

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

ENSAY	YOS DE ACÚSTICA1
INTRO	DDUCCION4
1.	OBJETIVOS DEL EILA204
2.	NORMATIVA DE APLICACIÓN5
3.	ESCENARIO DE ENSAYO6
4.	ANÁLISIS DE LOS RESULTADOS APORTADOS9
4.1.	ESTUDIO PRELIMINAR9
A)	Valores no descartados: desviaciones no excluyentes10
B)	Valores NO DESCARTADOS: DESVIACIONES EXCLUYENTES10
C)	Valores descartados (SD en tablas 10.1 y 10.2): desviaciones excluyentes10
5.	INCERTIDUMBRE TÍPICA DEL EJERCICIO14
6.	ESTUDIO PRELIMINAR RESULTADOS MEDICIÓN IN SITU DEL AISLAMIENTO ACÚSTICO A
RUI	DO AÉREO ENTRE LOCALES15
i.	Resultados promedio aportados de los cinco ensayos por código y por frecuencias15
ii	. Gráficas de los resultados promedio de los laboratorios con el promedio de la Zona (con todo el
g	rupo de valores, antes de descartar)15
ii	 Resultados desviación estándar de los resultados aportados de los cinco ensayos por código
у	por frecuencias
iv	v. Gráficas de las desviaciones estándar de los laboratorios (con todo el grupo de valores, antes
	le descartar)16
7.	ESTUDIO PRELIMINAR RESULTADOS TIEMPO DE REVERBERACIÓN EN RECINTOS
	DINARIOS
i.	Resultados promedio aportados de los cinco ensayos por código y por frecuencias17
ii	
g	rupo de valores, antes de descartar)17
ii	i. Resultados desviación estándar de los resultados aportados de los cinco ensayos por código
у	por frecuencias
iv	v. Gráficas de las desviaciones estándar de los laboratorios (con todo el grupo de valores, antes
d	e descartar)18
8.	ESTUDIO PRELIMINAR: DATOS DE PRECISIÓN19
9.	Observaciones al procedimiento de los ensayos (ver pto 4 del informe)
	, , , , , , , , , , , , , , , , , , , ,

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

10.	EVALUACIÓN GLOBAL	23
11.	AGRADECIMIENTOS	27
ANEXO	I (en documentos aparte: EILA20 DnT y T20. pdf)	. 33
ANÁLIS	IS ESTADÍSTICO Y ZSCORE DE RESULTADOS RECINTO Z08:	33
1. Me	dición in situ del aislamiento acústico a ruido aéreo entre locales (DnT)	33
2. Me	edición de parámetros acústicos en recintos. Parte 2: Tiempo de reverberación en recir	ıtos
ordin	arios (T20)	33

Comité de infraestructuras para la Calidad de la Edificación

Subcomisión Administrativa para la Calidad de la Edificación

INTRODUCCION

1. OBJETIVOS DEL EILA20

Los ejercicios de intercomparación entre laboratorios tienen su origen y fundamento en la norma UNE-EN ISO/IEC 17025, que establece que, entre otros, los laboratorios deben participar en comparaciones interlaboratorios o programas de ensayos de aptitud.

Según define la Guía sobre la participación en programas de intercomparación G-ENAC-14, "las intercomparaciones consisten en la organización, el desarrollo y la evaluación de ensayos del mismo ítem o ítems similares por varios laboratorios, de acuerdo con condiciones preestablecidas."

El EILA-AQ20 ha adoptado los siguientes objetivos:

- Comprobación del comportamiento general de los ensayos, analizando variables que afectan en el desarrollo del ejercicio y de los resultados obtenidos.
- Identificación de problemas en los laboratorios e inicio de actividades correctivas.
- Establecimiento de eficacia y comparabilidad de ensayos.
- Identificación de diferencias entre laboratorios.
- Caracterización de métodos.
- Educación de los laboratorios participantes, basándose en los resultados de su participación.

Comité de infraestructuras para la Calidad de la Edificación

2. NORMATIVA DE APLICACIÓN.

El tratamiento estadístico de los resultados obtenidos por los laboratorios se analiza siguiendo las siguientes normas:

- **UNE 82009-2:1999** "Exactitud (veracidad y precisión) de resultados y métodos de medición. Parte 2: Método básico para la determinación de la repetibilidad y la reproducibilidad de un método de medición normalizado".
- UNE-EN ISO/IEC 17043:2010 "Evaluación de la conformidad. Requisitos generales para los ensayos de aptitud", tomando como valor de referencia del ensayo los valores medios no aberrantes obtenidos.
- UNE-EN ISO 12999-1:2014 "Determinación y aplicación de las incertidumbres de medición en la acústica de edificios"

Además, se consideran dos documentos de ayuda elaborados por la Entidad Nacional de Acreditación **ENAC** para la realización de los ejercicios de intercomparación:

- NT-03 "Política de ENAC sobre Intercomparaciones".
- **G-ENAC-14** "Guía sobre la participación en programas de intercomparación.".

Asimismo, cada ensayo será evaluado con el cumplimiento de las siguientes Normas UNE, considerando:

	AREA PRUEBAS DE SERVICIO: EILA AQ20													
Alcance	Código	Ensayo	Norma											
Alcance 1	PS08	Medición in situ del aislamiento acústico a ruido aéreo entre locales	UNE-EN ISO 16283-1:2015 (+UNE-EN ISO 16283- 1:2015/A1:2018)											
Alcance 2	PS11	Medición de parámetros acústicos en recintos. Parte 2: Tiempo de reverberación en recintos ordinarios	UNE EN ISO 3382-2:2008. ERRATUM: 2009 V2											

Rango de medida: Bandas de frecuencia de un tercio de octava comprendida entre 100 Hz y 5000 Hz, Posiciones de micrófono fijas.

Resultados a obtener:

- Espectro de las Diferencias de niveles estandarizada DnT (dB) para cada banda de frecuencias,
- El valor global DnTw en dB, con sus correspondientes términos de adaptación espectral, por ruido rosa (C) y por ruido de tráfico (Ctr).
- El valor global de la Diferencia de niveles estandarizada, ponderada A DnTA (dBA), de acuerdo al DB-HR.
- El espectro del Tiempo de reverberación T20 (seg), por el Método de ingeniería.

Comité de infraestructuras para la Calidad de la Edificación

Subcomisión Administrativa para la Calidad de la Edificación

3. ESCENARIO DE ENSAYO.

Los laboratorios de las diferentes Comunidades Autónomas, inscritos en estos ensayos, se han agrupado, con la premisa de grupos ≥ 8 participantes para realizar 5 repeticiones del ensayo, por cada banda de frecuencia y por alcance. En los casos que no se ha alcanzado este número mínimo de participantes, se ha ampliado el número de repeticiones del ensayo a 8, en base a la norma UNE-EN ISO 12999-1: 2014.

C.A	SEDE (agrupación)	RECINTO	Participantes
Andalysía	GRANADA	Z08	18
Andalucía	SEVILLA	Z06	8
Aragón			
Navarra	ARAGÓN	Z05	8
La Rioja			
Cantabria	PAIS VASCO	Z03	9
País Vasco	TAIS VASCO	203	9
Cataluña	CATALUÑA	Z18	5
Canarias	CANARIAS	Z01	3
Extremadura	EXTREMADURA	Z17	4
Galicia	GALICIA	Z15	8
Madrid	MADRID	Z04	12
Murcia	MURCIA	Z13	6
Valencia	INIORCIA	۷۱۵	O

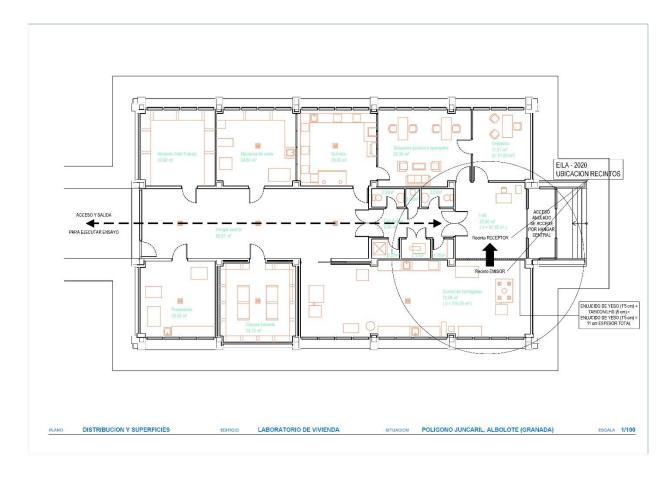
Los escenarios de ensayo se han ubicado en edificios reales, es decir, que están en uso. La mayoría han sido edificaciones docentes, que, en época estival están desocupados. Y sino, se han buscado recintos de la propia Administración, dedicados a laboratorio o funciones administrativas, que, en todo caso, se han adecuado para realizarlos.

Por las circunstancias sanitarias, sobrevenidas por el COVID-19, y la declaración del estado de alarma, las fechas de celebración se vieron afectadas y no fueron todas en verano, como en un principio, se pretendía. Este retraso ha afectado a todos los plazos siguientes, incluyendo la entrega de este documento.

Los recintos elegidos han tenido un volumen mayor de 10 m3 y menor que 250 m3 y han sido colindantes horizontalmente. El elemento de ensayo han sido parejas de recintos en el Alcance 1 y el recinto receptor en el Alcance 2, y en la medida de lo posible, se han seleccionado aquellos en los que las puertas estuvieran lo más alejadas posible de la partición.

Las condiciones ambientales en el interior de los recintos han cumplido con los siguientes valores, compatibles con la instrumentación de medida:

-Temperatura de -10°C a +50°C, y Humedad < 90% (a 40°C)


Comité de infraestructuras para la Calidad de la Edificación

Subcomisión Administrativa para la Calidad de la Edificación

RECINTO Z08:

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

Figura 3.1. Plano y fotos de los recintos entregado a los laboratorios participantes en la Zona

Observaciones de los laboratorios: ponen de manifiesto la existencia de ruido de tráfico rodado que influye en las mediciones debido al deficiente aislamiento de puertas y ventanas.

Comité de infraestructuras para la Calidad de la Edificación

4. ANÁLISIS DE LOS RESULTADOS APORTADOS

4.1. ESTUDIO PRELIMINAR

El primer paso es un Estudio preliminar (pre-estadístico) de todos los datos aportados por los laboratorios participantes, volcados de las fichas de resultados, y elaboradas ex profeso para cada ensayo.

En este punto, el análisis preliminar marca aquellos valores sospechosos que puedan explicarse como un "error técnico humano" y se filtran los valores descartados que, en general, son por la incorrecta ejecución de la norma o del protocolo específico.

Para ello, se investiga primero si el resultado se ha debido a un descuido de transcripción, o por no fijarse en la expresión de las unidades que se estaba pidiendo o por situar el valor en la celda equivocada. Si es así, el resultado se considera sospechoso, se reemplaza por el valor correcto en el análisis estadístico, y se deja señalado en observaciones del mismo.

Segundo, los siguientes datos, aportados por los laboratorios, son revisados para filtrar los que son descartados y no son analizados estadísticamente:

- Descripción del equipamiento empleado y adecuación a las normas de ensayo/protocolo;
- Observaciones aportadas por los laboratorios;
- Implantación de la norma UNE-EN ISO/IEC 17025;
- Configuración del sonómetro para una aplicación de incidencia aleatoria (campo difuso);
- Adecuación del nº de posiciones de fuente y nº de posiciones de micrófono conforme a las normas de ensayo;
- Adecuación del tipo de fuente de ruido empleada en la medida del tiempo de reverberación conforme a la técnica de ensayo seguida;
- Valores de las calibraciones realizadas:
- Coherencia de los datos geométricos de los recintos aportados (volúmenes, superficie) en relación al grupo;
- Realización del n^{o} de repeticiones solicitado en el protocolo (5/8 repeticiones);
- Modificación del posicionamiento de fuentes y micrófonos de medida para conseguir repeticiones independientes. Valores x-y-z de las coordenadas de los puntos y planos presentados;
- En relación a los resultados presentados:
 - Resultados presentados para todas las repeticiones;
 - o Margen de frecuencias de medida. Espectro completo de 100 a 5000 Hz;
 - Expresión de resultados correcta: nº de decimales, número entero y redondeo;
 - Otras irregularidades detectadas.

Comité de infraestructuras para la Calidad de la Edificación

Subcomisión Administrativa para la Calidad de la Edificación

A) VALORES NO DESCARTADOS: DESVIACIONES NO EXCLUYENTES

- La no configuración del sonómetro para una aplicación de incidencia aleatoria (campo difuso);
 - <u>La norma UNE EN ISO 16283-1 en su apartado 4.1</u> indica que la instrumentación para la medida de los niveles de presión sonora debe estar configurada para una aplicación de incidencia aleatoria (campo difuso).
 - Esto se consideraría una desviación a la norma, pero podemos considerar despreciable la influencia que esto pueda tener en los resultados de este ensayo para ese ejercicio, considerándose, por tanto, una desviación no excluyente, pero sí una evidencia que los señala y que se recomienda aporten documentación justificativa al respecto al órgano competente de su Comunidad Autónoma.
- Que el número de técnicos haya sido diferente en las distintas mediciones;
- Que se repitan puntos de medida. Cambiarle el nombre al punto no es cambiar de punto;
- Modificar los posicionamientos en base a desplazamientos más o menos sutiles respecto a la primera repetición;
- No entregar los planos con los croquis del posicionamiento de medida o no entregarlos completos;

B) VALORES NO DESCARTADOS: DESVIACIONES EXCLUYENTES

- Empleo de una sola posición de fuente para la medida de aislamiento acústico (Alcance 1) o de tiempo de reverberación (Alcance 2);
- No se ha modificado el posicionamiento de los micrófonos en absoluto, siendo las 5 repeticiones iguales;
- No modificar el posicionamiento de la fuente, pero sí el de las posiciones de micrófono;
- No modificar la altura de las posiciones de fuente y/o micrófono;
- Se han repetido posiciones entre repeticiones (más de dos repeticiones iguales o bien repeticiones por pares del tipo R1=R2, R3=R4, etc.)

Indicar que no se han descartado en este ejercicio, aunque son factores que pueden distorsionar los resultados del interlaboratorio, ya que el laboratorio que los practica, consigue por lo general una variabilidad de resultados baja (repetibilidad) y sin embargo, el valor obtenido no ser representativo de la variabilidad del campo sonoro.

C) VALORES DESCARTADOS (SD EN TABLAS 10.1 y 10.2): DESVIACIONES EXCLUYENTES.

No se han realizado todas las repeticiones que indica el protocolo (5/8);

Comité de infraestructuras para la Calidad de la Edificación

- No se ha medido en todo el margen de frecuencias especificado (100-5000 Hz). Esto supone una exclusión parcial puesto que el laboratorio sólo podrá ser evaluado:
 - **Alcance 1:** Para los valores del espectro de DnT de las frecuencias que sí haya medido y valor DnT,w; siendo excluido de los parámetros DnT,w+C(100-5000), DnT,w+Ctr(100-5000) y DnT,A que necesariamente requieren la medida en el margen de frecuencias completo;
 - o **Alcance 2:** Para los valores del espectro de T de las frecuencias que sí haya medido; siendo excluido del resto.

4.2. ANÁLISIS ESTADÍSTICO.

Una vez que los datos se han revisado, se realiza el Análisis estadístico, donde no pasan aquellas mediciones cuyos datos sean los "descartados con desviaciones excluyentes" y se han corregido los "sospechosos". De este análisis conocemos:

- El número, p, de laboratorios participantes a analizar.
- **El número, n, de mediciones en cada laboratorio** (repeticiones del mismo ensayo).

Alcance 1	p= 18	n=5
Alcance 2	p=18	n=5

Se realiza el análisis estadístico en base a las normas UNE 82009-2 y 82009-6 (equivalentes a las normas ISO 5725-2 e ISO 5725-6, respectivamente), referentes al Método básico de la repetibilidad y reproducibilidad de un método de medición normalizado. Esto significa que se realizan las siguientes aproximaciones:

- **Técnica gráfica de consistencia**, utilizando dos estadísticos determinados: interlaboratorios (h) e intralaboratorios (k) **de Mandel**.
- Ensayos de detección de resultados numéricos aberrantes: ensayos de variabilidad que se aplican solo en aquellos resultados donde el ensayo Mandel haya conducido a la sospecha:
 - o **Ensayo de Cochran** (C): verifica el mayor valor de un conjunto de desviaciones típicas, siendo ello un test unilateral de valores aberrantes y
 - Ensayo de Grubbs (G): verifica la desviación estándar de todas las medias, eliminando de todo el rango de distribución de valores la/s media/s más alta/s y más baja/s, según si es el Simple Grubbs o el Doble Grubbs.

Comité de infraestructuras para la Calidad de la Edificación

El valor será rechazado y dejará de ser analizado cuando sea aberrante/ anómalo tanto en las técnicas gráficas de consistencia como en los ensayos de detección de resultados numéricos. Para identificar si los resultados son anómalos y/o aberrantes, estos métodos comparan el valor estadístico resultante de h, k, C y G obtenido en el Análisis estadístico de los resultados aportados por los laboratorios, con los indicadores estadísticos y valores críticos recogidos en las Tablas 4, 5, 6 y 7 de las normas antes citadas para una (p) y una (n) conocidas, respectivamente.

4.3. VALOR ASIGNADO

Una vez descartados los resultados rechazados en el análisis estadístico (anómalos y aberrantes), el valor asignado se obtiene del promedio de los datos no descartados ni anómalos ni aberrantes.

4.4. DATOS DE PRECISIÓN

En base al promedio de las varianzas o también conocido como METODO ANOVA (siglas de analisys of varience) recogido en la norma ISO 17025, se determina la repetibilidad "r "y reproducibilidad "R" del ensayo, por zona y bandas de frecuencia, para conocer las dispersiones de los resultados.

Para ello, se obtiene la desviación típica de repetibilidad o varianza Sr, a partir de las sumas de cuadrados de las diferencias entre las determinaciones individuales del laboratorio, y se calcula el límite de repetibilidad como raíz de su varianza por 2,8. Y la desviación típica intralaboratorios S_L, a partir de la diferencia entre el valor medio del laboratorio con la media de todo el grupo de distribución de la zona. La desviación típica de reproducibilidad o varianza SR será la raíz cuadrada de la suma de ambas varianzas.

Por tanto, la repetibilidad de los resultados significa que las mediciones sucesivas para un mismo ensayo y muestra, se efectúan en las mismas condiciones dentro de un periodo de tiempo corto: mismo laborante, mismo laboratorio (condiciones ambientales) y mismo equipo de medición utilizado. Mientras que, la reproducibilidad de los ensayos es, teniendo en cuenta que las mediciones son para un mismo ensayo y muestra dentro de un periodo de tiempo corto, cambiando alguna de las condiciones de medición: el laborante, el laboratorio y las condiciones de uso (p.ej. procedimientos) y/o el equipo de medición. En resumen, la primera hace referencia a la variabilidad entre medidas en el mismo laboratorio y la segunda debida al cambio de laboratorio.

Comité de infraestructuras para la Calidad de la Edificación

Calidad de la Edificación

Si R (%) > r, las posibles causas pueden ser entre otras: el operador necesita más formación y/o mejor entrenamiento en cómo utilizar y cómo leer el instrumento, o no se han mantenido las condiciones de reproducibilidad (ambientales y/o de montaje del equipo).

Si R=r, debe considerarse generalmente indicador de una varianza interlaboratorios pequeña (o de valores negativos), o incluso nula. Es el caso en que la varianza se estima cero, los errores sistemáticos de todos los laboratorios serían iguales- necesariamente nulos- y todos los resultados de ensayo serían intercambiables. Por esta última circunstancia, podría estimarse como si todos los ensayos hubieran sido realizados por un único laboratorio en condiciones de repetibilidad.

Comité de infraestructuras para la Calidad de la Edificación

5. INCERTIDUMBRE TÍPICA DEL EJERCICIO

Se calcula la incertidumbre expandida (U) del ejercicio, a través de la siguiente expresión, de conformidad con el punto 8 de la norma ISO 12999-1:2014; con un factor de cobertura "k" que, para un intervalo de confianza del 95%, en un ensayo bilateral, según la Tabla 8 de la citada norma, adopta el valor de 1,96:

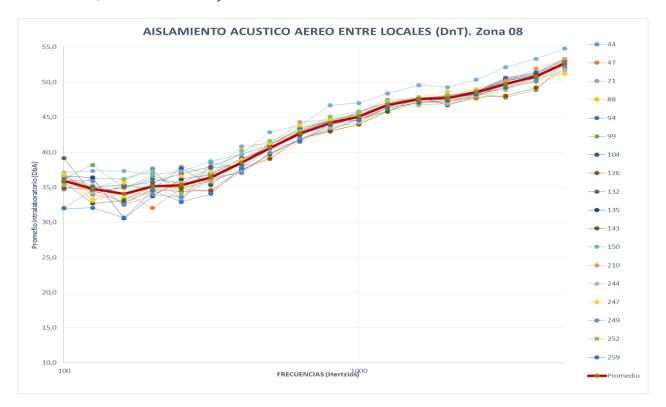
$$U = k^* SDL_{PRE}$$

Donde la SDL PRE es la desviación estándar de los resultados obtenidos por los laboratorios participantes antes del tratamiento estadístico. Su resultado será comparado con lo valores dados en la Tabla 2, para USITU en el Caso B en bandas de un tercio de octava, cuyos valores se trasladan a continuación y que se refieren a la desviación típica de los resultados de medición obtenidos en condiciones in situ:

Tabla 5.1. Incertidumbre típica del ejercicio para la Zona

	ISO 12999-1:2014	EJER	CICIO Zona
Frecuencia	TABLA 2. Caso B (USITU) (dB)	Desviación estándar (SDL _{PRE}) - Zona 08 (dB)	Incertidumbre expandida (U)- Zona 08 (dB)
100Hz	2,8	1,73	3,38
125Hz	2,4	1,60	3,14
160Hz	2,0	1,84	3,62
200Hz	1,8	1,41	2,75
250Hz	1,6	1,56	3,05
315Hz	1,4	1,34	2,64
400Hz	1,2	1,12	2,19
500Hz	1,1	0,95	1,85
630Hz	1,0	0,87	1,70
800Hz	1,0	0,87	1,70
1000Hz	1,0	0,76	1,48
1250Hz	1,0	0,62	1,22
1600Hz	1,0	0,61	1,20
2000Hz	1,0	0,64	1,25
2500Hz	1,3	0,61	1,19
3150Hz	1,6	1,75	1,93
4000Hz	1,9	1,59	2,27
5000Hz	2,2	0,83	1,64
DnTw	0,9	1,11	2.17
DnA	1,1	1,18	2,32

En el recinto Z08, la desviación del ejercicio supera el 10% de los valores recogidos en la Tabla 2, Caso B de la norma ISO 12999-1:2014.



6. ESTUDIO PRELIMINAR RESULTADOS MEDICIÓN IN SITU DEL AISLAMIENTO ACÚSTICO A RUIDO **AÉREO ENTRE LOCALES**

i. Resultados promedio aportados de los cinco ensayos por código y por frecuencias.

	Promedio interlaboratorio																		
FRECUE																			
NCIAS	44	47	71	88	94	99	104	126	132	135	143	150	210	244	247	249	252	259	Promedio
100	34,7	32,1	36,8	36,7	36,7	36,2	36,5	34,9	39,2	36,6	35,8	37,1	36,9	36,6	37,0	35,9	35,3	32,0	35,9
125	36,3	34,6	35,3	33,9	34,5	38,2	35,0	34,7	34,0	36,4	32,7	37,4	33,2	34,2	33,1	35,9	34,8	32,1	34,8
160	36,2	34,1	34,1	33,4	34,9	34,9	35,3	32,8	35,1	30,6	33,1	37,3	34,1	32,5	35,7	32,5	36,2	30,7	34,1
200	37,7	32,1	35,4	34,4	36,2	36,6	34,8	34,7	35,7	33,8	35,2	36,8	34,0	35,0	34,2	33,9	37,3	34,5	35,1
250	33,1	34,8	37,9	34,9	35,6	35,3	37,7	34,4	36,9	36,2	34,9	37,3	35,7	33,5	36,6	33,6	34,1	32,9	35,3
315	38,5	34,4	36,8	35,5	37,7	37,0	35,3	34,6	37,9	36,8	35,9	38,7	36,0	36,2	37,2	36,4	36,6	34,1	36,4
400	37,8	37,3	40,9	37,8	38,2	38,5	38,9	37,6	39,7	39,1	37,3	39,7	39,0	37,2	38,9	37,0	40,2	37,7	38,5
500	41,1	39,7	41,3	39,2	41,2	41,2	40,7	39,1	41,1	40,6	39,7	42,9	40,5	39,9	41,3	39,9	41,6	40,5	40,6
630	42,9	41,6	44,3	41,5	42,5	43,2	42,5	42,0	43,4	42,9	41,9	43,8	42,9	41,9	43,8	41,8	43,0	41,5	42,6
800	44,6	43,6	44,6	43,0	43,8	44,6	44,1	43,0	44,4	44,5	43,2	46,7	44,2	43,4	44,5	44,1	45,1	43,9	44,2
1000	45,4	44,2	45,6	44,0	45,1	45,4	45,7	44,0	45,2	44,6	44,7	47,0	45,4	44,2	45,3	45,2	45,8	44,6	45,1
1250	46,9	46,3	47,5	45,9	46,7	46,8	47,1	45,8	46,8	46,4	45,8	48,4	46,6	46,5	47,2	46,8	47,1	46,3	46,7
1600	47,6	47,1	47,7	46,7	47,7	47,5	47,7	47,9	47,7	47,7	47,2	49,6	47,3	46,8	47,9	47,6	47,8	47,1	47,6
2000	47,9	47,1	48,1	47,0	48,0	47,7	47,7	46,7	48,1	47,8	47,3	49,3	48,0	46,9	48,7	47,7	48,0	47,3	47,7
2500	48,5	48,1	49,0	47,6	48,7	48,4	48,7	47,8	48,7	48,7	47,9	50,3	48,6	47,9	49,0	48,2	48,8	48,2	48,5
3150	50,1	49,6	50,4	48,8	50,2	47,8	50,6	48,1	50,4	50,1	49,9	52,1	50,1	49,1	49,5	49,1	49,9	49,2	49,7
4000	51,4	50,8	51,4	50,7	51,0	47,9	51,4	49,2	51,1	51,0	50,5	53,3	51,9	50,3	50,0	50,1		50,6	50,7
5000	52,6	52,7	53,3	51,3	52,7	52,8	53,3	52,0	53,1	52,6	53,0	54,8	53,3	51,8	51,2	52,4		52,8	52,7

ii. Gráficas de los resultados promedio de los laboratorios con el promedio de la Zona (con todo el grupo de valores, antes de descartar)

SACE Subcomisión Administrativa para la Calidad de la Edificación

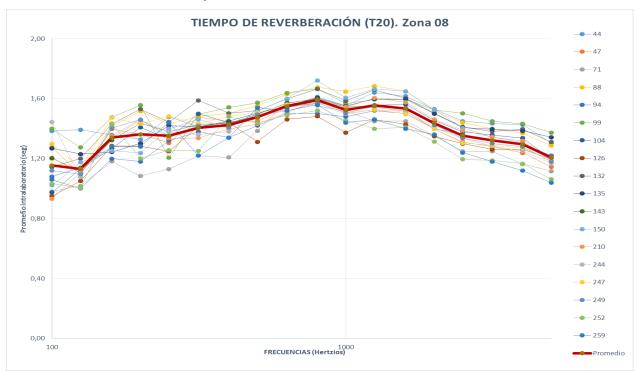
iii. Resultados desviación estándar de los resultados aportados de los cinco ensayos por código y por frecuencias.

	Desviacion	es interlab	oratorio																
FRECUEN																			Desviación por
CIAS	44	47	71	88	94	99	104	126	132	135	143	150	210	244	247	249	252	259	frecuencias
100	2,379	2,849	0,713	1,351	0,754	2,596	1,774	0,713	1,188	2,124	0,817	0,771	3,539	2,024	1,633	1,383	1,630	0,809	1,73
125	2,614	2,866	0,371	1,787	0,879	1,355	0,669	1,059	0,841	0,474	1,763	1,522	0,581	1,433	1,248	0,249	0,663	1,287	1,60
160	1,989	0,963	0,361	2,286	2,161	1,993	2,647	2,027	0,415	0,820	1,292	0,841	0,700	1,846	2,342	0,714	1,102	1,440	1,84
200	2,915	1,248	0,332	2,999	2,009	1,371	1,600	1,228	0,444	1,718	0,914	0,760	1,247	0,989	1,733	0,421	0,532	1,698	1,41
250	1,250	1,803	0,462	3,557	0,867	1,366	0,800	0,576	0,691	0,832	1,099	1,035	0,698	0,835	1,805	0,726	0,635	0,217	1,56
315	2,446	1,556	0,192	2,086	1,918	1,659	1,282	0,653	0,658	1,437	0,835	0,850	1,192	1,250	1,514	0,985	0,577	0,907	1,34
400	1,551	1,117	0,261	2,127	0,923	1,359	0,718	0,536	0,251	1,128	0,773	0,377	0,769	1,480	1,141	0,639	1,092	2,434	1,12
500	2,416	1,433	0,259	2,446	1,043	1,849	0,587	0,545	0,089	0,935	0,870	0,295	1,195	0,687	1,022	1,231	1,066	0,676	0,95
630	1,580	0,971	0,367	2,524	0,677	1,107	0,537	0,623	0,370	0,807	0,396	0,192	0,130	0,731	0,929	0,858	0,853	1,090	0,87
800	1,907	0,563	0,303	2,050	0,695	1,229	0,735	0,705	0,265	0,802	0,517	0,400	0,444	0,462	0,638	0,167	1,003	0,752	0,87
1000	1,489	0,626	0,329	2,371	0,826	0,975	0,354	0,261	0,230	0,300	0,661	0,335	0,349	0,340	0,869	0,698	0,305	0,430	0,76
1250	1,795	0,316	0,164	2,537	0,581	1,574	0,217	0,856	0,182	0,089	0,993	0,590	0,339	0,605	0,626	0,152	0,589	0,485	0,62
1600	1,756	0,798	0,311	2,330	0,476	1,383	0,607	0,439	0,164	0,536	0,192	0,568	0,321	0,347	0,606	0,339	0,466	0,134	0,61
2000	1,396	0,539	0,356	2,332	0,666	1,522	0,650	0,432	0,110	0,383	0,324	0,597	0,292	0,375	0,545	0,308	0,540	0,305	0,64
2500	1,613	0,406	0,332	2,166	0,346	1,936	0,622	0,255	0,219	0,332	0,342	0,483	0,148	0,417	0,615	0,217	0,327	0,217	0,61
3150	1,322	0,422	0,259	2,205	0,415	5,746	0,951	0,802	0,277	0,531	0,336	0,585	0,182	0,463	0,757	0,259	0,396	0,219	0,98
4000	1,536	0,453	0,311	2,632	0,635	7,785	0,856	1,252	0,424	0,719	0,288	0,568	0,179	0,439	0,524	0,541		0,344	1,16
5000	1,488	0,507	0,311	1,874	0,695	2,751	1,062	0,661	0,396	0,727	0,311	1,462	0,152	0,403	0,449	0,342		0,152	0,83

Valores anómalos o aberrantes en el análisis estadístico

iv. Gráficas de las desviaciones estándar de los laboratorios (con todo el grupo de valores, antes de descartar).

Mencionar que, parece que en el código 099 en la repetición R1 hay error de transcripción, pero no está claro el valor verdadero y por eso, se decide no modificarlo. (Ver análisis estadístico Frecuencias 3150 y 4000 Hz)

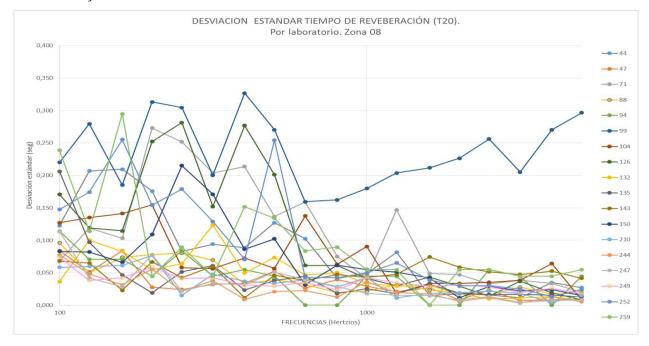


7. ESTUDIO PRELIMINAR RESULTADOS TIEMPO DE REVERBERACIÓN EN RECINTOS ORDINARIOS

i. Resultados promedio aportados de los cinco ensayos por código y por frecuencias.

	Promedio i	nterlaborat	torio																
FRECUENCIAS	44	47	71	88	94	99	104	126	132	135	143	150	210	244	247	249	252	259	Promedio
100	1,38	1,28	0,98	1,20	1,06	1,40	0,97	0,95	1,14	1,27	1,20	1,02	0,93	1,44	1,30	1,12	1,03	1,08	1,15
125	1,39	1,10	1,02	1,12	1,00	1,27	1,13	1,05	1,20	1,23	1,11	1,17	1,11	1,08	1,14	1,10	1,00	1,14	1,13
160	1,36	1,40	1,18	1,42	1,20	1,48	1,27	1,28	1,43	1,24	1,32	1,25	1,35	1,34	1,47	1,40	1,43	1,28	1,34
200	1,33	1,36	1,08	1,52	1,18	1,56	1,41	1,28	1,53	1,30	1,44	1,24	1,46	1,45	1,43	1,46	1,20	1,28	1,36
250	1,48	1,30	1,13	1,43	1,32	1,21	1,33	1,25	1,44	1,42	1,38	1,40	1,33	1,38	1,48	1,35	1,26	1,44	1,35
315	1,41	1,48	1,22	1,48	1,38	1,50	1,50	1,41	1,59	1,41	1,43	1,46	1,34	1,36	1,43	1,42	1,25	1,22	1,41
400	1,44	1,45	1,21	1,50	1,34	1,54	1,44	1,44	1,50	1,45	1,43	1,40	1,40	1,38	1,48	1,41	1,48	1,34	1,42
500	1,47	1,45	1,39	1,55	1,42	1,57	1,48	1,31	1,52	1,50	1,50	1,52	1,43	1,48	1,51	1,50	1,44	1,54	1,48
630	1,54	1,54	1,58	1,63	1,50	1,64	1,54	1,46	1,60	1,55	1,57	1,60	1,51	1,56	1,56	1,52	1,49	1,52	1,55
800	1,61	1,57	1,55	1,68	1,50	1,67	1,58	1,48	1,66	1,61	1,60	1,72	1,59	1,56	1,59	1,57	1,52	1,56	1,59
1000	1,55	1,54	1,52	1,65	1,48	1,57	1,52	1,37	1,59	1,55	1,54	1,61	1,54	1,50	1,51	1,50	1,45	1,44	1,52
1250	1,64	1,54	1,45	1,68	1,52	1,59	1,56	1,46	1,66	1,60	1,55	1,66	1,60	1,53	1,53	1,55	1,40	1,46	1,55
1600	1,62	1,52	1,45	1,65	1,50	1,60	1,56	1,43	1,60	1,60	1,53	1,65	1,58	1,52	1,50	1,54	1,41	1,40	1,53
2000	1,53	1,40	1,35	1,52	1,40	1,52	1,45	1,35	1,50	1,50	1,44	1,53	1,46	1,41	1,40	1,42	1,31	1,36	1,44
2500	1,45	1,31	1,25	1,44	1,36	1,50	1,38	1,30	1,41	1,41	1,35	1,40	1,39	1,33	1,30	1,34	1,20	1,24	1,35
3150	1,43	1,28	1,25	1,40	1,32	1,45	1,36	1,26	1,38	1,40	1,32	1,34	1,34	1,28	1,29	1,30	1,19	1,18	1,32
4000	1,43	1,24	1,16	1,37	1,30	1,43	1,34	1,26	1,40	1,39	1,29	1,31	1,32	1,25	1,27	1,28	1,17	1,12	1,30
5000	1,30	1,14	1,12	1,29	1,22	1,37	1,20	1,20	1,31	1,34	1,20	1,19	1,20	1,17	1,19	1,18	1,06	1,04	1,21

ii. Gráficas de los resultados promedio de los laboratorios con el promedio de la Zona (con todo el grupo de valores, antes de descartar)



iii. Resultados desviación estándar de los resultados aportados de los cinco ensayos por código y por frecuencias.

	Desviacion	nes interlab	oratorio																
																			por
FRECUENCIAS	44	47	71	88	94	99	104	126	132	135	143	150	210	244	247	249	252	259	frecuencias
100	0,123	0,084	0,068	0,096	0,114	0,220	0,127	0,171	0,036	0,206	0,068	0,083	0,058	0,078	0,114	0,074	0,148	0,239	0,16
125	0,207	0,051	0,119	0,050	0,071	0,279	0,135	0,119	0,100	0,097	0,065	0,082	0,060	0,048	0,042	0,038	0,174	0,114	0,10
160	0,210	0,084	0,103	0,074	0,071	0,185	0,141	0,115	0,083	0,047	0,023	0,066	0,061	0,031	0,029	0,042	0,255	0,295	0,09
200	0,176	0,028	0,273	0,078	0,045	0,313	0,154	0,252	0,055	0,019	0,067	0,109	0,077	0,056	0,078	0,058	0,154	0,045	0,13
250	0,083	0,024	0,252	0,080	0,084	0,304	0,058	0,281	0,064	0,051	0,042	0,215	0,015	0,022	0,022	0,041	0,179	0,089	0,10
315	0,094	0,032	0,204	0,069	0,045	0,200	0,056	0,152	0,123	0,061	0,060	0,171	0,048	0,038	0,034	0,042	0,129	0,045	0,10
400	0,088	0,033	0,214	0,033	0,055	0,327	0,073	0,277	0,050	0,023	0,011	0,086	0,037	0,009	0,031	0,031	0,071	0,152	0,08
500	0,127	0,053	0,137	0,040	0,045	0,270	0,057	0,201	0,073	0,038	0,046	0,102	0,034	0,021	0,051	0,029	0,254	0,134	0,06
630	0,103	0,026	0,159	0,032	0,000	0,159	0,137	0,061	0,047	0,045	0,038	0,032	0,039	0,023	0,039	0,035	0,043	0,084	0,05
800	0,041	0,040	0,075	0,019	0,000	0,162	0,063	0,061	0,050	0,018	0,047	0,062	0,028	0,013	0,029	0,023	0,042	0,089	0,06
1000	0,049	0,029	0,042	0,022	0,045	0,180	0,090	0,042	0,034	0,025	0,043	0,055	0,043	0,036	0,018	0,042	0,050	0,055	0,06
1250	0,082	0,021	0,147	0,031	0,045	0,204	0,018	0,030	0,029	0,018	0,048	0,051	0,011	0,019	0,015	0,034	0,065	0,055	0,08
1600	0,015	0,027	0,049	0,023	0,000	0,212	0,033	0,043	0,030	0,032	0,074	0,042	0,018	0,018	0,015	0,029	0,039	0,000	0,08
2000	0,017	0,008	0,047	0,019	0,000	0,226	0,034	0,029	0,018	0,019	0,059	0,011	0,019	0,006	0,008	0,031	0,030	0,055	0,07
2500	0,016	0,023	0,033	0,016	0,055	0,256	0,035	0,014	0,010	0,016	0,052	0,029	0,022	0,012	0,013	0,028	0,030	0,055	0,08
3150	0,011	0,007	0,038	0,028	0,045	0,205	0,038	0,037	0,011	0,017	0,047	0,022	0,018	0,003	0,004	0,020	0,025	0,045	0,08
4000	0,035	0,008	0,034	0,017	0,000	0,270	0,064	0,019	0,013	0,015	0,053	0,024	0,004	0,013	0,007	0,026	0,013	0,045	0,09
5000	0,027	0,009	0,019	0,018	0,045	0,297	0,008	0,008	0,007	0,013	0,042	0,015	0,015	0,005	0,008	0,018	0,024	0,055	0,09

Valores anómalos o aberrantes en el análisis estadístico

iv. Gráficas de las desviaciones estándar de los laboratorios (con todo el grupo de valores, antes de descartar)

8. ESTUDIO PRELIMINAR: DATOS DE PRECISIÓN

En las siguientes tablas se recogen los valores de repetibilidad "r" y reproducibilidad "R" del ensayo y sus varianzas "S", por bandas de frecuencia. Estas variables se ven afectadas cuando un laboratorio repite posiciones de medida, pues lo normal es que obtenga muy poca dispersión en sus resultados, y por tanto, implica una repetibilidad muy alta frente a los que sí modifican posiciones en cada repetición; y por consiguiente, respecto al resto de laboratorios, puede hacer que la reproducibilidad del grupo sea peor (él mejora sus resultados pero empeoran los resultados globales del ejercicio).

Tabla 8.1. Datos de precisión del Estudio preliminar de la Zona

FNAVAL L. I. C.		PRE-EST	ADÍSTICO ZO	ONA 08	
ENSAYO-banda de frecuencia	S _r ²	r	S _L ²	S _R ²	R
Dnt Frecuencia 100 hz	3,27	5,0	2,32	5,59	6,6
Dnt Frecuencia 125 hz	1,95	3,9	2,18	4,13	5,6
Dnt Frecuencia 160 hz	2,58	4,5	2,89	5,47	6,5
Dnt Frecuencia 200 hz	2,37	4,3	1,50	3,87	5,5
Dnt Frecuencia 250 hz	1,67	3,6	2,09	3,77	5,4
Dnt Frecuencia 315 hz	1,81	3,7	1,45	3,26	5,0
Dnt Frecuencia 400 hz	1,41	3,3	0,97	2,38	4,3
Dnt Frecuencia 500 hz	1,49	3,4	0,60	2,09	4,0
Dnt Frecuencia 630 hz	0,96	2,7	0,56	1,52	3,4
Dnt Frecuencia 800 hz	0,82	2,5	0,59	1,41	3,3
Dnt Frecuencia 1000 hz	0,70	2,3	0,43	1,13	3,0
Dnt Frecuencia 1250 hz	0,90	2,6	0,21	1,11	2,9
Dnt Frecuencia 1600 hz	0,75	2,4	0,22	0,98	2,7
Dnt Frecuencia 2000 hz	0,71	2,3	0,26	0,97	2,7
Dnt Frecuencia 2500 hz	0,73	2,4	0,22	0,95	2,7
Dnt Frecuencia 3150 hz	2,42	4,3	0,48	2,90	4,7
Dnt Frecuencia 4000 hz	4,41	5,8	0,46	4,87	6,1
Dnt Frecuencia 5000 hz	1,13	2,9	0,47	1,60	3,5
DnTw AISLAM.ACUSTIC.AEREO GLOBAL	1,01	2,8	0,41	1,42	3,3
DnTA AISL.ACUSTIC.AEREO (CTE)	0,83	2,5	0,41	1,24	3,1

Comité de infraestructuras para la Calidad de la Edificación

SACE Subcomisión Administrativa para la Calidad de la Edificación

ENSAYO-banda de frecuencia		PRE-ES	TADÍSTICO ZO	ONA 08	
ENOATO-banda de necuencia	S _r ²	r	S _L ²	S _R ²	R
T20 Frecuencia 100 hz	0,0170	0,4	0,0230	0,0400	0,6
T20 Frecuencia 125 hz	0,0140	0,3	0,0070	0,0210	0,4
T20 Frecuencia 160 hz	0,0174	0,4	0,0048	0,0221	0,4
T20 Frecuencia 200 hz	0,0200	0,4	0,0140	0,0340	0,5
T20 Frecuencia 250 hz	0,0198	0,4	0,0053	0,0252	0,4
T20 Frecuencia 315 hz	0,0112	0,3	0,0075	0,0187	0,4
T20 Frecuencia 400 hz	0,0161	0,4	0,0026	0,0187	0,4
T20 Frecuencia 500 hz	0,0147	0,3	0,0010	0,0158	0,3
T20 Frecuencia 630 hz	0,0059	0,2	0,0011	0,0069	0,2
T20 Frecuencia 800 hz	0,0036	0,2	0,0031	0,0067	0,2
T20 Frecuencia 1000 hz	0,0037	0,2	0,0033	0,0070	0,2
T20 Frecuencia 1250 hz	0,0050	0,2	0,0054	0,0103	0,3
T20 Frecuencia 1600 hz	0,0036	0,2	0,0054	0,0089	0,3
T20 Frecuencia 2000 hz	0,0037	0,2	0,0041	0,0077	0,2
T20 Frecuencia 2500 hz	0,0045	0,2	0,0053	0,0099	0,3
T20 Frecuencia 3150 hz	0,0031	0,2	0,0051	0,0083	0,3
T20 Frecuencia 4000 hz	0,0048	0,2	0,0069	0,0118	0,3
T20 Frecuencia 5000 hz	0,0054	0,2	0,0069	0,0124	0,3

Comité de infraestructuras para la Calidad de la Edificación

Subcomisión Administrativa para la Calidad de la Edificación

- 9. OBSERVACIONES AL PROCEDIMIENTO DE LOS ENSAYOS (VER PTO 4 DEL INFORME)
 - **Entrega de planos posiciones** (obligatorio por protocolo): el 87,5% de los participantes. Hubiera valido con los "croquis de trabajo".
 - Uso de ecualizador gráfico: el 77,7% de los participantes lo usa. Los códigos 088 (frecuencias 100 y 125 hz) y 104(frecuencia 250 hz) (*) indican no cumplir los niveles en las frecuencias recogidas.
 - **Configuración del sonómetro** para una aplicación de incidencia aleatoria. No lo hacen:
 - Z08: códigos 047-104-150
 - Verificaciones/calibraciones de la cadena de medida: Se recogen en la tabla 10.1 y 10.2, y en esta Zona todos las han hecho al inicio y final de cada ensayo, es decir de 5 u 8 veces (según el nº de ensayos). La cuestión es, para no estar fuera de norma, que se haya hecho la comprobación de todo el sistema de medida en algún momento del ejercicio.
 - Verificación periódica del equipo (control metrológico): la totalidad de los laboratorios la ha cumplimentado para el sonómetro-analizador y el calibrador, cumpliendo con los intervalos de la norma. Solo el código 247 indica fecha del informe de caracterización sobre la directividad de la fuente. (ver Tabla 9.1).

Tabla 9.1. Observaciones sobre el equipamiento utilizado y otros aspectos del desarrollo del ensayo

Laboratorio	071	044	047	088	094	099	104	126	132	135	143	150	210	244	247	249	252	259
ENTREGA PLANOS POSICIONES (Obligatorio: Pto 5 Aptado 11 del protocolo)	SI	NO	SI	SI	SI	SI	NO	NO	SI	SI	SI	SI	SI	NO	SI	SI	SI	SI
¿SE HA ECUALIZADO LA SEÑAL DE RUIDO EN EMISION?	Si	Si	Si	No(*)	Si	No	No(*)	Si	No	Si	Si	Si	Si	Si	Si	Si	Si	Si
METODOS DE MEDIDA: R.I: Ruido interrumpido R.I.I.A: Respuesta impulsiva integrada	RI	RI	RIIA	RIIA	RI	RI	RI	RI	RI	RI	RIIA	RI	RIIA	RIIA	RIIA	RIIA	RI	RI
DIRECTIVIDAD DE LA FUENTE : Informe de caracterización															19.05.2020			

Aclaraciones a la pregunta de tener implantada la UNE EN 17025:

Se preguntaba por la implantación, y no por la acreditación, del sistema de calidad en base a esta norma. Todos los laboratorios participantes en esta Zona tienen su Declaración responsable presentada y registrada en el Código Técnico de la Edificación conforme el Real Decreto 410/2010, de 31 de marzo; o son laboratorio con acreditación ENAC.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

Tabla 9.2. Evidencias detectadas en los laboratorios de la Zona 08

071	044	088	150	210	244	252	259
fuente y de micrófono son las	el posicionamiento en el tiempo de reverberación	Desviación a la norma y protocolo: Sólo se declara una posición de fuente en vez de dos que es el mínimo indicado por la norma	Desviacion de la norma y del protocolo al posicionamiento en ambos Alcances: Las posiciones de micrófono y de fuente son las mismas a lo largo de las repeticiones en DnT y T20.	Desviacion de la norma y del protocolo al posicionamiento en ambos Alcances: Las posiciones de micrófono y de fuente son las mismas a lo largo de las repeticiones en ambos Alcances, DnT y T20.	de la fuente de ruido "Do.01 y Do.02" que indica. Se deduce que son dodecaedros pero no queda claro.	Desviacion al equipamiento de sonometro y calibrador: son los mismos modelos y mismas fechas de verificación que los del laboratorio 259. No queda claro de los equipos: Los modelos de la fuente de ruido y altavoz parecen incorrectos; existe una incoherencia entre el tipo de equipo y el modelo especificado Desviacion al procedimiento en ambos Alcances: La fuente de ruido empleada que se indica parece incorrecta	
						Desviaciones a la norma y al protocolo por el posicionamiento en ambos Alcances: Los diferentes puntos de micrófono y fuente presentan variaciones muy ligeras porque las posiciones se han determinado "por desplazamiento" en vez de partiendo de cero. Esto se cuestiona además porque son incoherentes con el plano/croquis presentado	micrófono y fuente presentan variaciones muy ligeras porque las posiciones se han determinado "por

Las observaciones recogidas por los laboratorios en la ficha de resultados se ha dado traslado al coordinador autonomico para que le quede constancia de lo que el laboratorio ha querido transmitir. No se publican en este documento por motivos de confidencialidad.

SACE Subcomisión Administrativa para la Calidad de la Edificación

10. EVALUACIÓN GLOBAL

Se recoge en las siguientes tablas la evaluación global de los resultados aportados en los ensayos in situ de ACÚSTICA del EILA AQ20, de todos los laboratorios a nivel de Zona (recinto), tras el Análisis estadístico y evaluación Zscore (que se adjuntan en el Anexo I del presente documento).

Tabla 10.1. Evaluación global a nivel de Zona 08: AISLAMIENTO ACÚSTICO AÉREO ENTRE LOCALES (DnT)

Frecuencias	71 (001)	044	047	088	094	099	104	126	132	135	143	150	210	244	247	249	252	259
Dnt 100 HZ	S	AB	S	S	S	S	S	S	AN	S	S	S	AN	S	S	S	S	AN
125 HZ	AN	AN	S	S	S	AN	S	S	S	S	S	D	S	S	S	S	S	S
160 HZ	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S
200 HZ	AN	AN	S	AN	S	S	S	S	S	S	S	S	S	S	S	S	S	S
250 HZ	S	S	S	AB	S	S	S	S	S	S	S	S	S	S	S	S	S	S
315 HZ	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S
400 HZ	S	S	AN	AN	S	S	S	S	S	S	S	S	S	S	S	S	S	AN
500 HZ	AN	S	S	AN	S	\$	S	S	S	S	S	AN	S	S	S	S	S	S
630 HZ	AB	S	AB	AB	S	S	S	S	S	S	S	S	S	S	S	S	S	S
800 HZ	AB	S	S	AB	S	S	S	S	S	S	S	AB	S	S	S	S	S	S
1000 HZ	AB	S	S	AB	S	S	S	S	S	S	S	AB	S	S	S	S	S	S
1250 HZ	AB	S	S	AB	\$	AB	S	AN	S	S	AN (ud)	AB	S	S	S	S	S	S
1600 HZ	AB	S	S	AB	S	AB	S	S	S	S	S	AB	S	D	S	S	S	S
2000 HZ	AB	S	S	AB	S	AB	S	S	S	S	S	AB	S	S	S	S	S	S
2500 HZ	AB	S	S	AB	S	AB	S	S	S	S	S	AB	S	S	S	S	S	S
3150 HZ	AB	S	S	AB	S	AB	AN	AB	S	S	S	AB	S	S	AN	S	S	S
4000 HZ	AB	S	S	AB	S	AB	S	AB	S	S	S	AB	S	S	S	S	><	S
5000 HZ	AB	S	S	AB	S	AB	AB	S	S	S	S	AB	S	S	AB	S	><	S
Expresion unidades con un decimal	SI	SI	SI	SI	SI	SI	SI	SI	SI	SI	SI	SI	SI	NO	SI	SI	SI	SI
Incertidumbre (opcional)	SI	NO	NO	NO	NO	SI	SI	NO	NO	NO	SI	SI	NO	SI	NO	SI	NO	NO
№ Verificaciones (minim. Al inicio y al final)	5	2	10	5	5	10	5	10	10	5	5	5	5	5	7	5	1	1

Resultado satisfactorio (S); Resultado dudoso (D); Resultado insatisfactorio (I); Aberrante (AB); Anómalo (AN); Descartado (SD); (X) no participa.

NOTA: El código 071, en los análisis estadísticos puede aparecer con el código 001 (ud) Códigos con errores de transcripción que se han corregido. Ver análisis estadístico.

Desviación señalada dudosa por consistencia de Mandel

En base al diagrama de Cajas y bigotes que se adjunta en el informe estadístico, los códigos que recogen las siglas de "AT. LEVE" son atípicos leves. Son valores (máximo o mínimo) que superan la longitud límite de los bigotes (1,5 x Recorrido intercuartil o longitud de la caja (RIC)) y se identificarán individualmente. Si este valor, superase en 3 veces el RIC, sería un valor extremadamente atípico y los códigos serían identificados con las siglas "AT.EXT".

Asimismo, en el interior del documento, se recogen evidencias de posibles No Conformidades (NC) para que el órgano competente realice las acciones que considere oportunas.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

Tabla 10.2. Evaluación global a nivel de Zona 08: TIEMPO DE REVERBERACIÓN (T20)

Frecuencias	71 (001)	044	047	088	094	099	104	126	132	135	143	150	210	244	247	249	252	259
100 HZ	S	S	S	S	S	S	S	S	S	S	S	S	S (ud)	S	S	S	S	S
125 HZ	S	AB (ud)	S	S	S	AB	S	S	S	S	S	S	S	S	S	S	S	S
160 HZ	S	AB	S (ud)	S	S	AB	AB	S	S	S	S	S	S	S	S	S	AB	AB
200 HZ	AB	AN	S	S	S	AB	AN	AB	S	S	S	S	S	S	S	S	AN	S (ud)
250 HZ	AB	S	S	S	S	AB	S	AB	S	S	S	AB	S	S	S	S	AB	S
315 HZ	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S	S
400 HZ	AB	S	S	S	D	AB	S	AB	S	S	S	S	S	S	S	S	S	AB
500 HZ	D	S	S	S	S	AB	S	AB	S	S	S	S	S	S	S	S	AB	S
630 HZ	AN	AB	S	AB	S	AN	AN	S	S	S	S	S	S	S	S	S	S	AB
800 HZ	AN	S	S	AN	S	AB	S	S	S	S	S	AB	S	S	S	S	S	AN
1000 HZ	S	S	S	AB	S	AB	AN	AB	S	S	S	S	S	S	S	S	S	S
1250 HZ	AB	AB	S	S	S	AB	S	S	S	S	S	S	S	S	S	S	AB	S
1600 HZ	S	S	S	S	S	AB	S	S	S	S	AB	S	S	S	S	S	S	S
2000 HZ	AN	S	S	S	S	AB	S	S	S	S	AN	S	S	S	S	S	S	AN
2500 HZ	S	S	S	S	S	AB	S	S	S	S	S	S	S	S	S	S	AB	S
3150 HZ	S	S	S	S	S	AB	S	S	S	S	S	S	S	S	S	S	S	S
4000 HZ	S	S	S	S	S	AB	AB	S	S	S	AB	S	S	S	S	S	S	AB
5000 HZ	S	S	S	S	AB	AB	S	S	S	S	AB	S	S	S	S	S	S	AB
Expresion unidades con dos decimales	SI	SI	SI	SI	NO	SI	SI	SI	SI	SI	SI	SI	SI	NO	SI	NO	SI	NO
Incertidumbre (opcional)	SI	NO	NO	NO	SI	SI	SI	NO	NO	SI	SI	SI	NO	SI	NO	SI	NO	NO
№ Verificaciones (minim. Al inicio y al final)	10	0	10	5	5	10	5	10	10	5	5	5	5	5	7	5	1	1
Zona Laboratorio	C08	C08 044	C08 047	C08 088	C08	C08	C08	C08	C08	C08	C08	C08	C08 210	C08 244	C08 247	C08 249	C08 252	C08 259
DnT,w	AB	S	S	AB	S	AB (*)	S	S	S	S	S	AB	S	S	S	S	S	S
DnT,A	AB	AB	S	AB	S	AB	S	AB	S	S	S	S (**)	S	S	S	S	AB	S
Expresion unidades nºentero	NO	SI	SI	SI	SI	NO	SI	SI	SI	SI	SI	SI	SI	SI	SI	SI	SI	SI

Resultado satisfactorio (S); Resultado dudoso (D); Resultado insatisfactorio (I); Aberrante (AB); Anómalo (AN); Descartado (SD); (X) no participa.

- (Ud) Códigos con errores de transcripción que se han corregido. Ver análisis estadístico.
- (*) C 099: Revisar cálculos
- (**) C150: Al aplicar el factor de corrección por tiempo de reverberación T20 resulta negativo. Revisar cálculos
- Desviación señalada dudosa por consistencia de Mandel

En base al diagrama de Cajas y bigotes que se adjunta en el informe estadístico, los códigos que recogen las siglas de "AT. LEVE" son atípicos leves. Son valores (máximo o mínimo) que superan la longitud límite de los bigotes (1,5 x Recorrido intercuartil o longitud de la caja (RIC)) y se identificarán individualmente. Si este valor, superase en 3 veces el RIC, sería un valor extremadamente atípico y los códigos serían identificados con las siglas "AT.EXT".

Asimismo, en el interior del documento, se recogen evidencias de posibles No Conformidades (NC) para que el órgano competente realice las acciones que considere oportunas.

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

Zona 08

VALOR ASIGNADO PARA CADA TERCIO DE OCTAVA (descartados valores aberrantes/anómalos)

	VALOR	DESVIACIÓN ESTANDAR	20
Frecuencias	ASIGNADO	(SDL)	COEF.VARIACIÓN
DnT Frecuencia 100 hz	36,2	0,76	2,10%
DnT Frecuencia 125 hz	34,5	1,42	4,13%
DnT Frecuencia 160 hz	34,1	1,84	5,41%
DnT Frecuencia 200 hz	35,2	1,11	3,15%
DnT Frecuencia 250 hz	35,3	1,60	4,53%
DnT Frecuencia 315 hz	36,4	1,34	3,69%
DnT Frecuencia 400 hz	38,4	1,02	2,66%
DnT Frecuencia 500 hz	40,6	0,74	1,83%
DnT Frecuencia 630 hz	42,6	0,78	1,84%
DnT Frecuencia 800 hz	44,1	0,58	1,32%
DnT Frecuencia 1000 hz	45,0	0,58	1,29%
DnT Frecuencia 1250 hz	46,8	0,37	0,79%
DnT Frecuencia 1600 hz	47,5	0,34	0,71%
DnT Frecuencia 2000 hz	47,7	0,54	1,13%
DnT Frecuencia 2500 hz	48,5	0,40	0,83%
DnT Frecuencia 3150 hz	49,8	0,49	0,98%
DnT Frecuencia 4000 hz	50,8	0,57	1,11%
DnT Frecuencia 5000 hz	52,7	0,48	0,92%
DnTw			
AISLAM.ACUSTIC.AEREO	44	0,66	1,48%
GLOBAL			
DnTA AISL.ACUSTIC.AEREO (CTE)	44	0,64	1,44%
T20 Frecuencia 100 hz	1,15	0,16	13,74%
T20 Frecuencia 125 hz	1,11	0,07	6,29%
T20 Frecuencia 160 hz	1,33	0,09	6,97%
T20 Frecuencia 200 hz	1,39	0,11	7,91%
T20 Frecuencia 250 hz	1,39	0,06	4,39%
T20 Frecuencia 315 hz	1,41	0,10	7,03%
T20 Frecuencia 400 hz	1,44	0,05	3,27%
T20 Frecuencia 500 hz	1,48	0,05	3,09%
T20 Frecuencia 630 hz	1,54	0,04	2,81%
T20 Frecuencia 800 hz	1,57	0,05	3,11%
T20 Frecuencia 1000 hz	1,52	0,05	3,07%
T20 Frecuencia 1250 hz	1,56	0,07	4,46%
T20 Frecuencia 1600 hz	1,53	0,08	5,31%
T20 Frecuencia 2000 hz	1,44	0,07	4,75%
T20 Frecuencia 2500 hz	1,35	0,06	4,65%
T20 Frecuencia 3150 hz	1,31	0,07	5,40%
T20 Frecuencia 4000 hz	1,30	0,08	6,17%
T20 Frecuencia 5000 hz	1,21	0,08	6,53%

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

REPETIBILIDAD- REPRODUCIBILIDAD (descartados valores aberrantes/anómalos)

ENSAYOS	REPETIBILI		VARIANZA	REPRODUCI	
	SU VARIA		INTERLABORATORIOS	Y SU VARIAN	
Dat Face are an also 100 ha	Sr ²	r	SL 2	SR ²	R
DnT Frecuencia 100 hz	2,58	4,4	0,06	2,64	4,5
DnT Frecuencia 125 hz	1,21	3,0	1,79	2,99	4,8
DnT Frecuencia 160 hz	2,58	4,5	2,89	5,47	6,5
DnT Frecuencia 200 hz	1,57	3,5	0,91	2,48	4,4
DnT Frecuencia 250 hz	1,03	2,8	2,36	3,39	5,1
DnT Frecuencia 315 hz	1,81	3,7	1,45	3,26	5,0
DnT Frecuencia 400 hz	0,99	2,8	0,85	1,84	3,8
DnT Frecuencia 500 hz	1,00	2,8	0,35	1,35	3,2
DnT Frecuencia 630 hz	0,56	2,1	0,50	1,06	2,9
DnT Frecuencia 800 hz	0,46	1,9	0,25	0,70	2,3
DnT Frecuencia 1000 hz	0,31	1,5	0,28	0,59	2,1
DnT Frecuencia 1250 hz	0,17	1,1	0,10	0,27	1,4
DnT Frecuencia 1600 hz	0,20	1,2	0,07	0,27	1,5
DnT Frecuencia 2000 hz	0,20	1,2	0,25	0,45	1,9
DnT Frecuencia 2500 hz	0,14	1,0	0,14	0,27	1,4
DnT Frecuencia 3150 hz	0,13	1,0	0,21	0,34	1,6
DnT Frecuencia 4000 hz	0,26	1,4	0,27	0,53	2,0
DnT Frecuencia 5000 hz	0,22	1,3	0,19	0,41	1,8
DnTw AISLAM.ACUSTIC.AEREO GLOBAL	0,29	1,5	0,37	0,66	2,3
DnTA AISL.ACUSTIC.AEREO (CTE)	0,26	1,4	0,36	0,61	2,2
T20 Frecuencia 100 hz	0,0170	0,4	0,0230	0,0400	0,6
T20 Frecuencia 125 hz	0,0090	0,3	0,0030	0,0110	0,3
T20 Frecuencia 160 hz	0,0048	0,2	0,0076	0,0124	0,3
T20 Frecuencia 200 hz	0,0040	0,2	0,0120	0,0160	0,4
T20 Frecuencia 250 hz	0,0034	0,2	0,0031	0,0064	0,2
T20 Frecuencia 315 hz	0,0112	0,3	0,0075	0,0187	0,4
T20 Frecuencia 400 hz	0,0027	0,1	0,0017	0,0043	0,2
T20 Frecuencia 500 hz	0,0058	0,2	0,0009	0,0067	0,2
T20 Frecuencia 630 hz	0,0015	0,1	0,0016	0,0030	0,2
T20 Frecuencia 800 hz	0,0016	0,1	0,0021	0,0036	0,2
T20 Frecuencia 1000 hz	0,0017	0,1	0,0018	0,0036	0,2
T20 Frecuencia 1250 hz	0,0011	0,1	0,0046	0,0058	0,2
T20 Frecuencia 1600 hz	0,0009	0,1	0,0064	0,0073	0,2
T20 Frecuencia 2000 hz	0,0004	0,1	0,0046	0,0050	0,2
T20 Frecuencia 2500 hz	0,0009	0,1	0,0038	0,0047	0,2
T20 Frecuencia 3150 hz	0,0008	0,1	0,0049	0,0057	0,2
T20 Frecuencia 4000 hz	0,0004	0,1	0,0063	0,0067	0,2
T20 Frecuencia 5000 hz	0,0002	0,0	0,0062	0,0064	0,2

Zona 08

Comité de infraestructuras para la Calidad de la Edificación

11.AGRADECIMIENTOS

Este ejercicio interlaboratorios en el área de ACÚSTICA IN SITU, ha cubierto los objetivos y expectativas previstas, debido fundamentalmente, a la buena predisposición, trabajo, y esfuerzo, de todas las personas y entidades participantes en el mismo, para los cuales, sirva el presente recordatorio, y el más sincero agradecimiento.

COORDINADORES GENERALES

Emilio Meseguer Peña

Victoria de los Ángeles Viedma Peláez

Elvira Salazar Martínez

Herencia Ruíz

COORDINADORES AUTONÓMICOS

Miguel Ángel Junta de Andalucía Santos Amaya

Antonio Junta de Andalucía

Carlos Cuerda Sierra Junta de Andalucía

Ana Rico Oliván Gobierno de Aragón

Gobierno de Aragón Esperanza Jarauta Pérez

Iuan Carlos Cortina Villar Principado de Asturias

Ana Carolina Álvarez Cañete Principado de Asturias

Govern de les Illes Balears Yolanda Garví Blázquez

Comité de infraestructuras para la Calidad de la Edificación

SACE Subcomisión Administrativa para la Calidad de la Edificación

Inmaculada Alcolecha Fuente Govern de les Illes Balears 捌 G CONSELLERIA
O MOBILITAT I HABITATGE
I DIRECCIÓ GENERAL
B ARQUITECTURA

Gobierno de Canarias Javier Jubera Pérez.

Gobierno de Canarias

Consejería de Obras Públic y Transportes

Enrique Alonso Moreno

Comunidad Autónoma de Cantabria

GOBIERNO CANTABRIA

Joan Teixidó Vidal

Generalitat de Catalunya

Generalitat de Catalunya Departament de Territori i Sostenibilitat

Agustí Careta Pons

Generalitat de Catalunya

Generalitat de Catalunya Departament de Territori i Sostenibilitat

Marta Iniesto Alba

Junta de Comunidades de Castilla - La Mancha

Felicísimo Garzón Herrera

Junta de Castilla y León

María del Mar Domínguez Sierra

Junta de Castilla y León

José Ángel Rena Sánchez

Junta de Extremadura

Mª José Paniagua Mateos

Xunta de Galicia

Israel López García

Comunidad Autónoma de La Rioja

Salud García López

Comunidad Autónoma de Madrid

Antonio Azcona Sanz

Comunidad Autónoma de Madrid

Comunidad

Comité de infraestructuras para la Calidad de la Edificación

Subcomisión Administrativa para la Calidad de la Edificación

María Teresa Elvira Rosado

Comunidad Autónoma Madrid

de

Teresa Barceló Clemares

Comunidad Autónoma de la

Región de Murcia

Mª Carmen Mazkiarán López de

Goikoetxea

Gobierno de Navarra

Juan José Palencia Guillén

Generalitat Valenciana

Elvira Salazar Martínez

Gobierno Vasco

Lourdes González Garrido

Gobierno Vasco

Alberto Apaolaza Sáez de Viteri

Gobierno Vasco

Ane Hernández Perez de Guereñu Gobierno Vasco

ORGANIZACIÓN Y GESTIÓN PROGRAMA ESPECÍFICO EILA ACÚSTICA 2020 RECINTOS CEDIDOS PARA LOS ENSAYOS DE ACÚSTICA:

Laboratorio Control De Calidad De La Edificación de Gobierno Vasco

País Vasco

Centro Formación Comunidad De Madrid Paseo de Eduardo Dato nº 2 duplicado, semisótano.

Comunidad de Madrid

CEIP Guillermo Fatás

Zaragoza (Aragón)

Instituto Educación Segundaria "Miguel de Cervantes"

Murcia

Laboratorio de Vivienda

Sevilla

Laboratorio de Vivienda en el Polígono Juncaril,

Albolote (Granada)

IES Antonio Fraguas

Santiago Compostela (Galicia)

Comité de infraestructuras para la Calidad de la Edificación

Subcomisión Administrativa para la Calidad de la Edificación

RECINTOS CEDIDOS PARA LOS ENSAYOS DE ACÚSTICA:

Cáceres (Extremadura) **Demostradores Experimentales EDEA**

Servicio de Gestión Integral de los Edificios. Gerencia de Servicios Comunes. Departamento de la Vicepresidencia y de Economía y Hacienda.

Barcelona (Cataluña)

Laboratorio de Vivienda Canarias

ELABORACIÓN PROTOCOLOS Y GESTIÓN DE LAS FICHAS, ANÁLISIS ESTADÍSTICO.

- Amelia Romero Fernández
- Mari José De Rozas López
- Victoria de los Ángeles Viedma Peláez
- Fernando Meseguer Serrano
- IETCC, Instituto de Ciencias de la Construcción Eduardo Torroja:

LABORATORIOS PARTICIPANTES POR COMUNIDADES AUTÓNOMAS EN EILA 2020: **IUNTA DE ANDALUCIA**

1. Centro De Estudio De Materiales Y Control De Obra S.A. (Cemosa) (Co)	AND-L-003
2. Centro De Estudio De Materiales Y Control De Obra S.A. (Cemosa) (Ma)	AND-L-018
3. Centro De Estudio De Materiales Y Control De Obra S.A. (Cemosa) (Se)	AND-L-074
4. Centro De Estudio De Materiales Y Control De Obra S.A. (Cemosa)(Gr)	AND-L-076
5. Ruido De Fondo S.L. (Gr)	AND-L-110
6. Aislateq Consultores Acústicos S.L. (Ja)	AND-L-118
7. Acústica Uno S.L.U. (Ma)	AND-L-132
8. Juan Manuel Gonzalez Lopez "Entremedianeras" (Se) –	AND-L-134
9. Ingeniería Audiovisual Andaluza De Telecomunicaciones, S.L.	AND-L-153
"Avandtel" (Se)	
10. Elabora, Agencia para la Calidad en la Construcción, S.L. (Se)	AND-L-155
11. T-Ingeniamos Engineering Managment S.L. (Ma)	AND-L-181
12. SEBASTIAN SÁNCHEZ MARTÍNEZ (GR) – AC "Insonar"	AND-L-197
13. Belios Acústica Sl	AND-L-224
14. Alfredo Navas González (Ma)	AND-L-227
15. Juan José Martínez Domínguez (JA) AC	AND-L-230
16. Idata Ingeniería Domótica, Acústica y de Telecomunicaciones Andaluza	AND-L-234
S.L Málaga	
17. Digileda S.L. (Co)	AND-L-243
18. Dba Acústica Integral Aplicada S.L. (Ma)	AND-L-245
19. Miguel Rojo López – (Ma)	AND-L-250
20. Tecnitax 94 S.L. (Gr)	AND-L-251
l.	

Comité de infraestructuras para la Calidad de la Edificación

SACE

Subcomisión Administrativa para la Calidad de la Edificación

21. Acustic Drywall S.L. (Al)	AND-L-252
22. María De La Luz Pousibet Requena (Técnica En Acústica) – Jaén	AND-L-260
23. José Manuel Oliva Almonte (Se) Ac (Inlisur)	AND-L-262
24. Juan José Tornay Fentesal (Ca)	AND-L-266
25. Jen Ingenieros Asociados S.L. (Ma)	AND-L-267
26. Ana Prado Camacho (Ja)	AND-L-270

GOBIERNO DE ARAGÓN

1. TPF GETINSA-EUROESTUDIOS, SL - Zaragoza	ARA-L-001
2. Igeo-2, S.L Delegación de Zaragoza	ARA-L-021
3. Solitel Proyectos e Ingeniería de Telecomunicaciones, S.L.	ARA-L-017
4. Laboratorio para la Calidad de la Edificación del Gobierno de Aragón	(oficial)

GOBIERNO DE CANARIAS

1. Controles Externos de la Calidad Canarias, SL	CNR-L-003
2. AND Atlante	CNR-L-045
3. Servicio de Laboratorios y Calidad de la Construcción. Consejería de	(oficial)
Obras Públicas y Transportes - Delegación Tenerife	

COMUNIDAD AUTÓNOMA DE CANTABRIA

1. Ingeniería Acústica Del Cantábrico	CTB-L-012
---------------------------------------	-----------

GENERALITAT DE CATALUNYA

1. Centre d'estudis de la construcció i anàlisi de materials, SLU (CEO	CAM) CAT-L-027
2. Lostec, SA	CAT-L-028
3. Labocat Calidad, SL	CAT-L-054
4. BAC Engineering Consultancy Group, SL (BAC)- Cubelles	CAT-L-104
5. TPF GETINSA-EUROESTUDIOS, SL - Barberà del Vallès	CAT-L-109

JUNTA DE EXTREMADURA

1.	Intromac	EXT-L-007
2.	Gestión y Control del Ruido Extremadura	EXT-L-017
3.	SILENTIA Ingeniería Acústica, S.L.	EXT-L-021
4.	Belio CB	EXT-L-023

XUNTA DE GALICIA

Ī	1.	Control y Estudios, SL (CYE)	GAL-L-005
Ī	2.	Cenilesa	GAL-L-010

Comité de infraestructuras para la Calidad de la Edificación

Subcomisión Administrativa para la Calidad de la Edificación

3. Galaicontrol Vigo, SL	GAL-L-014
4. Investigación y Control Lugo SL (INVECO)	GAL-L-016
5. Applus Norcontrol, SL	GAL-L-018
6. IG Calidad	GAL-L-028
7. EPTISA, Servicios de Ingeniería, SL - Delegación de La Coruña	GAL-L-034
8. Enmacosa Consultoría Técnica SA	GAL-L-056

COMUNIDAD AUTÓNOMA DE LA RIOJA

1. Certiacustic- Arquitec S.L.	LRJ-L-006

COMUNIDAD AUTÓNOMA DE MADRID

1. Instituto Técnico de Control S.A. (ITC)	MAD-L-027
2. Instituto Técnico de Materiales y Construcciones (INTEMAC)	MAD-L-030
3. Centro de Estudios de Materiales y Control de Obra S.A (CEMOSA)	MAD-L-036
4. Ingeniería Acústica García-Calderón S.L. (IAGC)	MAD-L-044
5. Proyma Ingeniería Acústica S.L.	MAD-L-045
6. (LABINGE) Laboratorio de Ingenieros del ejército "GENERAL MARVÁ"	MAD-L-058
7. Control de Estructuras y Geotecnia SL (CEyGE)	MAD-L-061
8. Laboratorio De Control De Calidad E Ingeniería, S.L. (LCCI)	MAD-L-064
9. Control de estructuras y suelos SA (CONES)	MAD-L-065
10. LABORATORIO EN. ACÚSTICOS (LABENAC)	MAD-L-073
11. Asesoría, Rehabilitación, Proyectos y Análisis Técnicos S.L.(ARPA)	MAD-L-075
12. Bureau Veritas Inspección Y Testing S.L.	MAD-L-081

COMUNIDAD AUTÓNOMA DE LA REGIÓN DE MURCIA

Centro de Estudios, Investigaciones y Control de Obras, S.L. (CEICO, SL)	MUR-L-005
2. Inversiones de Murcia, S.L., laboratorios HORYSU- Delegación de Cartagena	MUR-L-006
3. Asociación Empresarial Investigación Centro Tecnológico de la Construcción Región de Murcia (CTCON)	MUR-L-015

GOBIERNO DE NAVARRA

1.	Laboratorio de Ensayos Navarra SA (LABENSA)	NAV-L-003
2.	ID Ingeniería acústica	NAV-L-012
3.	Eurocontrol	NAV-L-016

Comité de infraestructuras para la Calidad de la Edificación

Subcomisión Administrativa para la Calidad de la Edificación

COMUNIDAD VALENCIANA

1. Consulteco, S.L.	VAL-L-013
2. Sonora Telecomunicacions, S.L.P	VAL-L-050
3. C2C Servicios Técnicos de Inspección S.L Delegación de Albaida (Valencia)	VAL-L-058
4. Laeco	VAL-L-070
5. PRECOVER ACÚSTICA Y MEDIO AMBIENTE	VAL-L-073

GOBIERNO VASCO

1. EPTISA-CINSA Ingeniería y Calidad, SA - Grupo EP	PVS-L-002
2. SAIO TEGI, SA	PVS-L-004
3. GIKE, SA Control Calidad Edificación	PVS-L-005
4. AAC Centro de Acústica Aplicada SL	PVS-L-024
5. BUREAU VERITAS Inspección y Testing, S.L.U.	PVS-L-029
6. GSA INGENIERÍA ACÚSTICA	PVS-L-031
7. Imatek (Ingurumena Advanced Technologies)	PVS-L-032
8. Laboratorio de Evaluación y Control Del Ruido S.L. (LAECOR)	PVS-L-033

ANEXO I (en documentos aparte: EILA20 DnT y T20. pdf)

ANÁLISIS ESTADÍSTICO Y ZSCORE DE RESULTADOS RECINTO Z08:

- 1. MEDICIÓN IN SITU DEL AISLAMIENTO ACÚSTICO A RUIDO AÉREO ENTRE LOCALES (DNT)
- 2. MEDICIÓN DE PARÁMETROS ACÚSTICOS EN RECINTOS. PARTE 2: TIEMPO DE REVERBERACIÓN EN RECINTOS **ORDINARIOS (T20)**