1,887	0,0349	1,66	1,48	0,480	1,887	0,0349

Con los resultados de los laboratorios, que tras los dos análisis estadísticos son evaluados por Z-Score, se han obtenido: 6 resultados satisfactorios, 0 resultados dudosos y 0 resultados insatisfactorios.

Respecto a los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística recogida en la ISO 17025, sobre las dispersiones de los resultados individuales y su media, en forma de varianzas o desviaciones estándar, también conocida como ANOVA (siglas de analisys of varience).

Sabiendo que una varianza es la suma de cuadrados dividida por un número, que se llama grados de libertad, que depende del número de participantes menos 1, se puede decir que la imprecisión del ensayo se descompone en dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad (variabilidad intralaboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad debida al cambio de laboratorio).

Las condiciones de repetibilidad de este ensayo son: mismo laborante, mismo laboratorio y mismo equipo de medición utilizado dentro de un período de tiempo corto. Por ende, las condiciones de reproducibilidad para la misma muestra y ensayo, cambian en: el laborante, el laboratorio, el equipo y las condiciones de uso y tiempo.

Comité de infraestructuras para la Calidad de la Edificación

SACE

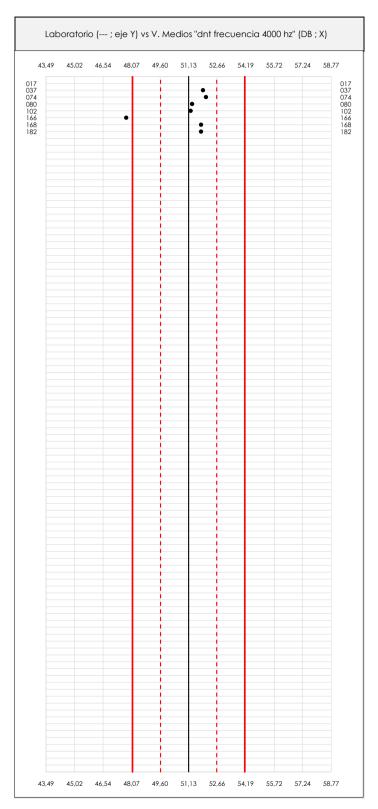
Subcomisión Administrativa para la Calidad de la Edificación

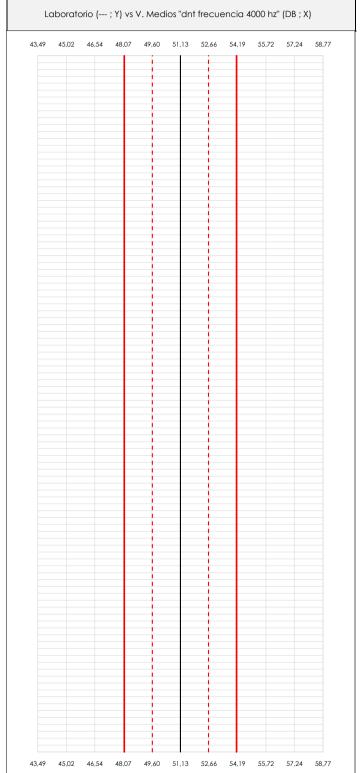
ANÁLISIS ESTADÍSTICO ACÚSTICA

DNT FRECUENCIA 4000 HZ

CICE e infraestructuras para la

Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 4000 HZ (DB) Análisis A. Estudio pre-estadístico

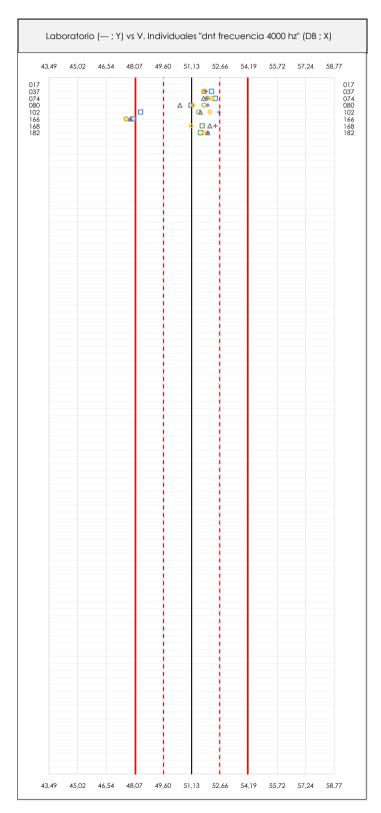
Apartado A.1. Gráficos de dispersión de valores medios

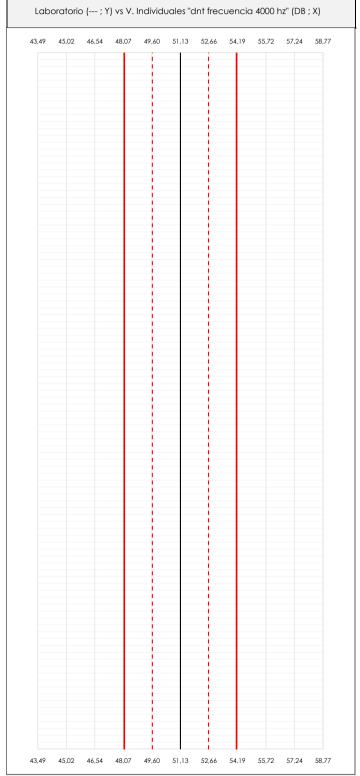
ANALISIS GRAFICO DE DISPERSION MEDIA (ANTES DE ANALISIS ESTADISTICO)

Dispersión de las medias aritméticas intra-laboratorios respecto de la media aritmética inter-laboratorios (51,13; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (52,63/49,63; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (54,14/48,12; líneas rojas de trazo continuo).

En el eje Y (adimensional) quedan reflejados los códigos de los laboratorios participantes y en el eje X (las unidades son las mismas que las del ensayo que se está analizando) las medias aritméticas intra-laboratorios representadas por punto de color negro.

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 4000 HZ (DB)

Análisis A. Estudio pre-estadístico

Apartado A.2. Gráficos de dispersión de valores individuales

ANALISIS GRAFICOS DE DISPERSION INDIVIDUAL (ANTES DE ANALISIS ESTADISTICO)

Dispersión de los valores individuales respecto de la media aritmética inter-laboratorios (51,13; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (52,63/49,63; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (54,14/48,12; líneas rojas de trazo continuo).

En el eje Y (adimensional) queda reflejado el código del laboratorio participante y en el eje X (las unidades son las de los resultados del ensayo que se está analizando) los resultados individuales: el primero (X_{i,1}) se representa con un cuadrado azul, el segundo (X_{i,2}) con un círculo verde, el tercero (X_{i,3}) con un triángulo grís y el cuarto (X_{i,4}) con un rombo amarillo.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 4000 HZ (DB) Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{Li}	D _{i arit %}	Pasa A	Observaciones
17									X	No realiza el ensayo para esta frecuencia
37	52,20	51,80	51,80	51,80	51,90	51,90	0,173	1,51	✓	
74	52,40	51,98	51,77	52,21	51,95	52,06	0,247	1,82	✓	
80	51,10	51,80	50,50	51,20	52,00	51,32	0,597	0,37	✓	
102	48,40	51,50	51,60	52,10	52,60	51,24	1,647	0,21	✓	
166	48,00	47,62	47,86	47,63	47,84	47,79	0,160	-6,53	√	
168	51,70	51,70	52,10	51,10	52,40	51,80	0,490	1,31	√	
182	51,60	51,60	52,00	51,80	52,00	51,80	0,200	1,31	~	
-										

NOTAS:

[máximo]

[mínimo

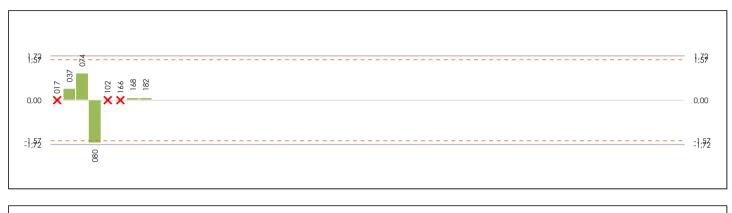
^{01 &}quot;X_{i,j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_{L1}" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma.

 $^{^{\}rm 04}$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación



DNT FRECUENCIA 4000 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

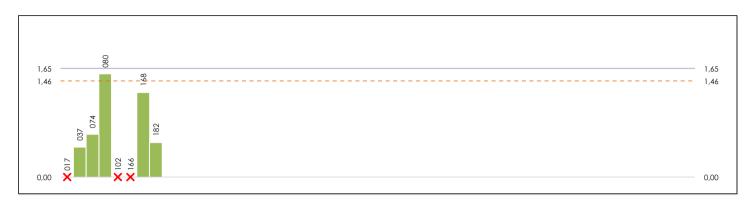
Apartado B.1. Gráfico de consistencia inter-laboratorios "h" de Mandel

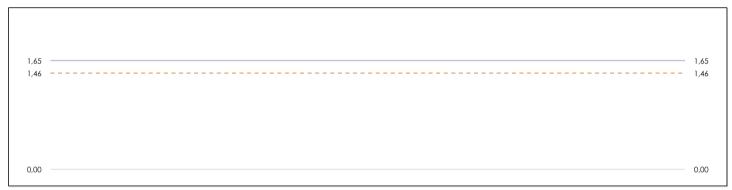
ANALISIS GRAFICO DE CONSISTENCIA INTER-LABORATORIOS

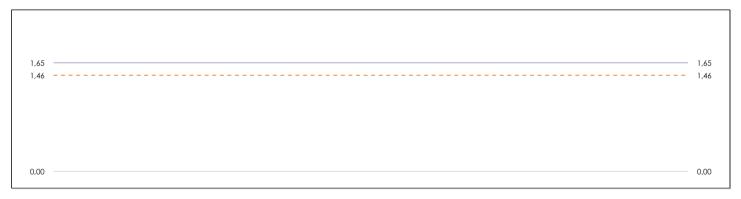
Análisis gráfico de consistencia inter-laboratorios "h" de Mandel. En él se representan las medias aritméticas inter-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación






DNT FRECUENCIA 4000 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.2. Gráfico de consistencia intra-laboratorios "k" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTRA-LABORATORIOS

Análisis gráfico de consistencia intra-laboratorios "k" de Mandel. En él se representan las medias aritméticas intra-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes y el número de ensayos efectuados).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 4000 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	h _i	k _i	C _i	G _{Sim Inf}	$G_{\text{Sim Sup}}$	G _{Dob Inf}	G _{Dob Sup}	Pasa B
17																Х
37	52,20	51,800	51,800	51,800	51,900	51,900	0,173	0,24	0,45	0,45					0,5015	
74	52,40	51,978	51,768	52,214	51,948	52,062	0,247	0,55	1,03	0,65			1,032		0,5015	<u> </u>
80	51,10	51,800	50,500	51,200	52,000	51,320	0,597	-0,88	-1,65*	1,57*	0,490	1,649	1,002	0,1142	0,0010	<u> </u>
102	48,40	51,500	51,600	52,100	52,600	51,240										X
166	48,00	47,624	47,859	47,630	47,841	47,790										X
168	51,70	51,700	52,100	51,100	52,400	51,800	0,490	0,05	0,09	1,28				0,1142		-
182	51,60	51,600	52,000	51,800	52,000	51,800	0,200	0,05	0,09	0,52				0,1142		√

NOTAS:

 $^{\rm 04}$ El código colorimétrico empleado para las celdas es:

[aberrante]

[anómalo]

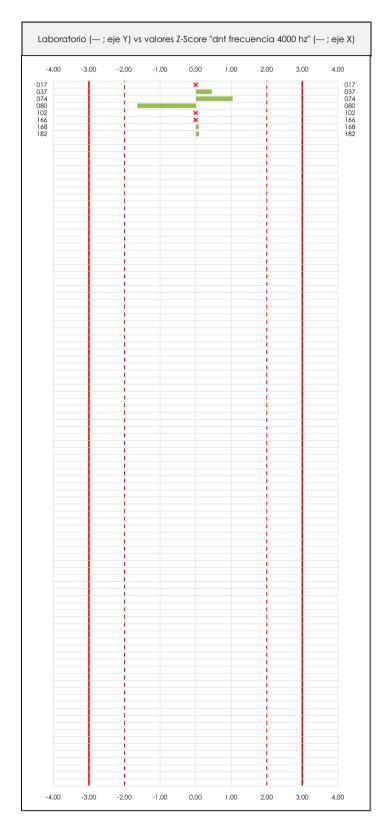
[máximo]

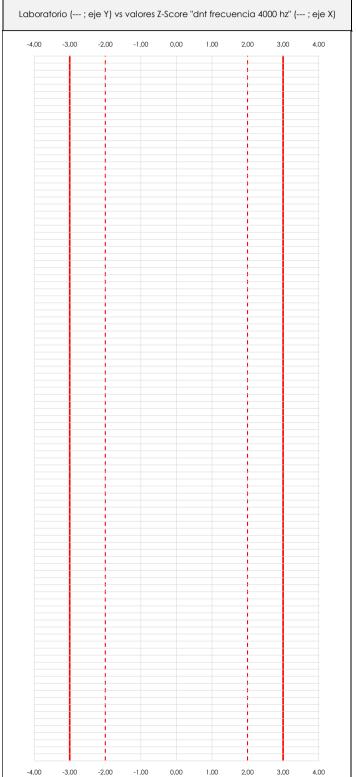
[mínimo]

^{01 &}quot;X_{i j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

^{03 &}quot;h_i y k_i", "C_i", "G_{sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.


Comité de infraestructuras para la Calidad de la Edificación



SACE Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 4000 HZ (DB) Análisis C. Evaluación Z-Score

Apartado C.1. Análisis gráfico Altman Z-Score

ANALISIS GRAFICO Z-SCORE

Diagrama Z-Score para los resultados aportados por los laboratorios. Estos se considerarán satisfactorios (S) si el valor absoluto del Z-Score es menor o igual a 2 unidades, dudoso si está comprendido entre 2 y 3 unidades e insatisfactorio si es mayor o igual a 3 unidades.

Los resultados satisfactorios quedan reflejados entre las dos líneas rojas discontinuas, líneas de referencia en la evaluación Z-Score.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 4000 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	Pasa A	Pasa B	Total	Causa	Iteración	Z-Score	Evaluación
17									Х	Х	Х	SD			
37	52,20	51,80	51,80	51,80	51,90	51,90	0,173	0,24	√	<u>√</u>	√			0,447	S
74	52,40	51,98	51,77	52,21	51,95	52,06	0,247	0,55	<u>√</u>					1,032	S
80	51,10	51,80	50,50	51,20	52,00	51,32	0,597	-0,88	<u> </u>	<u> </u>	<u> </u>			-1,649	S
102	48,40	51,50	51,60	52,10	52,60	51,24			<u> </u>	X	Х	AB	0		
166	48,00	47,62	47,86	47,63	47,84	47,79			<u> </u>	X	X	AB	0		
168	51,70	51,70	52,10	51,10	52,40	51,80	0,490	0,05	<u> </u>			7.0		0,085	S
182	51,60	51,60	52,00	51,80	52,00	51,80	0,200	0,05	<u> </u>	<u> </u>	<u> </u>			0,085	S
102	31,00	31,00	32,00	31,00	32,00	31,00	0,200	0,03						0,000	<u> </u>

NOTAS:

^{01 &}quot;X_{i,j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

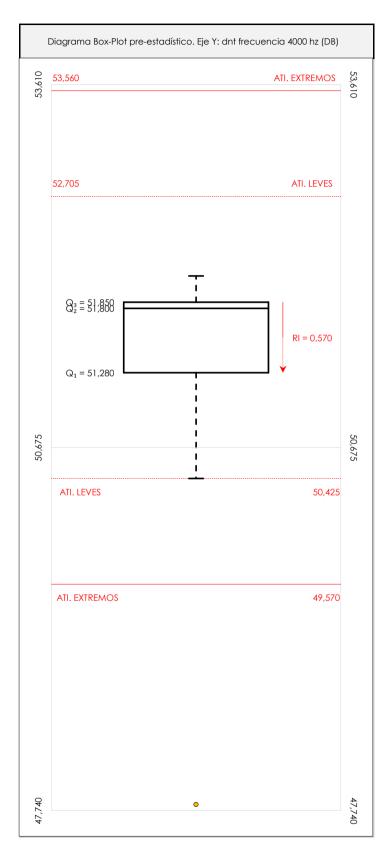
^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

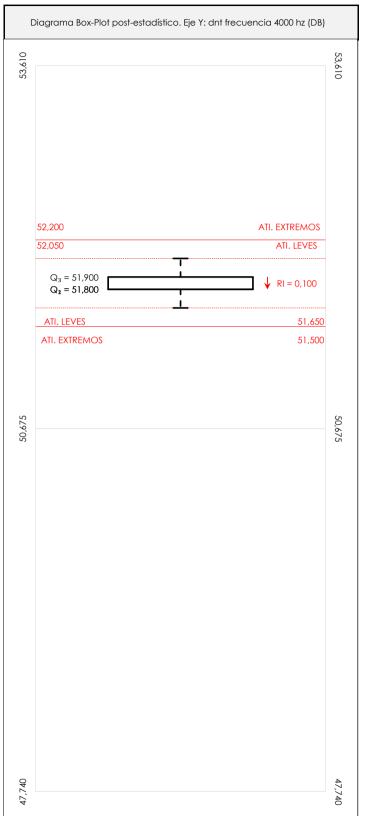
 $^{^{03}}$ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leqslant 2] [Dudoso (D) - si 2 < | ZS | \leqslant 3] [Insatisfactorio (I) - si | ZS | > 3].

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

CICE nité de infraestructuras par

Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 4000 HZ (DBA) Análisis D. Estudios post-estadisticos

Apartado D.3. Diagramas Box-Plot o de Caja y Bigotes

ANALISIS GRAFICO DE CAJA Y BIGOTES (ANTES Y DESPUES DE ANALISIS ESTADISTICO)

Diagramas de caja y bigotes (Box Plot) de las medias aritméticas de los resultados aportados por los laboratorios antes (diagrama de la izquierda. Este incluye valores aberrantes y anómalos) y después (diagrama de la derecha. No incluye los valores descartados a lo largo del estudio) de análisis estadístico.

En ambos se han representado: el primer cuartil (Q_1 ; 25% de los datos), el segundo cuartil o la mediana (Q_2 ; 50% de los datos), el tercer cuartil (Q_3 ; 75% de los datos), el rango intercuartílico (RI ; cuartil tres menos cuartil uno) y los límites de valores atípicos leves (f_3 y f_1 para el máximo y mínimo respectivamente ; líneas discontinuas de color rojo) y extremos (f_3 * y f_1 * para el máximo y mínimo respectivamente ; líneas continuas de color rojo).

Comité de infraestructuras para la Calidad de la Edificación

SACESubcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 4000 HZ (DB)

Conclusiones

Determinación de la repetibilidad y reproducibilidad

El análisis estadístico EILA20 para el ensayo "DNT FRECUENCIA 4000 HZ", ha contado con la participación de un total de 7 laboratorios, debiendo haber aportado cada uno de ellos, un total de 5 determinaciones individuales además de su valor medio.

Tras analizar los resultados podemos concluir que, para cumplir con los criterios estadísticos establecidos en el informe, un total de 2 laboratorios han sido apartados de la evaluación final: 1 en el Análisis Pre-Estadístico (por no cumplir el criterio de validación y/o el procedimiento de ejecución recogido en la norma de ensayo) y 1 en el Análisis Estadístico (por resultar anómalos o aberrantes en las técnicas gráficas de consistencia de Mandel y en los ensayos de detección de resultados numéricos de Cochran y Grubbs), al cabo de 2 iteraciones.

De cada uno de los análisis (pre-estadístico y estadístico), se obtienen las siguientes tablas:

TIPO DE ANALISIS			PRE-ES	TADISTIC	:0				ESTA	DISTICO		
Variables	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$
Valor Máximo (max ; %)	52,40	51,98	52,10	52,21	52,60	52,06	52,40	51,98	52,10	52,21	52,40	52,06
Valor Mínimo (min ; %)	48,00	47,62	47,86	47,63	47,84	47,79	51,10	51,60	50,50	51,10	51,90	51,32
Valor Promedio (M; %)	50,77	51,14	51,09	51,12	51,53	51,13	51,80	51,78	51,63	51,62	52,05	51,78
Desviación Típica (SDL ;)	1,81	1,56	1,52	1,60	1,65	1,50	0,52	0,14	0,65	0,46	0,20	0,28
Coef. Variación (CV ;)	0,04	0,03	0,03	0,03	0,03	0,03	0,01	0,00	0,01	0,01	0,00	0,01
VARIABLES	S_r^2	r		S_L^2	S_R^2	R	S_r^2	r		S _L ²	S_R^{2}	R
Valor Calculado	0,495	1,95	51 2	2,162	2,657	4,518	0,146	1,05	58 0	,047	0,193	1,218
Valor Referencia												

Asimismo, acompañando a éstas tablas y dependiendo del análisis que se esté llevando a cabo, se introducen los indicadores estadísticos "h y k" de Mandel y los valores críticos "C" de Cochran y " G_{Sim} y G_{Dob} " de Grubbs, todos ellos adimensionales, obtenidos de las tablas 4, 5, 6 y 7 de la norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios y del número de ensayos efectuados por cada uno de ellos:

TIPO DE ANALISIS		PRE	-ESTADISTI	со			Е	STADISTIC	5	
VARIABLES	h	k	С	G_{sim}	G_Dob	h	k	С	G_{sim}	G_{Dob}
Nivel de Significación 1%	1,72	1,65	0,508	1,764	0,0018	1,72	1,65	0,633	1,764	0,0018
Nivel de Significación 5%	1,57	1,46	0,431	1,715	0,0090	1,57	1,46	0,544	1,715	0,0090

Con los resultados de los laboratorios, que tras los dos análisis estadísticos son evaluados por Z-Score, se han obtenido: 5 resultados satisfactorios, 0 resultados dudosos y 0 resultados insatisfactorios.

Respecto a los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística recogida en la ISO 17025, sobre las dispersiones de los resultados individuales y su media, en forma de varianzas o desviaciones estándar, también conocida como ANOVA (siglas de analisys of varience).

Sabiendo que una varianza es la suma de cuadrados dividida por un número, que se llama grados de libertad, que depende del número de participantes menos 1, se puede decir que la imprecisión del ensayo se descompone en dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad (variabilidad intralaboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad debida al cambio de laboratorio).

Las condiciones de repetibilidad de este ensayo son: mismo laborante, mismo laboratorio y mismo equipo de medición utilizado dentro de un período de tiempo corto. Por ende, las condiciones de reproducibilidad para la misma muestra y ensayo, cambian en: el laborante, el laboratorio, el equipo y las condiciones de uso y tiempo.

Comité de infraestructuras para la Calidad de la Edificación

SACE

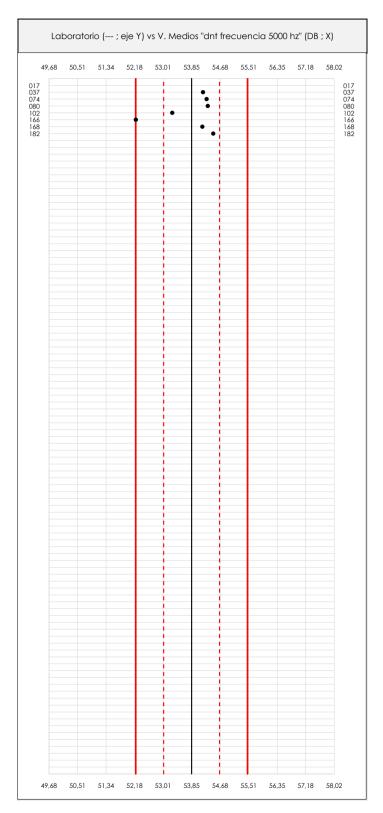
Subcomisión Administrativa para la Calidad de la Edificación

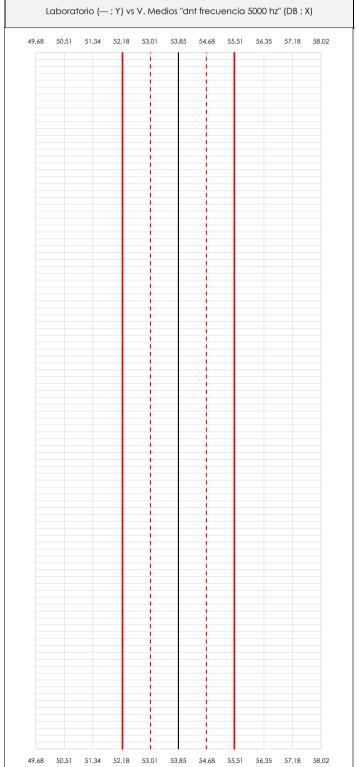
ANÁLISIS ESTADÍSTICO ACÚSTICA

DNT FRECUENCIA 5000 HZ

CICE le infraestructuras para la

Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 5000 HZ (DB) Análisis A. Estudio pre-estadístico

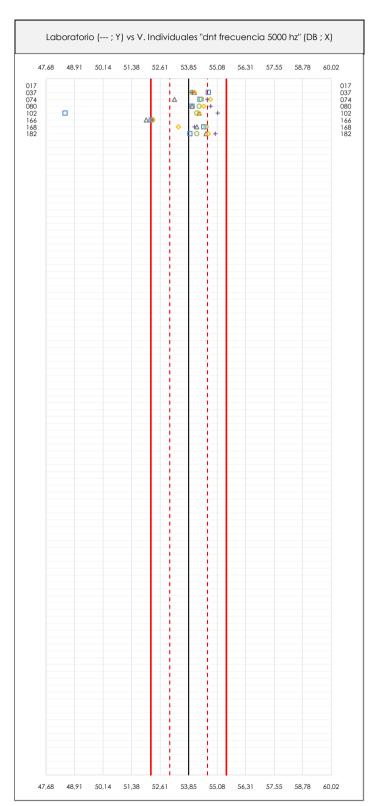
Apartado A.1. Gráficos de dispersión de valores medios

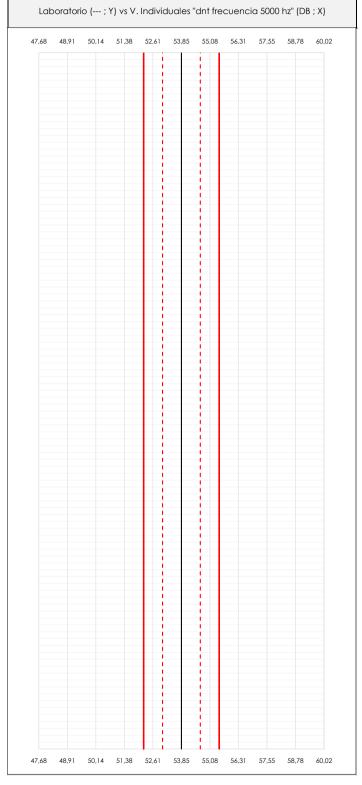
ANALISIS GRAFICO DE DISPERSION MEDIA (ANTES DE ANALISIS ESTADISTICO)

Dispersión de las medias aritméticas intra-laboratorios respecto de la media aritmética inter-laboratorios (53,85 ; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (54,66/53,03 ; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (55,48/52,21 ; líneas rojas de trazo continuo).

En el eje Y (adimensional) quedan reflejados los códigos de los laboratorios participantes y en el eje X (las unidades son las mismas que las del ensayo que se está analizando) las medias aritméticas intra-laboratorios representadas por punto de color negro.

CICE Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 5000 HZ (DB) Análisis A. Estudio pre-estadístico

Apartado A.2. Gráficos de dispersión de valores individuales

ANALISIS GRAFICOS DE DISPERSION INDIVIDUAL (ANTES DE ANALISIS ESTADISTICO)

Dispersión de los valores individuales respecto de la media aritmética inter-laboratorios (53,85; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (54,66/53,03; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (55,48/52,21; líneas rojas de trazo continuo).

En el eje Y (adimensional) queda reflejado el código del laboratorio participante y en el eje X (las unidades son las de los resultados del ensayo que se está analizando) los resultados individuales: el primero (X_{i,1}) se representa con un cuadrado azul, el segundo (X_{i,2}) con un círculo verde, el tercero (X_{i,3}) con un triángulo grís y el cuarto (X_{i,4}) con un rombo amarillo.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 5000 HZ (DB) Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{Li}	D _{i arit %}	Pasa A	Observaciones
17									X	No realiza el ensayo para esta frecuencia
37	54,70	54,00	54,10	54,10	54,00	54,18	0,295	0,62	✓	
74	54,34	54,40	53,24	54,79	54,65	54,28	0,614	0,82	✓	
80	54,00	54,30	54,00	54,50	54,80	54,32	0,342	0,88	✓	
102	48,50	54,20	54,30	54,30	55,10	53,28	2,697	-1,05	✓	
166	52,23	52,28	52,01	52,30	52,26	52,22	0,118	-3,03	✓	
168	54,50	54,60	54,20	53,40	54,10	54,16	0,472	0,58	√	
182	53,90	54,20	54,60	54,70	55,00	54,48	0,432	1,18	✓	

NOTAS:

 $^{\rm 04}$ El código colorimétrico empleado para las celdas es:

[máximo]

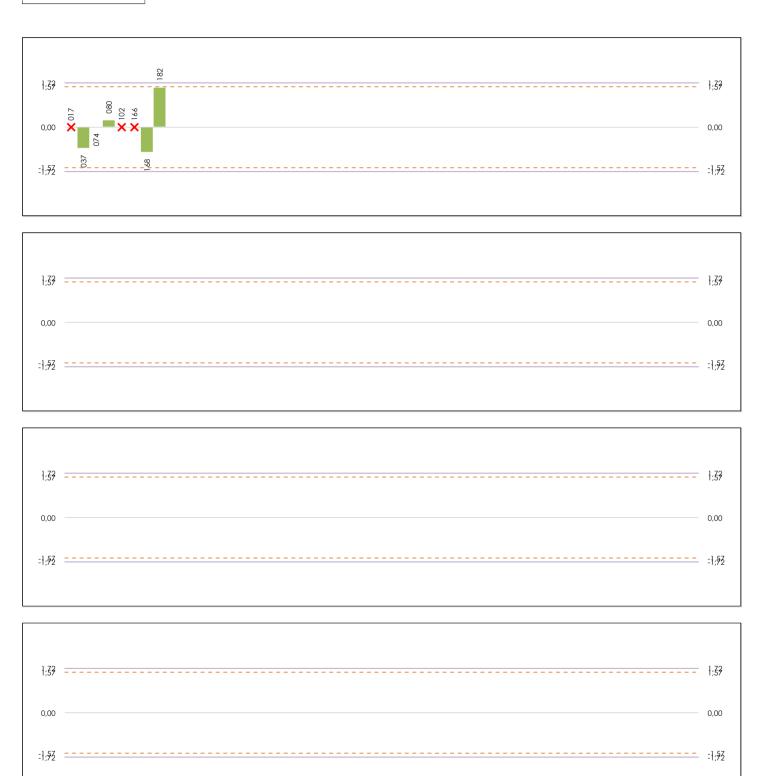
[mínimo

^{01 &}quot;X_{i j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_{L1}" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma.

Comité de infraestructuras para la Calidad de la Edificación



DNT FRECUENCIA 5000 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

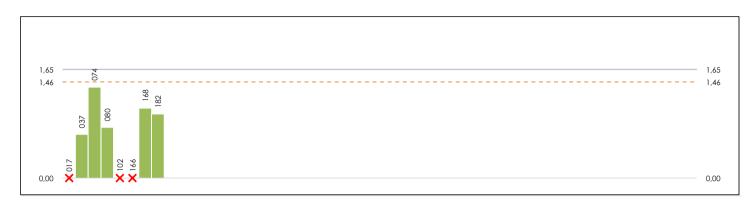
Apartado B.1. Gráfico de consistencia inter-laboratorios "h" de Mandel

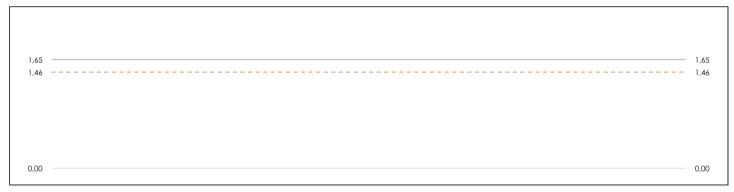
ANALISIS GRAFICO DE CONSISTENCIA INTER-LABORATORIOS

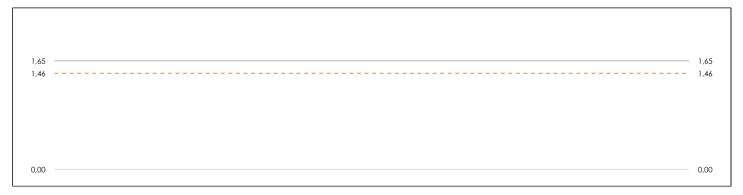
Análisis gráfico de consistencia inter-laboratorios "h" de Mandel. En él se representan las medias aritméticas inter-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación






DNT FRECUENCIA 5000 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.2. Gráfico de consistencia intra-laboratorios "k" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTRA-LABORATORIOS

Análisis gráfico de consistencia intra-laboratorios "k" de Mandel. En él se representan las medias aritméticas intra-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes y el número de ensayos efectuados).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 5000 HZ (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S_{Li}	D _{i arit %}	h _i	k _i	C _i	$G_{\text{Sim Inf}}$	$G_{\text{Sim Sup}}$	$G_{\text{Dob Inf}}$	G_{DobSup}	Pasa B
17																Х
37	54,70	54,000	54,100	54,100	54,000	54,180	0,295	-0,19	-0,82	0,66				0,3285		
74	54,34	54,402	53,237	54,792	54,654	54,285	0,614	0,00	0,00	1,38				-,		√
80	54,00	54,300	54,000	54,500	54,800	54,320	0,342	0,06	0,27	0,77					0,1364	√
102	48,50	54,200	54,300	54,300	55,100	53,280										Х
166	52,23	52,285	52,012	52,297	52,261	52,217										Х
168	54,50	54,600	54,200	53,400	54,100	54,160	0,472	-0,23	-0,97	1,06		0,974		0,3285		✓
182	53,90	54,200	54,600	54,700	55,000	54,480	0,432	0,36	1,52	0,97			1,520		0,1364	✓

NOTAS:

 $^{\rm 04}$ El código colorimétrico empleado para las celdas es:

[aberrante]

[anómalo]

[máximo]

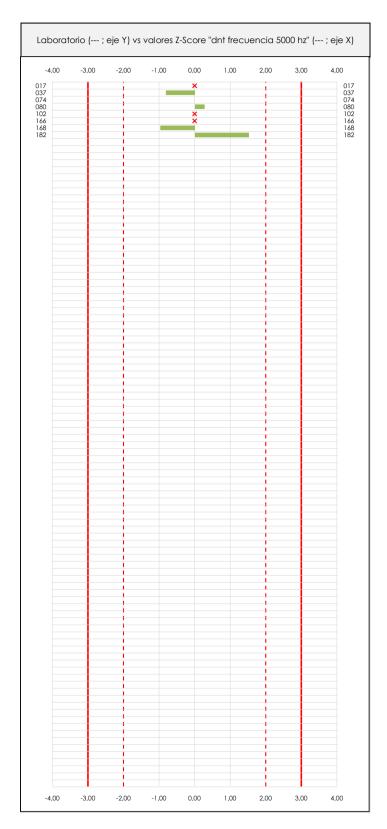
[mínimo]

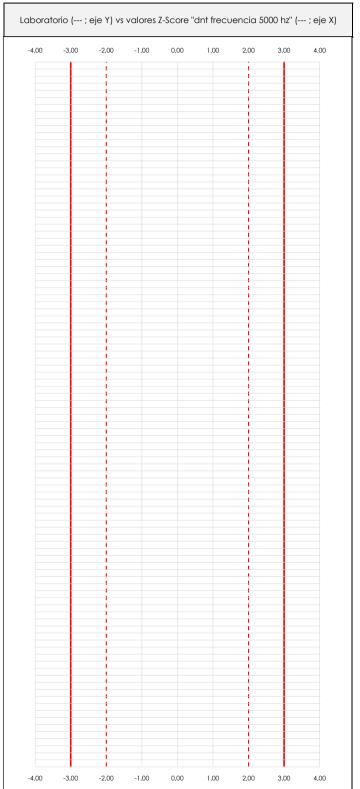
^{01 &}quot;X_{i j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

^{03 &}quot;h_i y k_i", "C_i", "G_{sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.

Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 5000 HZ (DB) Análisis C. Evaluación Z-Score

Apartado C.1. Análisis gráfico Altman Z-Score

ANALISIS GRAFICO Z-SCORE

Diagrama Z-Score para los resultados aportados por los laboratorios. Estos se considerarán satisfactorios (S) si el valor absoluto del Z-Score es menor o igual a 2 unidades, dudoso si está comprendido entre 2 y 3 unidades e insatisfactorio si es mayor o igual a 3 unidades.

Los resultados satisfactorios quedan reflejados entre las dos líneas rojas discontinuas, líneas de referencia en la evaluación Z-Score.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 5000 HZ (DB)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	Pasa A	Pasa B	Total	Causa	Iteración	Z-Score	Evaluación
17									X	Х	Х	SD			
37	54,70	54,00	54,10	54,10	54,00	54,18	0,295	-0,19	√	√	√			-0,818	S
74	54,34	54,40	53,24	54,79	54,65	54,28	0,614	0,00	√	√	√			-0,001	S
80	54,00	54,30	54,00	54,50	54,80	54,32	0,342	0,06	√	√	√			0,273	S
102	48,50	54,20	54,30	54,30	55,10	53,28			√	Х	Х	AB	0		
166	52,23	52,28	52,01	52,30	52,26	52,22			√	X	X	AB	0		
168	54,50	54,60	54,20	53,40	54,10	54,16	0,472	-0,23	√	V	√			-0,974	S
182	53,90	54,20	54,60	54,70	55,00	54,48	0,432	0,36	√	√	√			1,520	S

NOTAS:

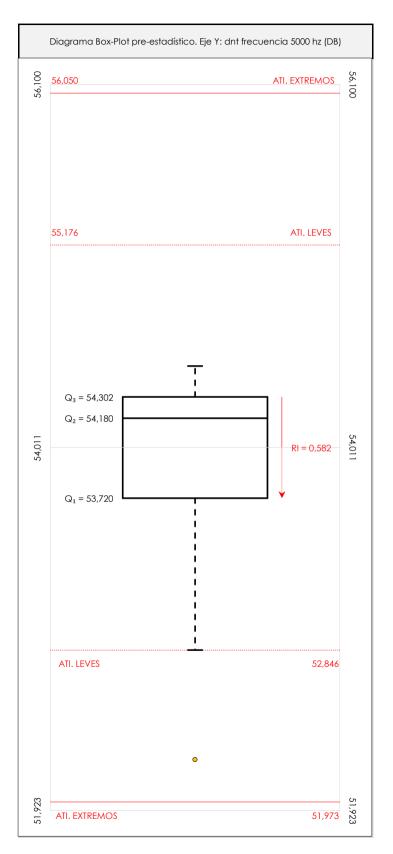
^{01 &}quot;X_{i,j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

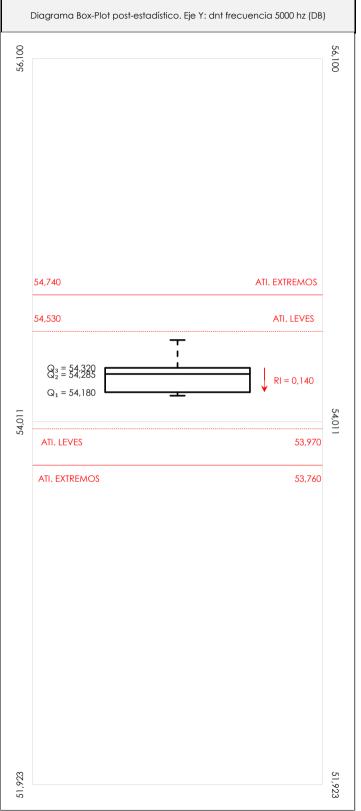
^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

 $^{^{03}}$ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leqslant 2] [Dudoso (D) - si 2 < | ZS | \leqslant 3] [Insatisfactorio (I) - si | ZS | > 3].

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 5000 HZ (DB)

Análisis D. Estudios post-estadisticos

Apartado D.3. Diagramas Box-Plot o de Caja y Bigotes

ANALISIS GRAFICO DE CAJA Y BIGOTES (ANTES Y DESPUES DE ANALISIS ESTADISTICO)

Diagramas de caja y bigotes (Box Plot) de las medias aritméticas de los resultados aportados por los laboratorios antes (diagrama de la izquierda. Este incluye valores aberrantes y anómalos) y después (diagrama de la derecha. No incluye los valores descartados a lo largo del estudio) de análisis estadístico.

En ambos se han representado: el primer cuartil (Q_1 ; 25% de los datos), el segundo cuartil o la mediana (Q_2 ; 50% de los datos), el tercer cuartil (Q_3 ; 75% de los datos), el rango intercuartílico (RI ; cuartil tres menos cuartil uno) y los límites de valores atípicos leves (f_3 y f_1 para el máximo y mínimo respectivamente ; líneas discontinuas de color rojo) y extremos (f_3 * y f_1 * para el máximo y mínimo respectivamente ; líneas continuas de color rojo).

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNT FRECUENCIA 5000 HZ (DB)

Conclusiones

Determinación de la repetibilidad y reproducibilidad

El análisis estadístico EILA20 para el ensayo "DNT FRECUENCIA 5000 HZ", ha contado con la participación de un total de 7 laboratorios, debiendo haber aportado cada uno de ellos, un total de 5 determinaciones individuales además de su valor medio.

Tras analizar los resultados podemos concluir que, para cumplir con los criterios estadísticos establecidos en el informe, un total de 2 laboratorios han sido apartados de la evaluación final: 1 en el Análisis Pre-Estadístico (por no cumplir el criterio de validación y/o el procedimiento de ejecución recogido en la norma de ensayo) y 1 en el Análisis Estadístico (por resultar anómalos o aberrantes en las técnicas gráficas de consistencia de Mandel y en los ensayos de detección de resultados numéricos de Cochran y Grubbs), al cabo de 2 iteraciones.

De cada uno de los análisis (pre-estadístico y estadístico), se obtienen las siguientes tablas:

TIPO DE ANALISIS			PRE-ES	TADISTIC	:0				ESTA	DISTICO		
Variables	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$
Valor Máximo (max ; %)	54,70	54,60	54,60	54,79	55,10	54,48	54,70	54,60	54,60	54,79	55,00	54,48
Valor Mínimo (min ; %)	48,50	52,28	52,01	52,30	52,26	52,22	53,90	54,00	53,24	53,40	54,00	54,16
Valor Promedio (M; %)	53,17	54,00	53,78	54,01	54,27	53,85	54,29	54,30	54,03	54,30	54,51	54,28
Desviación Típica (SDL ;)	2,21	0,78	0,88	0,89	0,98	0,82	0,34	0,22	0,50	0,57	0,44	0,13
Coef. Variación (CV ;)	0,04	0,01	0,02	0,02	0,02	0,02	0,01	0,00	0,01	0,01	0,01	0,00
VARIABLES	S_r^2	r		$S_L^{\ 2}$	S_R^2	R	S_r^2	r		S _L ²	S_R^{2}	R
Valor Calculado	1,182	3,01	14 (),431	1,613	3,521	0,198	1,23	34 -0	,023	0,175	1,160
Valor Referencia												

Asimismo, acompañando a éstas tablas y dependiendo del análisis que se esté llevando a cabo, se introducen los indicadores estadísticos "h y k" de Mandel y los valores críticos "C" de Cochran y " G_{Sim} y G_{Dob} " de Grubbs, todos ellos adimensionales, obtenidos de las tablas 4, 5, 6 y 7 de la norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios y del número de ensayos efectuados por cada uno de ellos:

TIPO DE ANALISIS		PRE	-ESTADISTI	со			E	STADISTIC	5	
VARIABLES	h	k	С	G_{sim}	G _{Dob}	h	k	С	G_{sim}	G_{Dob}
Nivel de Significación 1%	1,72	1,65	0,508	1,764	0,0018	1,72	1,65	0,633	1,764	0,0018
Nivel de Significación 5%	1,57	1,46	0,431	1,715	0,0090	1,57	1,46	0,544	1,715	0,0090

Con los resultados de los laboratorios, que tras los dos análisis estadísticos son evaluados por Z-Score, se han obtenido: 5 resultados satisfactorios, 0 resultados dudosos y 0 resultados insatisfactorios.

Respecto a los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística recogida en la ISO 17025, sobre las dispersiones de los resultados individuales y su media, en forma de varianzas o desviaciones estándar, también conocida como ANOVA (siglas de analisys of varience).

Sabiendo que una varianza es la suma de cuadrados dividida por un número, que se llama grados de libertad, que depende del número de participantes menos 1, se puede decir que la imprecisión del ensayo se descompone en dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad (variabilidad intralaboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad debida al cambio de laboratorio).

Las condiciones de repetibilidad de este ensayo son: mismo laborante, mismo laboratorio y mismo equipo de medición utilizado dentro de un período de tiempo corto. Por ende, las condiciones de reproducibilidad para la misma muestra y ensayo, cambian en: el laborante, el laboratorio, el equipo y las condiciones de uso y tiempo.

Comité de infraestructuras para la Calidad de la Edificación

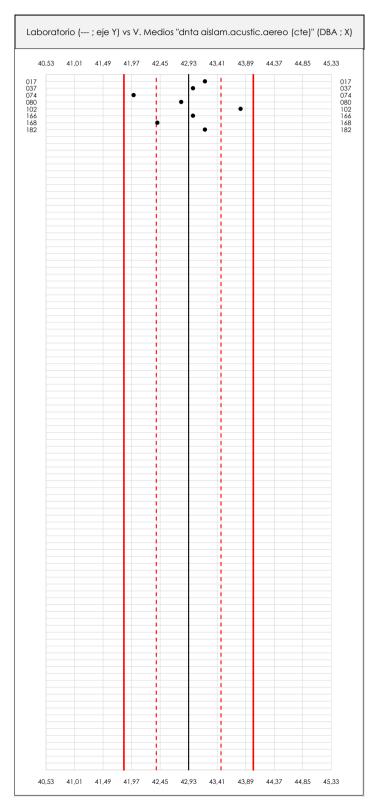
SACE

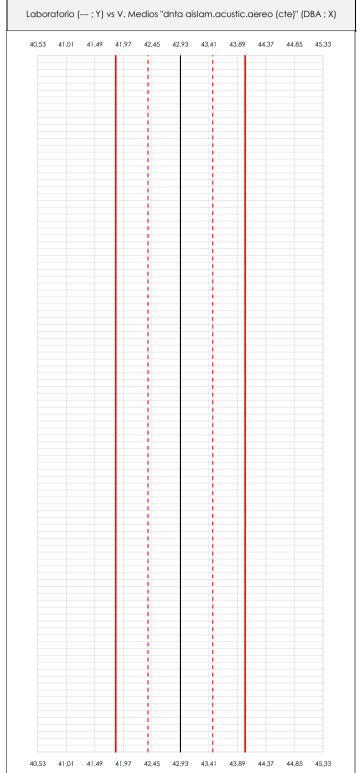
Subcomisión Administrativa para la Calidad de la Edificación

ANÁLISIS ESTADÍSTICO ACÚSTICA

DNTA AISLAM.ACUSTIC.AEREO (CTE)

Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNTA AISLAM.ACUSTIC.AEREO (CTE) (DBA) Análisis A. Estudio pre-estadístico

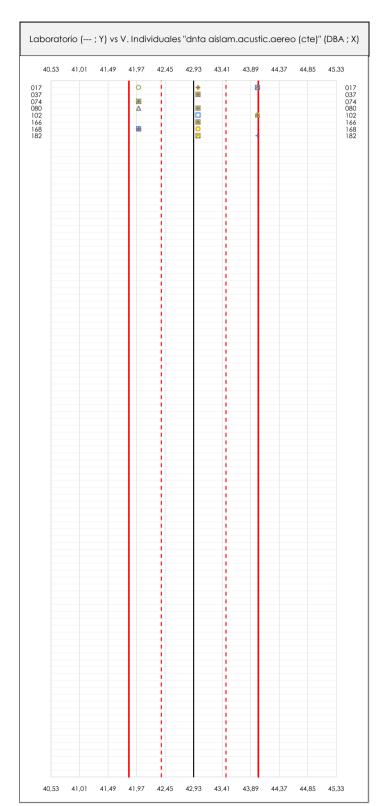
Apartado A.1. Gráficos de dispersión de valores medios

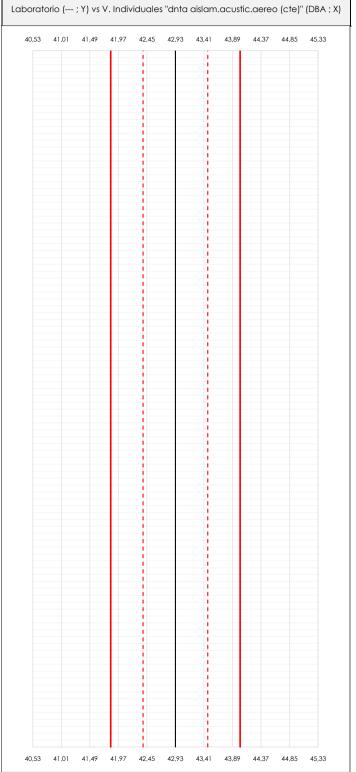
ANALISIS GRAFICO DE DISPERSION MEDIA (ANTES DE ANALISIS ESTADISTICO)

Dispersión de las medias aritméticas intra-laboratorios respecto de la media aritmética inter-laboratorios (42,93; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (43,47/42,38; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (44,01/41,84; líneas rojas de trazo continuo).

En el eje Y (adimensional) quedan reflejados los códigos de los laboratorios participantes y en el eje X (las unidades son las mismas que las del ensayo que se está analizando) las medias aritméticas intra-laboratorios representadas por punto de color negro.

Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNTA AISLAM.ACUSTIC.AEREO (CTE) (DBA) Análisis A. Estudio pre-estadístico

Apartado A.2. Gráficos de dispersión de valores individuales

ANALISIS GRAFICOS DE DISPERSION INDIVIDUAL (ANTES DE ANALISIS ESTADISTICO)

Dispersión de los valores individuales respecto de la media aritmética inter-laboratorios (42,93; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (43,47/42,38; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (44,01/41,84; líneas rojas de trazo continuo).

En el eje Y (adimensional) queda reflejado el código del laboratorio participante y en el eje X (las unidades son las de los resultados del ensayo que se está analizando) los resultados individuales: el primero (X_{i,1}) se representa con un cuadrado azul, el segundo (X_{i,2}) con un círculo verde, el tercero (X_{i,3}) con un triángulo grís y el cuarto (X_{i,4}) con un rombo amarillo.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNTA AISLAM.ACUSTIC.AEREO (CTE) (DBA) Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	Pasa A	Observaciones
17	44,00	42,00	44,00	43,00	43,00	43,20	0,837	0,64	✓	
37	43,00	43,00	43,00	43,00	43,00	43,00	0,000	0,17	✓	
74	42,00	42,00	42,00	42,00	42,00	42,00	0,000	-2,15	✓	
80	43,00	43,00	42,00	43,00	43,00	42,80	0,447	-0,29	✓	
102	43,00	44,00	44,00	44,00	44,00	43,80	0,447	2,04	✓	
166	43,00	43,00	43,00	43,00	43,00	43,00	0,000	0,17	✓	
168	42,00	43,00	42,00	43,00	42,00	42,40	0,548	-1,22	✓	
182	43,00	43,00	43,00	43,00	44,00	43,20	0,447	0,64	✓	

NOTAS:

 $^{\rm 04}$ El código colorimétrico empleado para las celdas es:

[máximo]

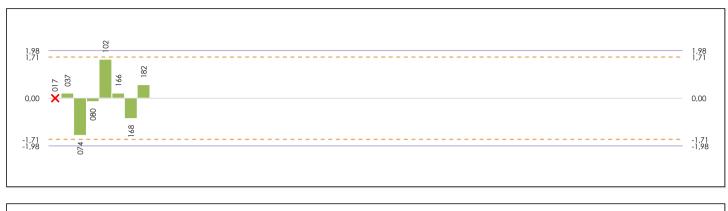
[mínimo

^{01 &}quot;X_{i j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_{L1}" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma.

CICE Comité de infraestructuras para la Calidad de la Edificación



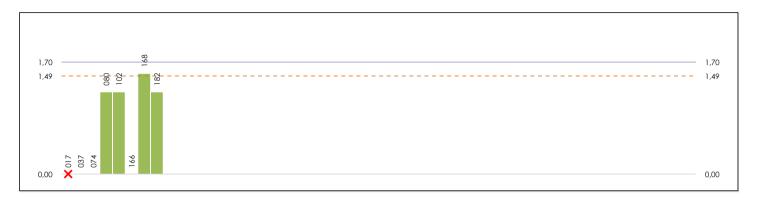
DNTA AISLAM.ACUSTIC.AEREO (CTE) (DBA) Análisis B. Mandel, Cochran y Grubbs

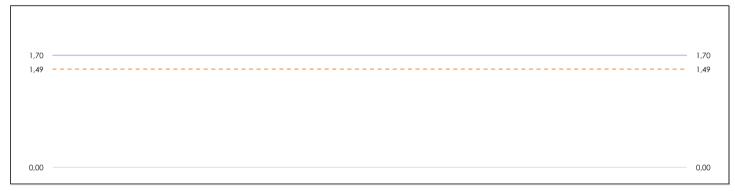
Apartado B.1. Gráfico de consistencia inter-laboratorios "h" de Mandel

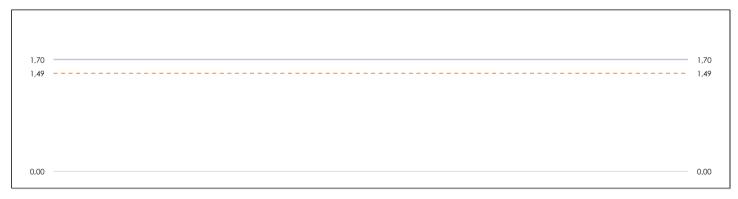
ANALISIS GRAFICO DE CONSISTENCIA INTER-LABORATORIOS

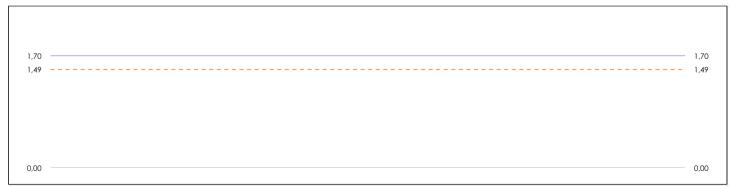
Análisis gráfico de consistencia inter-laboratorios "h" de Mandel. En él se representan las medias aritméticas inter-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.


CICE Comité de infraestructuras para la Calidad de la Edificación


SACESubcomisión Administrativa para la Calidad de la Edificación




DNTA AISLAM.ACUSTIC.AEREO (CTE) (DBA) Análisis B. Mandel, Cochran y Grubbs

Apartado B.2. Gráfico de consistencia intra-laboratorios "k" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTRA-LABORATORIOS

Análisis gráfico de consistencia intra-laboratorios "k" de Mandel. En él se representan las medias aritméticas intra-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes y el número de ensayos efectuados).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNTA AISLAM.ACUSTIC.AEREO (CTE) (DBA)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i2}	X _{i3}	X _{i 4}	X _{i 5}	₹i arit	S _{Li}	D _{i arit %}	h _i	k _i	Ci	G _{Sim Inf}	G _{Sim Sup}	G _{Dob Inf}	G _{Dob Sup}	Pasa B
17	44,00	42,000	44,000	43,000	43,000	43,200										X
	43,00	43,000 42,000	43,000 42,000	43,000 42,000	43,000 42,000	43,000 42,000	0,000	0,27 -2,07	0,20 -1,54	0,00		1,539		0,2977		√
80	42,00 43,00	43,000	42,000	43,000	43,000	42,800	0,000	-0,20	-0,15	0,00		1,339		0,2977		
102	43,00	44,000	44,000	44,000	44,000	43,800	0,447	2,13	1,59	1,25			1,588		0,3782	-
166	43,00	43,000	43,000	43,000	43,000	43,000	0,000	0,27	0,20	0,00			1,000		0,0702	<u> </u>
168	42,00	43,000	42,000	43,000	42,000	42,400	0,548	-1,13	-0,84	1,53*	0,333			0,2977		-
182	43,00	43,000	43,000	43,000	44,000	43,200	0,447	0,73	0,55	1,25					0,3782	√

NOTAS:

 $^{\rm 04}$ El código colorimétrico empleado para las celdas es:

[aberrante]

[anómalo]

[máximo]

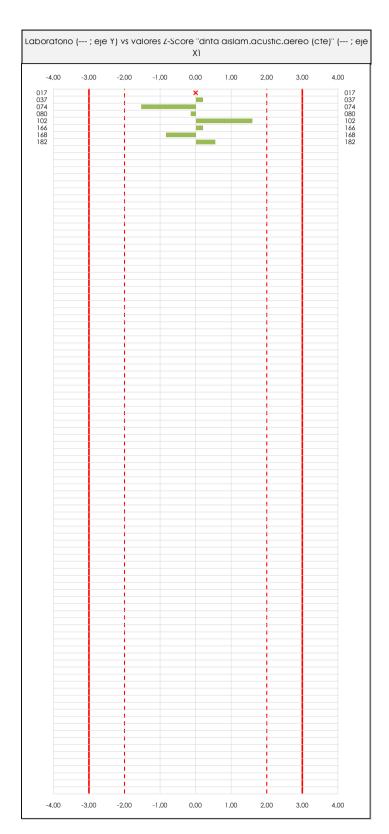
[mínimo]

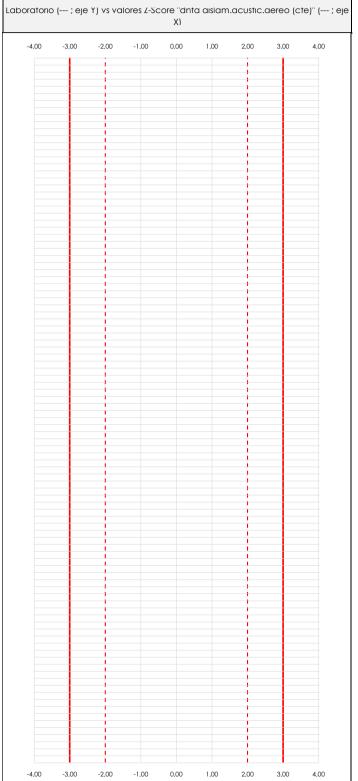
^{01 &}quot;X_{i j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

^{03 &}quot;h_i y k_i", "C_i", "G_{sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.

Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNTA AISLAM.ACUSTIC.AEREO (CTE) (DBA) Análisis C. Evaluación Z-Score

Apartado C.1. Análisis gráfico Altman Z-Score

ANALISIS GRAFICO Z-SCORE

Diagrama Z-Score para los resultados aportados por los laboratorios. Estos se considerarán satisfactorios (S) si el valor absoluto del Z-Score es menor o igual a 2 unidades, dudoso si está comprendido entre 2 y 3 unidades e insatisfactorio si es mayor o igual a 3 unidades.

Los resultados satisfactorios quedan reflejados entre las dos líneas rojas discontinuas, líneas de referencia en la evaluación Z-Score.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNTA AISLAM.ACUSTIC.AEREO (CTE) (DBA)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	Pasa A	Pasa B	Total	Causa	Iteración	Z-Score	Evaluación
17	44,00	42,00	44,00	43,00	43,00	43,20			√	Х	Х	AN	0		
37	43,00	43,00	43,00	43,00	43,00	43,00	0,000	0,27	√	√	✓			0,199	S
74	42,00	42,00	42,00	42,00	42,00	42,00	0,000	-2,07	✓	✓	✓			-1,539	S
80	43,00	43,00	42,00	43,00	43,00	42,80	0,447	-0,20	√	✓	✓			-0,149	S
102	43,00	44,00	44,00	44,00	44,00	43,80	0,447	2,13	√	✓	✓			1,588	S
166	43,00	43,00	43,00	43,00	43,00	43,00	0,000	0,27	√	✓	✓			0,199	S
168	42,00	43,00	42,00	43,00	42,00	42,40	0,548	-1,13	✓	✓	✓			-0,844	S
182	43,00	43,00	43,00	43,00	44,00	43,20	0,447	0,73	✓	✓	√			0,546	S

NOTAS:

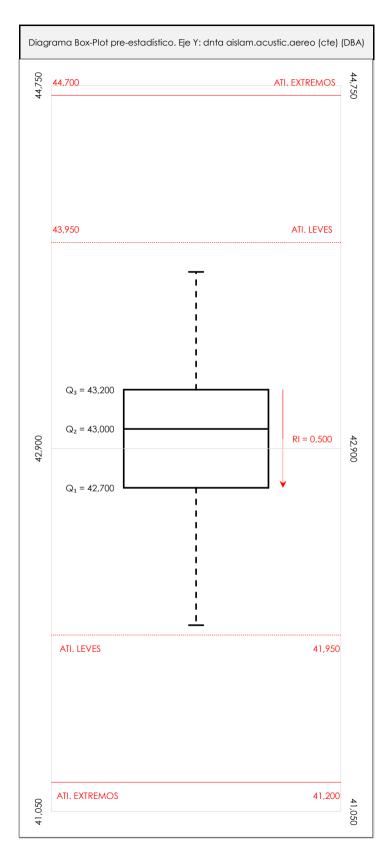
^{01 &}quot;X_{i,j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

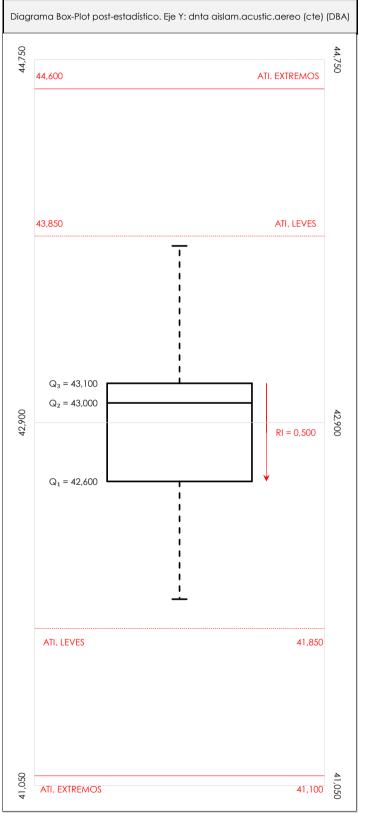
^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

 $^{^{03}}$ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leqslant 2] [Dudoso (D) - si 2 < | ZS | \leqslant 3] [Insatisfactorio (I) - si | ZS | > 3].

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNTA AISLAM.ACUSTIC.AEREO (CTE) (DBA)

Análisis D. Estudios post-estadisticos

Apartado D.3. Diagramas Box-Plot o de Caja y Bigotes

ANALISIS GRAFICO DE CAJA Y BIGOTES (ANTES Y DESPUES DE ANALISIS ESTADISTICO)

Diagramas de caja y bigotes (Box Plot) de las medias aritméticas de los resultados aportados por los laboratorios <u>antes</u> (diagrama de la izquierda. Este incluye valores aberrantes y anómalos) y <u>después</u> (diagrama de la derecha. No incluye los valores descartados a lo largo del estudio) de análisis estadístico.

En ambos se han representado: el primer cuartil (Q_1 ; 25% de los datos), el segundo cuartil o la mediana (Q_2 ; 50% de los datos), el tercer cuartil (Q_3 ; 75% de los datos), el rango intercuartílico (RI ; cuartil tres menos cuartil uno) y los límites de valores atípicos leves (f_3 y f_1 para el máximo y mínimo respectivamente ; líneas discontinuas de color rojo) y extremos (f_3 * y f_1 * para el máximo y mínimo respectivamente ; líneas continuas de color rojo).

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNTA AISLAM.ACUSTIC.AEREO (CTE) (DB)

Conclusiones

Determinación de la repetibilidad y reproducibilidad

El análisis estadístico ElLA20 para el ensayo "DNTA AISLAM.ACUSTIC.AEREO (CTE)", ha contado con la participación de un total de 8 laboratorios, debiendo haber aportado cada uno de ellos, un total de 5 determinaciones individuales además de su valor medio.

Tras analizar los resultados podemos concluir que, para cumplir con los criterios estadísticos establecidos en el informe, un total de 1 laboratorios han sido apartados de la evaluación final: 0 en el Análisis Pre-Estadístico (por no cumplir el criterio de validación y/o el procedimiento de ejecución recogido en la norma de ensayo) y 1 en el Análisis Estadístico (por resultar anómalos o aberrantes en las técnicas gráficas de consistencia de Mandel y en los ensayos de detección de resultados numéricos de Cochran y Grubbs), al cabo de 2 iteraciones.

De cada uno de los análisis (pre-estadístico y estadístico), se obtienen las siguientes tablas:

TIPO DE ANALISIS			PRE-ES	TADISTIC	:0		ESTADISTICO						
Variables	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$	
Valor Máximo (max ; %)	44,00	44,00	44,00	44,00	44,00	43,80	43,00	44,00	44,00	44,00	44,00	43,80	
Valor Mínimo (min ; %)	42,00	42,00	42,00	42,00	42,00	42,00	42,00	42,00	42,00	42,00	42,00	42,00	
Valor Promedio (M; %)	42,88	42,88	42,88	43,00	43,00	42,93	42,71	43,00	42,71	43,00	43,00	42,89	
Desviación Típica (SDL ;)	0,64	0,64	0,83	0,53	0,76	0,54	0,49	0,58	0,76	0,58	0,82	0,58	
Coef. Variación (CV ;)	0,01	0,01	0,02	0,01	0,02	0,01	0,01	0,01	0,02	0,01	0,02	0,01	
VARIABLES	S_r^2	r		$S_L^{\ 2}$	S_R^{2}	R	S_r^2	r		S_L^2	$S_R^{\ 2}$	R	
Valor Calculado	0,200	1,24	10 (),256	0,456	1,873	0,129	0,99	94 0	,306	0,434	1,827	
Valor Referencia													

Asimismo, acompañando a éstas tablas y dependiendo del análisis que se esté llevando a cabo, se introducen los indicadores estadísticos "h y k" de Mandel y los valores críticos "C" de Cochran y " G_{Sim} y G_{Dob} " de Grubbs, todos ellos adimensionales, obtenidos de las tablas 4, 5, 6 y 7 de la norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios y del número de ensayos efectuados por cada uno de ellos:

TIPO DE ANALISIS		PRE	-ESTADISTI	со		ESTADISTICO						
VARIABLES	h	k	С	G_{sim}	G_Dob	h	k	С	G_{sim}	G_{Dob}		
Nivel de Significación 1%	1,98	1,70	0,463	2,139	0,0308	1,98	1,70	0,508	2,139	0,0308		
Nivel de Significación 5%	1,71	1,49	0,391	2,020	0,0708	1,71	1,49	0,431	2,020	0,0708		

Con los resultados de los laboratorios, que tras los dos análisis estadísticos son evaluados por Z-Score, se han obtenido: 7 resultados satisfactorios, 0 resultados dudosos y 0 resultados insatisfactorios.

Respecto a los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística recogida en la ISO 17025, sobre las dispersiones de los resultados individuales y su media, en forma de varianzas o desviaciones estándar, también conocida como ANOVA (siglas de analisys of varience).

Sabiendo que una varianza es la suma de cuadrados dividida por un número, que se llama grados de libertad, que depende del número de participantes menos 1, se puede decir que la imprecisión del ensayo se descompone en dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad (variabilidad intralaboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad debida al cambio de laboratorio).

Las condiciones de repetibilidad de este ensayo son: mismo laborante, mismo laboratorio y mismo equipo de medición utilizado dentro de un período de tiempo corto. Por ende, las condiciones de reproducibilidad para la misma muestra y ensayo, cambian en: el laborante, el laboratorio, el equipo y las condiciones de uso y tiempo.

Comité de infraestructuras para la Calidad de la Edificación

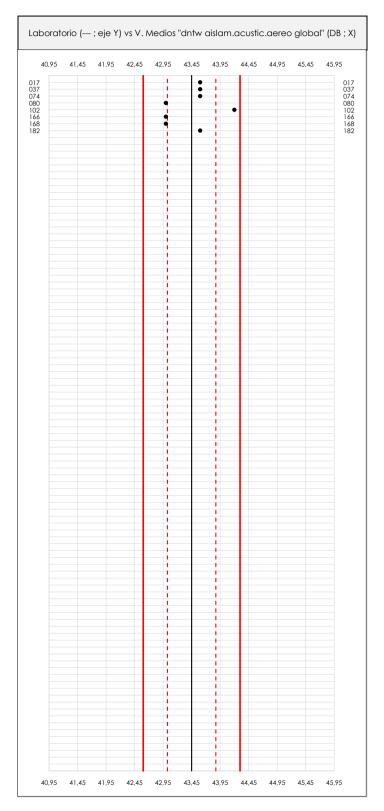
SACE

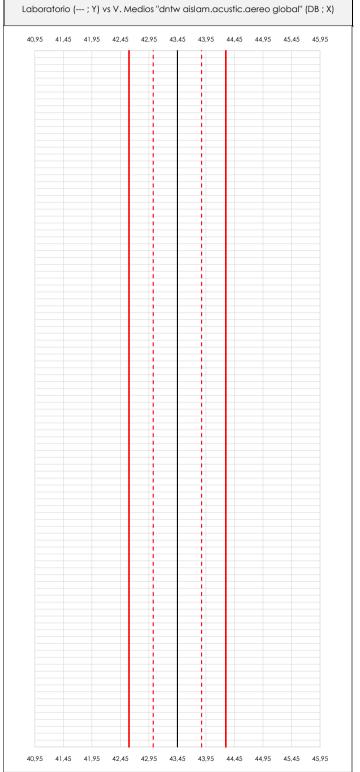
Subcomisión Administrativa para la Calidad de la Edificación

ANÁLISIS ESTADÍSTICO ACÚSTICA

DNTW AISLAM.ACUSTIC.AEREO GLOBAL

Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNTW AISLAM.ACUSTIC.AEREO GLOBAL (DB) Análisis A. Estudio pre-estadístico

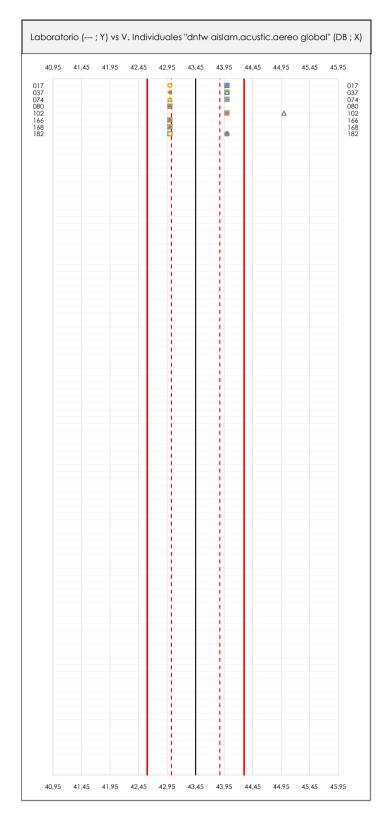
Apartado A.1. Gráficos de dispersión de valores medios

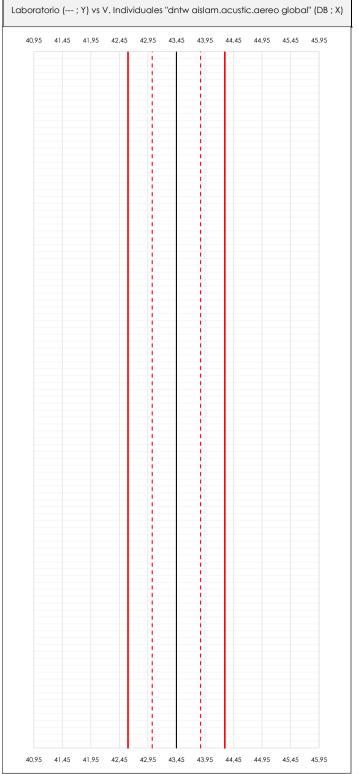
ANALISIS GRAFICO DE DISPERSION MEDIA (ANTES DE ANALISIS ESTADISTICO)

Dispersión de las medias aritméticas intra-laboratorios respecto de la media aritmética inter-laboratorios (43,45 ; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (43,87/43,03 ; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (44,30/42,60 ; líneas rojas de trazo continuo).

En el eje Y (adimensional) quedan reflejados los códigos de los laboratorios participantes y en el eje X (las unidades son las mismas que las del ensayo que se está analizando) las medias aritméticas intra-laboratorios representadas por punto de color negro.

Comité de infraestructuras para la Calidad de la Edificación




SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNTW AISLAM.ACUSTIC.AEREO GLOBAL (DB) Análisis A. Estudio pre-estadístico

Apartado A.2. Gráficos de dispersión de valores individuales

ANALISIS GRAFICOS DE DISPERSION INDIVIDUAL (ANTES DE ANALISIS ESTADISTICO)

Dispersión de los valores individuales respecto de la media aritmética inter-laboratorios (43,45; línea negra de trazo continuo), la media aritmética inter-laboratorios más/menos la desviación típica (43,87/43,03; líneas rojas de trazo punteado) y la media aritmética inter-laboratorios más/menos el doble de la desviación típica (44,30/42,60; líneas rojas de trazo continuo).

En el eje Y (adimensional) queda reflejado el código del laboratorio participante y en el eje X (las unidades son las de los resultados del ensayo que se está analizando) los resultados individuales: el primero (X_{i,1}) se representa con un cuadrado azul, el segundo (X_{i,2}) con un círculo verde, el tercero (X_{i,3}) con un triángulo grís y el cuarto (X_{i,4}) con un rombo amarillo.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNTW AISLAM.ACUSTIC.AEREO GLOBAL (DB) Análisis A. Estudio pre-estadístico

Apartado A.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i \text{ arit}}$	S _{Li}	D _{i arit %}	Pasa A	Observaciones
17	44,00	43,00	44,00	43,00	44,00	43,60	0,548	0,35	√	
37	44,00	44,00	44,00	43,00	43,00	43,60	0,548	0,35		
74	44,00	44,00	43,00	43,00	44,00	43,60	0,548	0,35		
80	43,00	43,00	43,00	43,00	43,00	43,00	0,000	-1,04		
102	44,00	44,00	45,00	44,00	44,00	44,20	0,447	1,73	-	
166	43,00	43,00	43,00	43,00	43,00	43,00	0,000	-1,04		
168	43,00	43,00	43,00	43,00	43,00	43,00	0,000	-1,04	<u> </u>	
182	43,00	44,00	44,00	43,00	44,00	43,60	0,548	0,35	<u> </u>	
.02	10,00	1 1,00	1 1,00	10,00	1 1,00	.0,00	0,0 .0	0,00		
						-				

NOTAS:

[máximo]

[mínimo

^{01 &}quot;X_{i j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_{L1}" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

⁰³ Los resultados aportados por los laboratorios podrán ser descartados (X) si no cumplen con los criterios establecidos en el protocolo EILA o si no han realizado el ensayo conforme a norma.

 $^{^{\}rm 04}$ El código colorimétrico empleado para las celdas es:

Comité de infraestructuras para la Calidad de la Edificación

DNTW AISLAM.ACUSTIC.AEREO GLOBAL (DB)

Análisis B. Mandel, Cochran y Grubbs

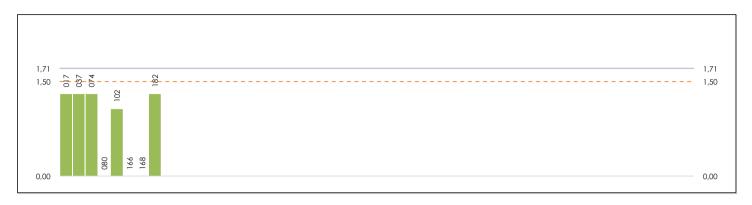
Apartado B.1. Gráfico de consistencia inter-laboratorios "h" de Mandel

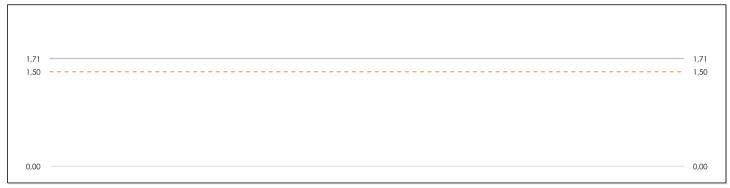
ANALISIS GRAFICO DE CONSISTENCIA INTER-LABORATORIOS

Análisis gráfico de consistencia inter-laboratorios "h" de Mandel. En él se representan las medias aritméticas inter-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación






DNTW AISLAM.ACUSTIC.AEREO GLOBAL (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.2. Gráfico de consistencia intra-laboratorios "k" de Mandel

ANALISIS GRAFICO DE CONSISTENCIA INTRA-LABORATORIOS

Análisis gráfico de consistencia intra-laboratorios "k" de Mandel. En él se representan las medias aritméticas intra-laboratorios y los indicadores estadísticos para un 1% y un 5% de significación (valores obtenidos de la tabla 6 norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios participantes y el número de ensayos efectuados).

Las líneas continuas de color morado (indicador estadístico para un 1% de significación) marca el límite a partir del cual un valor es considerado aberrante y las discontinuas de de color rosaceo (indicador estadístico para un 5% de significación), cuando es considerado anómalo. Una equis de color rojo (X) sobre el eje cero indica que el laboratorio ha sido descartado.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNTW AISLAM.ACUSTIC.AEREO GLOBAL (DB)

Análisis B. Mandel, Cochran y Grubbs

Apartado B.3. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{Li}	D _{i arit %}	h _i	k _i	C _i	G _{Sim Inf}	G _{Sim Sup}	G _{Dob Inf}	G _{Dob Sup}	Pasa B
17	44,00	43,000	44,000	43,000	44,000	43,600	0,548	0,35	0,35	1,31					0,4286	√
37	44,00	44,000	44,000	43,000	43,000	43,600	0,548	0,35	0,35	1,31					0,4286	-
74	44,00	44,000	43,000	43,000	44,000	43,600	0,548	0,35	0,35	1,31		1.0/1		0.571.4	0,4286	
102	43,00	43,000 44,000	43,000 45,000	43,000 44,000	43,000 44,000	43,000 44,200	0,000	-1,04 1,73	-1,06 1,77*	0,00	0,214	1,061	1,768	0,5714	0,4286	√
166	43,00	43,000	43,000	43,000	43,000	43,000	0,000	-1,04	-1,06	0,00	0,214	1,061	1,700	0,5714	0,4200	
168	43,00	43,000	43,000	43,000	43,000	43,000	0,000	-1,04	-1,06	0,00		1,061		0,5714		<u> </u>
182	43,00	44,000	44,000	43,000	44,000	43,600	0,548	0,35	0,35	1,31					0,4286	√

NOTAS:

 $^{\rm 04}$ El código colorimétrico empleado para las celdas es:

[aberrante]

[anómalo]

[máximo]

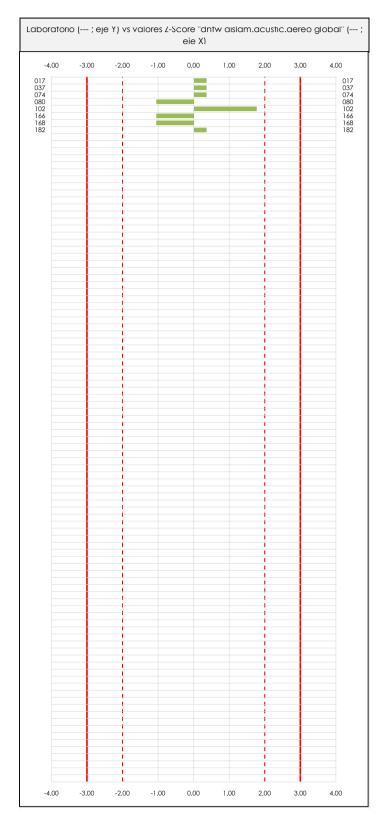
[mínimo]

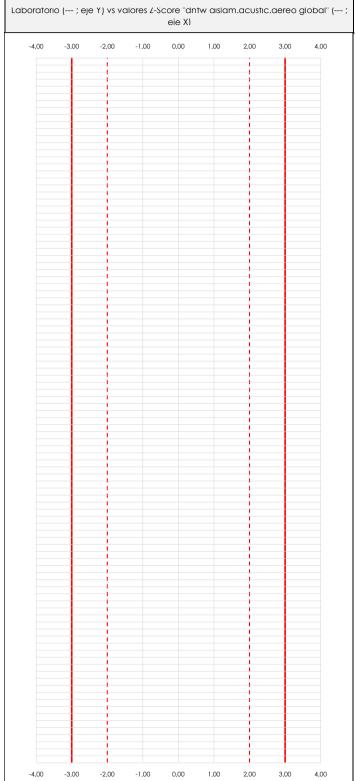
^{01 &}quot;X_{i j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

^{03 &}quot;h_i y k_i", "C_i", "G_{sim} y G_{Dob}" hacen referencia a los estadísticos de Mandel, Cochran y Grubbs, respectivamente, obtenidos para cada laboratorio en función de los resultados aportados.

Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNTW AISLAM.ACUSTIC.AEREO GLOBAL (DB)

Análisis C. Evaluación Z-Score

Apartado C.1. Análisis gráfico Altman Z-Score

ANALISIS GRAFICO Z-SCORE

Diagrama Z-Score para los resultados aportados por los laboratorios. Estos se considerarán satisfactorios (S) si el valor absoluto del Z-Score es menor o igual a 2 unidades, dudoso si está comprendido entre 2 y 3 unidades e insatisfactorio si es mayor o igual a 3 unidades.

Los resultados satisfactorios quedan reflejados entre las dos líneas rojas discontinuas, líneas de referencia en la evaluación Z-Score.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNTW AISLAM.ACUSTIC.AEREO GLOBAL (DB)

Análisis C. Evaluación Z-Score

Apartado C.2. Determinaciones matemáticas

Lab	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	X _{i arit}	S _{L i}	D _{i arit %}	Pasa A	Pasa B	Total	Causa	Iteración	Z-Score	Evaluación
17	44,00	43,00	44,00	43,00	44,00	43,60	0,548	0,35	✓	√	√			0,354	S
37	44,00	44,00	44,00	43,00	43,00	43,60	0,548	0,35	✓	✓	✓			0,354	S
74	44,00	44,00	43,00	43,00	44,00	43,60	0,548	0,35	✓	✓	✓			0,354	S
80	43,00	43,00	43,00	43,00	43,00	43,00	0,000	-1,04	✓	✓	✓			-1,061	S
102	44,00	44,00	45,00	44,00	44,00	44,20	0,447	1,73	✓	✓	✓			1,768	S
166	43,00	43,00	43,00	43,00	43,00	43,00	0,000	-1,04	✓	✓	✓			-1,061	S
168	43,00	43,00	43,00	43,00	43,00	43,00	0,000	-1,04	✓	✓	✓			-1,061	S
182	43,00	44,00	44,00	43,00	44,00	43,60	0,548	0,35	✓	✓	✓			0,354	S

NOTAS:

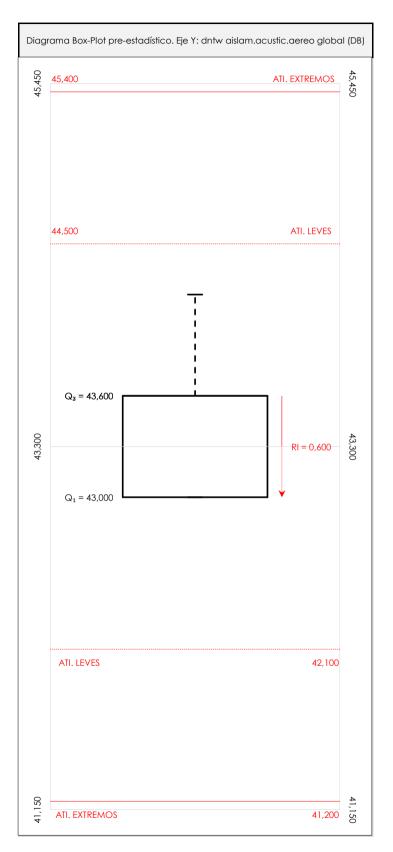
^{01 &}quot;X_{i,j} con j = 1, 2, 3, 4, 5" es cada uno de los resultados individuales aportados por cada laboratorio, "X̄_{i arit}" es la media aritmética intralaboratorio calculada sin redondear.

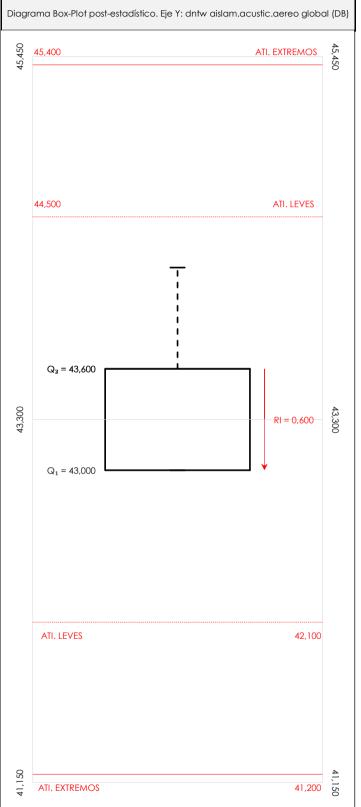
^{02 &}quot;S_L;" es la desviación típica intralaboratorios y "D_{i arit %}" la desviación, en porcentaje, de la media aritmética intralaboratorios calculada respecto de la media airtmética interlaboratorios.

 $^{^{03}}$ La evaluación Z-Score (ZS) será considerada de tipo: [Satisfactorio (S) - si | ZS | \leqslant 2] [Dudoso (D) - si 2 < | ZS | \leqslant 3] [Insatisfactorio (I) - si | ZS | > 3].

 $^{^{\}rm 04}\,$ El código colorimétrico empleado para las celdas es:

CICE Comité de infraestructuras para la Calidad de la Edificación


SACE


Subcomisión Administrativa para la Calidad de la Edificación

DNTW AISLAM.ACUSTIC.AEREO GLOBAL (DB)

Análisis D. Estudios post-estadisticos

Apartado D.3. Diagramas Box-Plot o de Caja y Bigotes

ANALISIS GRAFICO DE CAJA Y BIGOTES (ANTES Y DESPUES DE ANALISIS ESTADISTICO)

Diagramas de caja y bigotes (Box Plot) de las medias aritméticas de los resultados aportados por los laboratorios <u>antes</u> (diagrama de la izquierda. Este incluye valores aberrantes y anómalos) y <u>después</u> (diagrama de la derecha. No incluye los valores descartados a lo largo del estudio) de análisis estadístico.

En ambos se han representado: el primer cuartil (Q_1 ; 25% de los datos), el segundo cuartil o la mediana (Q_2 ; 50% de los datos), el tercer cuartil (Q_3 ; 75% de los datos), el rango intercuartílico (RI ; cuartil tres menos cuartil uno) y los límites de valores atípicos leves (f_3 y f_1 para el máximo y mínimo respectivamente ; líneas discontinuas de color rojo) y extremos (f_3 * y f_1 * para el máximo y mínimo respectivamente ; líneas continuas de color rojo).

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

DNTW AISLAM.ACUSTIC.AEREO GLOBAL (DB)

Conclusiones

Determinación de la repetibilidad y reproducibilidad

El análisis estadístico ElLA20 para el ensayo "DNTW AISLAM.ACUSTIC.AEREO GLOBAL", ha contado con la participación de un total de 8 laboratorios, debiendo haber aportado cada uno de ellos, un total de 5 determinaciones individuales además de su valor medio.

Tras analizar los resultados podemos concluir que, para cumplir con los criterios estadísticos establecidos en el informe, un total de 0 laboratorios han sido apartados de la evaluación final: 0 en el Análisis Pre-Estadístico (por no cumplir el criterio de validación y/o el procedimiento de ejecución recogido en la norma de ensayo) y 0 en el Análisis Estadístico (por resultar anómalos o aberrantes en las técnicas gráficas de consistencia de Mandel y en los ensayos de detección de resultados numéricos de Cochran y Grubbs), al cabo de 1 iteraciones.

De cada uno de los análisis (pre-estadístico y estadístico), se obtienen las siguientes tablas:

TIPO DE ANALISIS			PRE-ES	TADISTIC	:0		ESTADISTICO						
Variables	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$	X _{i 1}	X _{i 2}	X _{i 3}	X _{i 4}	X _{i 5}	$\overline{X}_{i arit}$	
Valor Máximo (max ; %)	44,00	44,00	45,00	44,00	44,00	44,20	44,00	44,00	45,00	44,00	44,00	44,20	
Valor Mínimo (min ; %)	43,00	43,00	43,00	43,00	43,00	43,00	43,00	43,00	43,00	43,00	43,00	43,00	
Valor Promedio (M; %)	43,50	43,50	43,63	43,13	43,50	43,45	43,50	43,50	43,63	43,13	43,50	43,45	
Desviación Típica (SDL ;)	0,53	0,53	0,74	0,35	0,53	0,42	0,53	0,53	0,74	0,35	0,53	0,42	
Coef. Variación (CV ;)	0,01	0,01	0,02	0,01	0,01	0,01	0,01	0,01	0,02	0,01	0,01	0,01	
VARIABLES	S_r^2	r		$S_L^{\ 2}$	S_R^{2}	R	S_r^2	r		S _L ²	S_R^{2}	R	
Valor Calculado	0,175	1,16	60 (),145	0,320	1,568	0,175	1,16	SO 0	,145	0,320	1,568	
Valor Referencia													

Asimismo, acompañando a éstas tablas y dependiendo del análisis que se esté llevando a cabo, se introducen los indicadores estadísticos "h y k" de Mandel y los valores críticos "C" de Cochran y " G_{Sim} y G_{Dob} " de Grubbs, todos ellos adimensionales, obtenidos de las tablas 4, 5, 6 y 7 de la norma UNE 82009-2:1999 o mediante ecuación matemática, en función del número de laboratorios y del número de ensayos efectuados por cada uno de ellos:

TIPO DE ANALISIS		PRE	-ESTADISTI	со		ESTADISTICO						
VARIABLES	h	k	С	G_{sim}	G_Dob	h	k	С	G_{sim}	G_{Dob}		
Nivel de Significación 1%	2,06	1,71	0,463	2,274	0,0563	2,06	1,71	0,463	2,274	0,0563		
Nivel de Significación 5%	1,75	1,50	0,391	2,126	0,1101	1,75	1,50	0,391	2,126	0,1101		

Con los resultados de los laboratorios, que tras los dos análisis estadísticos son evaluados por Z-Score, se han obtenido: 8 resultados satisfactorios, 0 resultados dudosos y 0 resultados insatisfactorios.

Respecto a los métodos para determinar la repetibilidad y la reproducibilidad de las mediciones se van a basar en la evaluación estadística recogida en la ISO 17025, sobre las dispersiones de los resultados individuales y su media, en forma de varianzas o desviaciones estándar, también conocida como ANOVA (siglas de analisys of varience).

Sabiendo que una varianza es la suma de cuadrados dividida por un número, que se llama grados de libertad, que depende del número de participantes menos 1, se puede decir que la imprecisión del ensayo se descompone en dos factores: uno de ellos genera la imprecisión mínima, presente en condiciones de repetibilidad (variabilidad intralaboratorio) y el otro la imprecisión adicional, obtenida en condiciones de reproducibilidad (variabilidad debida al cambio de laboratorio).

Las condiciones de repetibilidad de este ensayo son: mismo laborante, mismo laboratorio y mismo equipo de medición utilizado dentro de un período de tiempo corto. Por ende, las condiciones de reproducibilidad para la misma muestra y ensayo, cambian en: el laborante, el laboratorio, el equipo y las condiciones de uso y tiempo.