

NTRODUCCION	3
1. OBJETIVOS DEL EILA22	3
2. NORMATIVA DE APLICACIÓN	4
3. ESCENARIO DE ENSAYO.	
RECINTO Z02:	
4. ANÁLISIS DE LOS RESULTADOS APORTADOS	
4.1. ESTUDIO PRELIMINAR	
4.2. Equipamiento utilizado	
4.3. Observaciones relativas al ensayo/desviaciones a la norma	7
4.4. Datos sobre las mediciones	
4.5. Registro de las calibraciones	8
4.6. Posicionamiento de la fuente y del micro	8
4.7. Diferencia de niveles estandarizada (DnT). Espectro y niveles globales	8
4.8. Otros datos	9
4.9. De estos datos, se agrupan en los siguientes valores:	
A) VALORES NO DESCARTADOS: DESVIACIONES NO EXCLUYENTES	9
B) VALORES NO DESCARTADOS: DESVIACIONES EXCLUYENTES:	10
• C) VALORES DESCARTADOS (Ver aptado 9 del informe): DESVIACIONES EXCI	LUYENTES10
4.10. ANÁLISIS ESTADÍSTICO	11
4.11. VALOR ASIGNADO	
4.12. DATOS DE PRECISIÓN	
5. INCERTIDUMBRE TÍPICA DEL EJERCICIO (desviación típica in situ)	
6. RESULTADOS MEDICIÓN IN SITU DEL AISLAMIENTO ACÚSTICO A RUIDO AI	
7. DATOS DE PRECISIÓN	
8. EVIDENCIAS AL PROCEDIMIENTO DE LOS ENSAYOS (VER PTO 4 DEL INFOR	
8.1. Evidencias Detectadas, por código: ZONA 02	
9. EVALUACIÓN GLOBAL	
10. AGRADECIMIENTOS	23

INTRODUCCION

1. OBJETIVOS DEL EILA22

Los ejercicios de intercomparación entre laboratorios tienen su origen y fundamento en la norma UNE- EN ISO/IEC 17025, que establece que, entre otros, los laboratorios deben participar en comparaciones interlaboratorios o programas de ensayos de aptitud.

Según define la Guía sobre la participación en programas de intercomparación G-ENAC-14, "las intercomparaciones consisten en la organización, el desarrollo y la evaluación de ensayos del mismo ítem o ítems similares por varios laboratorios, de acuerdo con condiciones preestablecidas."

El EILA-AQ22 ha adoptado los siguientes objetivos:

- Comprobación del comportamiento general de los ensayos, analizando variables que afectan en el desarrollo del ejercicio y de los resultados obtenidos.
- Identificación de problemas en los laboratorios e inicio de actividades correctivas.
- Establecimiento de eficacia y comparabilidad de ensayos.
- Identificación de diferencias entre laboratorios.
- Caracterización de métodos.
- Educación de los laboratorios participantes, basándose en los resultados de su participación.

2. NORMATIVA DE APLICACIÓN.

El tratamiento estadístico de los resultados obtenidos por los laboratorios se analiza siguiendo las siguientes normas:

- UNE 82009-2:1999 "Exactitud (veracidad y precisión) de resultados y métodos de medición. Parte 2: Método básico para la determinación de la repetibilidad y la reproducibilidad de un método de medición normalizado".
- UNE-EN ISO/IEC 17043:2010 "Evaluación de la conformidad. Requisitos generales para los ensayos de aptitud", tomando como valor de referencia del ensayo los valores medios no aberrantes obtenidos.
- UNE-EN ISO 12999-1:2021 "Determinación y aplicación de las incertidumbres de medición en la acústica de edificios"

Además, se consideran dos documentos de ayuda elaborados por la Entidad Nacional de **Acreditación ENAC** para la realización de los ejercicios de intercomparación:

- NT-03 "Política de ENAC sobre Intercomparaciones".
- **G-ENAC-14** "Guía sobre la participación en programas de intercomparación.".

Asimismo, cada ensayo será evaluado con el cumplimiento de las siguientes Normas UNE, considerando:

	AREA PRUEBAS DE SERVICIO: EILA AQ22											
Alcance	Código	Ensayo	Norma									
Alcance 1	PS08	Medición in situ del aislamiento acústico a ruido aéreo entre locales	UNE-EN ISO 16283-1:2015 (+UNE-EN ISO 16283- 1:2015/A1:2018)									

Rango de medida: Bandas de frecuencia de un tercio de octava comprendida entre 100 Hz y

5000 Hz, Posiciones de micrófono fijas.

Resultados a obtener:

- Espectro de la *Diferencia de niveles estandarizada* D_{nT} (dB) en el rango de frecuencias de 100 Hz a 5000 Hz en bandas de tercio de octava expresada con 1 decimal;
- El valor global D_{nTw} en dB, con sus correspondientes términos de adaptación espectral, por ruido rosa (C) y por ruido de tráfico (Ctr) añadidos para el rango de frecuencias de 100 a 5000 Hz expresados como número entero, calculados de acuerdo con la norma UNE-EN ISO 717-1: 2021;

$$D_{nT,w} + C_{100-5000} y D_{nT,w} + C_{tr,100-5000}$$

• El valor global de la *Diferencia de niveles estandarizada*, ponderada A (DnT,A) de acuerdo al método de cálculo recogido en el DB HR de Protección frente al ruido de diciembre de 2019, expresada como número entero.

3. ESCENARIO DE ENSAYO.

Los laboratorios de las diferentes Comunidades Autónomas, inscritos en estos ensayos, se han agrupado, con la premisa de grupos ≥ 8 participantes para realizar 5 repeticiones del ensayo, por cada banda de frecuencia y por alcance. En los casos que no se ha alcanzado este número mínimo de participantes, se ha ampliado el número de repeticiones del ensayo a 8, en base a la norma UNE-EN ISO 12999-1: 2021.

C.A	SEDE (agrupación)	RECINTO	Participante s	Fechas de ensayo		
Andaluaía	GRANADA (*)	Z18	8	27 junio/15 de julio		
Andalucía	SEVILLA (*)	Z17	12	06 junio/27 julio		
Aragón						
Navarra	ARAGÓN	Z16	8	4 julio/21 de julio		
La Rioja						
Cantabria	PAIS VASCO (*) Z02		9	07/23 junio		
País Vasco	PAIS VASCO ()	202	9	·		
Cataluña	CATALUÑA (*)	Z09	11	30 junio/18 julio		
Canarias	CANARIAS	Z13	3	28 junio /20 julio		
Extremadura		Z17 y Z18	4	06/22 junio		
Galicia						
Asturias	GALICIA	Z07	9	04/28 julio		
Castilla y León						
Madrid	MADRID	Z05	10	19 mayo al 25 noviembre		
Murcia	MURCIA	Z04	5	12/10 julio		
Valencia	MONOIA	204	3	12/19 julio		

Los escenarios de ensayo se han ubicado en edificios reales, es decir, que están en uso. La mayoría han sido edificaciones docentes, que, en época estival están desocupados. Y sino, se han buscado recintos de la propia Administración, dedicados a laboratorio o funciones administrativas, que, en todo caso, se han adecuado para realizarlos.

Respecto al control de la estabilidad de las muestras a lo largo del ejercicio, los coordinadores han realizado controles visuales periódicos, y en cuatro de las agrupaciones, incluso, han seleccionado a un laboratorio para realizar controles periódicos, al inicio y al final del ejercicio, así como a la mitad del mismo. Se ha confirmado la estabilidad del recinto. Son los señalados con un asterisco en la tabla superior.

Los recintos elegidos han tenido un volumen mayor de 10 m3 y menor que 250 m3 y han sido colindantes horizontalmente, salvo en la Zona 16 que han sido en vertical. El elemento de ensayo han sido parejas de recintos, y en la medida de lo posible, se han seleccionado aquellos en los que las puertas estuvieran lo más alejadas posible de la partición.

Las condiciones ambientales en el interior de los recintos han cumplido con los siguientes valores, compatibles con la instrumentación de medida:

-Temperatura de -10°C a +50°C, y Humedad < 90% (a 40°C)

RECINTO Z02:

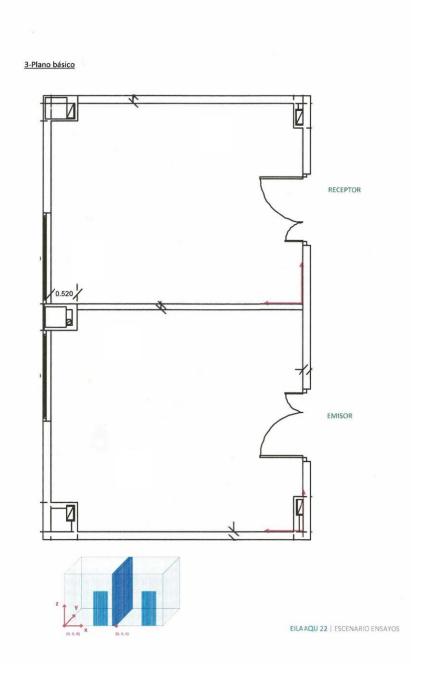


Figura 3.1. Plano de los recintos entregado a los laboratorios participantes en la Zona

Observaciones de los laboratorios:

En algunos de los ensayos se supera la diferencia máxima de 8 dB entre las bandas de 100 H z y 125 Hz. No se respeta la distancia mínima de 0,7 m entre planos de las posiciones de la fuente en el eje z. Se detecta una desviación en los resultados obtenidos a bajas frecuencias (100-160 Hz); se han investigado las causas, descartando que se deba a la metodología de ensayo ni a la instrumentación empleada.

4. ANÁLISIS DE LOS RESULTADOS APORTADOS

4.1. ESTUDIO PRELIMINAR

El primer paso es un Estudio preliminar (pre-estadístico) de todos los datos aportados por los laboratorios participantes, volcados de las fichas de resultados, y elaboradas ex profeso para cada ensayo.

En este punto, el análisis preliminar marca aquellos valores sospechosos que puedan explicarse como un "error técnico humano" y se filtran los valores descartados que, en general, son por la incorrecta ejecución de la norma o del protocolo específico.

Para ello, se investiga primero si el resultado se ha debido a un descuido de transcripción, o por no fijarse en la expresión de las unidades que se estaba pidiendo o por situar el valor en la celda equivocada. Si es así, el resultado se considera sospechoso, se reemplaza por el valor correcto en el análisis estadístico, y se deja señalado en el apartado observaciones del análisis.

El segundo paso, es revisar los siguientes datos aportados por los laboratorios, para filtrar los que son descartados y no son analizados estadísticamente, o marcados por ser desviaciones excluyentes, pero no descartables en este ejercicio:

4.2. Equipamiento utilizado

- Descripción del equipamiento empleado y adecuación a las normas de ensayo/protocolo; así como realización del estudio de directividad de la fuente como comprobante del cumplimiento de los requisitos establecidos en el Anexo A de la norma de ensayo UNE-EN ISO 16283-1(*).
- Fechas de verificación periódica anual de la instrumentación sujeta a metrología legal; comprobación de vigencia en relación a la fecha de realización de los ensayos (**);

Importante: Cuando el equipo utilizado está fuera de la metrología legal (fechas de verificación fuera del periodo vigente) no se puede garantizar su trazabilidad metrológica y, por tanto, la fiabilidad de los resultados.

- (*) La fuente de ruido no está sujeta a una regulación específica en cuanto a control metrológico; no obstante, la norma UNE-EN ISO 16283-1 indica, en su apartado 7.2, que los altavoces deben cumplir con los requisitos establecidos en el Anexo A.
- (**) La adecuación de las fechas de ensavo y las fechas de verificación periódica de la instrumentación no se ha podido comprobar en todos los casos al no disponerse de todas las fechas de ensayo para cada laboratorio; en tales casos se indica en la valoración de resultados para su comprobación por parte de los coordinadores.

4.3. Observaciones relativas al ensayo/desviaciones a la norma

Observaciones aportadas por los laboratorios, ya sean desviaciones a la norma, incidencias o comentarios de carácter general;

4.4. Datos sobre las mediciones

o Configuración del sonómetro para una aplicación de incidencia aleatoria(*) (campo difuso);

(*) La norma UNE-EN ISO 16283-1 en su apartado 4.1 indica que la instrumentación para la medida de los niveles de presión sonora debe estar configurada para una aplicación de incidencia aleatoria.

- o Adecuación del nº de posiciones de fuente y nº de posiciones de micrófono conforme a la norma de ensayo de aislamiento a ruido aéreo (UNE-EN ISO 16283-1):
- Si ha sido necesario ecualizar la señal de ruido en emisión y si cumplen los niveles de emisión (o en qué frecuencias se da incumplimiento);
- o Adecuación del nº de posiciones de fuente, nº de posiciones de micrófono y nº de caídas para la medida de tiempo de reverberación conforme a la norma de ensayo de aislamiento a ruido aéreo (UNE-EN ISO 16283-1); (Véase nota a pie de página) (1)
- o Adecuación del tipo de fuente de ruido empleada en la medida del tiempo de reverberación para la técnica de ensayo seguida indicada conforme a la norma de ensayo de tiempo de reverberación (UNE-EN ISO 3382-2).

4.5. Registro de las calibraciones

Valores de las calibraciones realizadas;

4.6. Posicionamiento de la fuente y del micro

- o Definición del posicionamiento de fuentes y micrófonos de medida conforme a las indicaciones de las normas de ensayo;
- o Posicionamiento para conseguir repeticiones independientes y con aleatoriedad, conforme a las indicaciones del protocolo;
- O Valores x-y-z de las coordenadas de los puntos en la Ficha de Resultados y coherencia con la representación gráfica en los planos (cuando se han entregado).

4.7. Diferencia de niveles estandarizada (DnT). Espectro y niveles globales

- Realización del nº de repeticiones solicitado en el protocolo (mínimo 5 y máximo 8 repeticiones, a definir en función del número de laboratorios participantes);
- En relación con los resultados presentados:
 - Resultados presentados para todas las repeticiones requeridas;
 - Resultados presentados para todos los parámetros requeridos;
 - Margen de frecuencias de medida. Espectro completo de 100 a

5000 Hz;

- Parámetros correctos;
- Expresión de resultados correcta en cuanto al nº de decimales, número entero y redondeo, conforme al protocolo;
- Valor de la incertidumbre (opcional).

(1) Conforme al "Protocolo de actuación de ensayos acústicos EILA-AQ22", las medidas de tiempo de reverberación deben cumplir con lo dispuesto en el apartado 10 de la norma UNE-EN ISO 16283-1. Por tanto, se requiere un mínimo de 6 mediciones, siendo las configuraciones mínimas de medida válidas:

Método de ruido interrumpido (apartado 10.5): 1 posición de altavoz-3 posiciones de micrófono (fijas)-2 mediciones (caídas), o bien, 1 posición de altavoz-6 posiciones de micrófono (fijas)-1 medición (caída);

Método de la respuesta al impulso integrada (apartado 10.6): 1 posición de fuente-6 posiciones de micrófono (fijas)-1 medición (caída).

Se señalan, por tanto, como desviación a la norma aquellas configuraciones de medida que, aun cumpliendo con el mínimo de 6 mediciones, no cumplen con las combinaciones de medida anteriores establecidas por la norma UNE-EN ISO 16283-1. Esto no quiere decir que estas medidas no estén correctamente realizadas desde el punto de vista técnico ni que puedan suponer una alteración en los resultados.

4.8. Otros datos

- Los planos se revisan en detalle considerando los puntos 04 y 06 mencionados anteriormente. Son fundamentales para la interpretación del ensayo (clarificadores en algunos casos) y se espera no sólo que se entreguen, sino que estén correctamente realizados y completos.
- Coherencia de los datos geométricos de los recintos aportados (volúmenes, superficie) con relación al grupo;
- o Otras irregularidades detectadas.

4.9. De estos datos, se agrupan en los siguientes valores:

• A) VALORES NO DESCARTADOS: DESVIACIONES NO EXCLUYENTES

- La no configuración del sonómetro para una aplicación de incidencia aleatoria (campo difuso);
- <u>La norma UNE EN ISO 16283-1 en su apartado 4.1</u> indica que la instrumentación para la medida de los niveles de presión sonora debe estar configurada para <u>una</u> <u>aplicación de incidencia aleatoria (campo difuso).</u>

Esto se consideraría una desviación a la norma, pero podemos considerar despreciable la influencia que esto pueda tener en los resultados de este ensayo para ese ejercicio, considerándose, por tanto, una desviación no excluyente, pero sí **una evidencia que los señala** y que se recomienda

aporten documentación justificativa al respecto al órgano competente de su Comunidad Autónoma.

- Que el número de técnicos haya sido diferente en las distintas mediciones;
- Que se repitan puntos de medida. Cambiarle el nombre al punto no es cambiar de punto;
- o Modificar los posicionamientos en base a desplazamientos más o menos sutiles respecto a la primera repetición;
- No entregar los planos con los croquis del posicionamiento de medida o no entregarlos completos;

B) VALORES NO DESCARTADOS: DESVIACIONES EXCLUYENTES:

Indicar que no se han descartado en este ejercicio, aunque son factores que pueden distorsionar los resultados del interlaboratorio, ya que el laboratorio que los practica consigue por lo general una variabilidad de resultados baja (repetibilidad) y sin embargo, el valor obtenido no ser representativo de la variabilidad del campo sonoro.

- o Empleo de una sola posición de fuente para la medida de aislamiento acústico;
- o No se ha modificado el posicionamiento de los micrófonos en absoluto, siendo las 5 repeticiones iguales;
- o No modificar el posicionamiento de la fuente, pero sí el de las posiciones de micrófono:
- No modificar la altura de las posiciones de fuente y/o micrófono;
- Se han repetido posiciones entre repeticiones (más de dos repeticiones iguales o bien repeticiones por pares del tipo R1=R2, R3=R4, etc.)

C) VALORES DESCARTADOS (Ver aptado 8 del informe): DESVIACIONES EXCLUYENTES.

- Los datos que no vayan acompañados de los planos cumplimentados conforme
- No se han realizado todas las repeticiones que indica el protocolo (5/8);
- No se ha medido en todo el margen de frecuencias especificado (100-5000 Hz). Esto supone una exclusión parcial puesto que el laboratorio sólo podrá ser evaluado:
 - **Alcance 1:** Para los valores del espectro de DnT de las frecuencias que sí haya medido y valor DnT,w; siendo excluido de los parámetros DnT,w+C(100-5000), DnT,w+Ctr(100-5000) y DnT,A que necesariamente requieren la medida en el margen de frecuencias completo.

ANÁLISIS ESTADÍSTICO. 4.10.

Una vez que los datos se han revisado, se realiza el Análisis estadístico, donde no pasan aquellas mediciones cuyos datos sean los "descartados con desviaciones excluyentes" y se han corregido los "sospechosos". De este análisis conocemos:

- El número, p, de laboratorios participantes a analizar.
- El número, n, de mediciones en cada laboratorio (repeticiones del mismo ensayo).

Alcance 1	p= 11	n=5

Se realiza el análisis estadístico en base a las normas UNE 82009-2 y 82009-6 (equivalentes a las normas ISO 5725-2 e ISO 5725-6, respectivamente), referentes al Método básico de la repetibilidad y reproducibilidad de un método de medición normalizado. Esto significa que se realizan las siguientes aproximaciones:

- Técnica gráfica de consistencia, utilizando dos estadísticos determinados: interlaboratorios (h) e intralaboratorios (k) de Mandel.
- Ensayos de detección de resultados numéricos aberrantes: ensayos de variabilidad que se aplican solo en aquellos resultados donde el ensayo Mandel haya conducido a la sospecha:
 - **Ensayo de Cochran** (C): verifica el mayor valor de un conjunto de desviaciones típicas, siendo ello un test unilateral de valores aberrantes y
 - Ensayo de Grubbs (G): verifica la desviación estándar de todas las medias, eliminando de todo el rango de distribución de valores la/s media/s más alta/s y más baja/s, según si es el Simple Grubbs o el Doble Grubbs.

El valor será rechazado y dejará de ser analizado cuando sea aberrante/ anómalo tanto en las técnicas gráficas de consistencia como en los ensayos de detección de resultados **numéricos**. Para identificar si los resultados son anómalos y/o aberrantes, estos métodos comparan el valor estadístico resultante de h, k, C y G obtenido en el Análisis estadístico de los resultados aportados por los laboratorios, con los indicadores estadísticos y valores críticos recogidos en las Tablas 4, 5, 6 y 7 de las normas antes citadas para una (p) y una (n) conocidas, respectivamente.

4.11. VALOR ASIGNADO

Una vez descartados los resultados rechazados en el análisis estadístico (anómalos y aberrantes), el valor asignado se obtiene del promedio de los datos no descartados ni anómalos ni aberrantes.

DATOS DE PRECISIÓN 4.12.

En base al promedio de las varianzas o también conocido como METODO ANOVA (siglas de analisys of varience) recogido en la norma ISO 17025, se determina la repetibilidad "r "y reproducibilidad "R" del ensayo, por zona y bandas de frecuencia, para conocer las dispersiones de los resultados.

Para ello, se obtiene la desviación típica de repetibilidad o varianza Sr, a partir de las sumas de cuadrados de las diferencias entre las determinaciones individuales del laboratorio, y se calcula el límite de repetibilidad como raíz de su varianza por 2,8. Y la desviación típica intralaboratorios S_L, a partir de la diferencia entre el valor medio del laboratorio con la media de todo el grupo de distribución de la zona. La desviación típica de reproducibilidad o varianza SR será la raíz cuadrada de la suma de ambas varianzas.

Por tanto, la repetibilidad de los resultados significa que las mediciones sucesivas para un mismo ensayo y muestra, se efectúan en las mismas condiciones dentro de un periodo de tiempo corto: mismo laborante, mismo laboratorio (condiciones ambientales) y mismo equipo de medición utilizado. Mientras que, la reproducibilidad de los ensayos es, teniendo en cuenta que las mediciones son para un mismo ensayo y muestra dentro de un periodo de tiempo corto, cambiando alguna de las condiciones de medición: el laborante, el laboratorio y las condiciones de uso (p.ej. procedimientos) y/o el equipo de medición. En resumen, la primera hace referencia a la variabilidad entre medidas en el mismo laboratorio y la segunda debida al cambio de laboratorio.

Si R (%) > r, las posibles causas pueden ser entre otras: el operador necesita más formación y/o mejor entrenamiento en cómo utilizar y cómo leer el instrumento, o no se han mantenido las condiciones de reproducibilidad (ambientales y/o de montaje del equipo).

Si R=r, debe considerarse generalmente indicador de una varianza interlaboratorios pequeña (o de valores negativos), o incluso nula. Es el caso en que la varianza se estima cero, los errores sistemáticos de todos los laboratorios serían iguales- necesariamente nulos- y todos los resultados de ensayo serían intercambiables. Por esta última circunstancia, podría estimarse como si todos los ensayos hubieran sido realizados por un único laboratorio en condiciones de repetibilidad.

5. INCERTIDUMBRE TÍPICA DEL EJERCICIO (desviación típica in situ)

Se calcula la incertidumbre expandida (U) del ejercicio, a través de la siguiente expresión, de conformidad con el punto 8 de la norma ISO 12999-1:2021; con un factor de cobertura "k" que, para un intervalo de confianza del 95%, en un ensayo bilateral, según la Tabla 8 de la citada norma, adopta el valor de 1,96:

$$U = k^* u$$

Donde "u" es la SDL_{PRE,} desviación estándar de los resultados obtenidos por los laboratorios participantes antes del tratamiento estadístico (la incertidumbre típica, punto 6 de la norma). Su resultado será comparado con los valores dados en la Tabla 2, para **uSITU** en el Caso B en bandas de un tercio de octava, para recintos receptores con volúmenes ≥25 m³, cuyos valores se trasladan a continuación y que se refieren a la desviación típica de los resultados de medición obtenidos en condiciones in situ:

Tabla 5.1. Incertidumbre típica del ejercicio para la Zona

	ISO 12999-1:2021	EJERO	CICIO Zona
Frecuencia	TABLA 2. Caso B (USITU) (dB)	Desviación estándar (u) - <mark>Zona 02</mark> (dB)	Incertidumbre expandida (U)- Zona 02 (dB)
100Hz	2,8	1,17	2,3
125Hz	2,4	0,71	1,4
160Hz	2,0	0,58	1,1
200Hz	1,8	0,78	1,5
250Hz	1,6	0,61	1,2
315Hz	1,4	0,56	1,1
400Hz	1,2	0,61	1,2
500Hz	1,1	0,65	1,3
630Hz	1,0	0,39	0,8
800Hz	1,0	0,30	0,6
1000Hz	1,0	0,43	0,8
1250Hz	1,0	0,43	0,9
1600Hz	1,0	0,43	0,8
2000Hz	1,0	0,38	0,7
2500Hz	1,3	0,55	1,1
3150Hz	1,6	0,50	1,0
4000Hz	1,9	0,47	0,9
5000Hz	2,2	0,92	1,8
DnTw	0,9	0,41	0,8
DnA (Tabla 3)	1,1	0,59	1,1

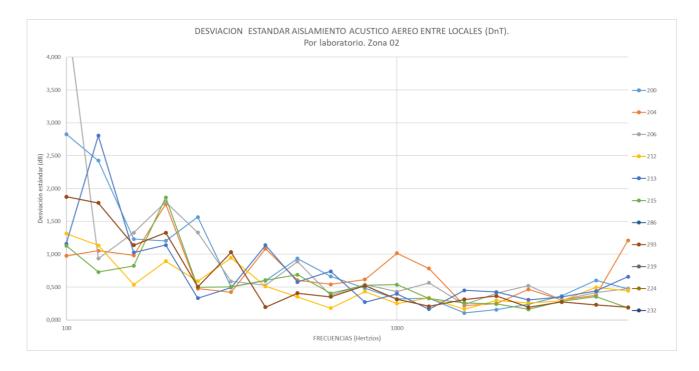
En el recinto Z02, la desviación del ejercicio no supera ninguno de los valores recogidos en la Tabla 2 y 3, Caso B de la norma ISO 12999-1.

6. RESULTADOS MEDICIÓN IN SITU DEL AISLAMIENTO ACÚSTICO A RUIDO AÉREO **ENTRE LOCALES**

i. Resultados promedio aportados de los cinco ensayos por código y por frecuencias.

	ı	Promedio in	terlaborato	rio									
FRECUENCIAS		200	204	206	212	213	215	219	224	232	286	293 Promedio	
	100	19,18	16,34	17,74	19,28	19,94	20,06	17,86	20,00	17,86	18,46	18,38	18,6
	125	30,52	30,84	31,86	29,52	30,46	29,79	30,30	29,88	29,52	29,88	30,90	30,3
	160	35,47	34,64	34,28	35,12	35,32	34,60	34,48	35,72	34,16	34,62	33,86	34,8
	200	39,04	37,40	37,04	37,92	38,40	37,63	36,40	37,90	38,06	37,46	36,56	37,6
	250	40,12	38,98	38,80	40,02	39,60	38,76	39,10	39,76	39,14	38,94	38,08	39,2
	315	39,51	38,26	39,20	39,52	40,06	38,75	38,56	39,06	38,18	39,02	39,14	39,0
	400	41,28	40,30	40,78	40,48	41,88	40,44	40,30	40,32	40,10	41,14	39,72	40,6
	500	43,79	41,78	42,98	41,56	42,88	41,97	42,34	42,14	42,10	42,20	41,86	42,3
	630	44,18	42,86	43,38	43,48	43,66	42,87	43,22	42,98	43,10	43,44	43,12	43,3
	800	45,26	44,48	44,64	45,06	45,16	44,34	44,68	44,72	45,00	45,14	44,74	44,8
	1000	48,16	46,90	47,10	47,38	47,88	46,79	47,02	47,52	47,40	47,56	47,02	47,3
	1250	49,62	49,16	48,66	49,26	49,78	48,58	48,78	49,12	49,06	49,66	48,60	49,1
	1600	49,99	49,48	48,80	49,78	49,82	48,87	49,16	49,50	49,38	49,92	48,96	49,4
	2000	49,98	49,84	49,20	50,14	50,30	49,38	49,56	49,80	49,48	50,18	49,32	49,7
	2500	48,02	47,72	47,02	48,04	48,64	47,37	47,20	47,78	48,14	48,72	47,54	47,8
	3150	48,64	49,12	48,06	49,30	49,34	48,11	48,15	48,30	48,60	49,20	48,34	48,7
	4000	51,11	51,36	50,76	51,72	52,14	51,29	51,08	50,76	51,70	52,04	51,14	51,4
	5000	51,67	53,64	52,84	54,38	54,54	53,74	53,80	53,76	53,78	55,02	54,60	53,8

ii. Gráficas de los resultados promedio de los laboratorios con el promedio de la Zona (con todo el grupo de valores, antes de descartar)



iii. Resultados desviación estándar de los resultados aportados de los cinco ensayos por código y por frecuencias.

	ı	Desviacione	s interlabor	atorio									
FRECUENCIAS		200	204	206	212	213	215	219	224	232	286		Desviacion por frecuencia
	100	2,827	0,974	4,737	1,314	1,161	1,129	2,309	1,437	1,335	1,876	1,314	1,17
	125	2,423	1,053	0,934	1,134	2,804	0,729	0,906	0,858	1,813	1,781	0,967	0,71
	160	1,230	0,981	1,327	0,536	1,026	0,822	1,827	0,942	0,662	1,137	1,031	0,58
	200	1,203	1,764	1,795	0,893	1,140	1,864	1,317	0,583	0,999	1,326	1,293	0,78
	250	1,565	0,476	1,329	0,589	0,332	0,497	0,557	0,802	0,336	0,503	0,683	0,61
	315	0,503	0,422	0,587	0,944	0,493	0,502	0,929	0,532	0,563	1,031	0,611	0,56
	400	0,597	1,084	0,526	0,512	1,137	0,604	0,663	0,531	0,656	0,195	1,178	0,61
	500	0,934	0,606	0,890	0,351	0,576	0,689	0,344	0,882	0,731	0,406	0,826	0,65
	630	0,664	0,541	0,377	0,179	0,740	0,406	0,466	0,766	0,656	0,351	0,432	0,39
	800	0,482	0,614	0,537	0,434	0,270	0,527	0,130	0,622	0,485	0,522	0,428	0,30
	1000	0,319	1,015	0,430	0,249	0,396	0,538	0,487	0,259	0,374	0,313	0,563	0,43
	1250	0,332	0,783	0,564	0,336	0,164	0,325	0,239	0,705	0,428	0,207	0,354	0,43
	1600	0,105	0,217	0,235	0,164	0,449	0,260	0,261	0,245	0,277	0,311	0,522	0,43
	2000	0,157	0,251	0,406	0,297	0,424	0,243	0,416	0,406	0,342	0,363	0,130	0,38
	2500	0,239	0,466	0,522	0,261	0,305	0,161	0,158	0,427	0,336	0,192	0,313	0,55
	3150	0,364	0,303	0,305	0,292	0,351	0,284	0,173	0,515	0,367	0,274	0,230	0,50
	4000	0,603	0,378	0,416	0,497	0,439	0,355	0,277	0,594	0,394	0,230	0,288	0,47
_	5000	0,473	1,212	0,477	0,444	0,658	0,184	0,474	0,594	0,303	0,192	0,686	0,92
		Valore	s anóma	los o abe	rrantes e	n el anál	isis esta	dístico					

iv. Gráficas de las desviaciones estándar de los laboratorios (con todo el grupo de valores, antes de descartar)

7. DATOS DE PRECISIÓN

En las siguientes tablas se recogen los valores de repetibilidad "r "y reproducibilidad "R" del ensayo y sus varianzas "S", por bandas de frecuencia. Estas variables se ven afectadas cuando un laboratorio repite posiciones de medida, pues lo normal es que obtenga muy poca dispersión en sus resultados, y por tanto, implica una repetibilidad muy alta frente a los que sí modifican posiciones en cada repetición; y por consiguiente, respecto al resto de laboratorios, puede hacer que la reproducibilidad del grupo sea peor (él mejora sus resultados pero empeoran los resultados globales del ejercicio).

Zona 02: hay resultados con varianzas "S" cero en DnTw Global: códigos 200, 213, 215,219 y 293.

Tabla 7.1. Datos de precisión del Estudio preliminar de la Zona

ENSAYO-banda de		PRE-ESTADÍSTICO ZONA 02								
frecuencia	S _r ²	r	S _L ²	S _R ²	R					
Dnt Frecuencia 100 hz	0,59	2,1	0,52	1,12	2,9					
Dnt Frecuencia 125 hz	2,41	4,3	0,02	2,42	4,3					
Dnt Frecuencia 160 hz	1,21	3,0	0,10	1,31	3,2					
Dnt Frecuencia 200 hz	1,81	3,7	0,24	2,05	4,0					
Dnt Frecuencia 250 hz	0,63	2,2	0,25	0,88	2,6					
Dnt Frecuencia 315 hz	0,46	1,9	0,23	0,69	2,3					
Dnt Frecuencia 400 hz	0,57	2,1	0,26	0,83	2,5					
Dnt Frecuencia 500 hz	0,48	1,9	0,33	0,80	2,5					
Dnt Frecuencia 630 hz	0,29	1,5	0,09	0,38	1,7					
Dnt Frecuencia 800 hz	0,23	1,3	0,05	0,28	1,5					
Dnt Frecuencia 1000 hz	0,24	1,4	0,13	0,38	1,7					
Dnt Frecuencia 1250 hz	0,20	1,2	0,15	0,35	1,6					
Dnt Frecuencia 1600 hz	0,09	0,8	0,17	0,26	1,4					
Dnt Frecuencia 2000 hz	0,11	0,9	0,12	0,23	1,3					
Dnt Frecuencia 2500 hz	0,11	0,9	0,28	0,39	1,7					
Dnt Frecuencia 3150 hz	0,11	0,9	0,23	0,34	1,6					
Dnt Frecuencia 4000 hz	0,18	1,2	0,19	0,37	1,7					
Dnt Frecuencia 5000 hz	0,34	1,6	0,78	1,12	2,9					

8. EVIDENCIAS AL PROCEDIMIENTO DE LOS ENSAYOS (VER PTO 4 DEL INFORME)

- **Entrega de planos posiciones** (obligatorio por protocolo): Todos entregados. Incompletos: 206 y 232.
- Configuración del sonómetro para una aplicación de incidencia aleatoria. 82% lo hacen. Los códigos 206 y 293, no.
- Verificaciones/calibraciones de la cadena de medida: Se recogen en la siguiente Tabla, y en esta Zona todos las han hecho al inicio y final de cada ensayo, es decir de 5 u 8 veces (según el nº de ensayos). La cuestión es, para no estar fuera de norma, que se haya hecho la comprobación de todo el sistema de medida en algún momento del ejercicio.
- Verificación periódica del equipo (control metrológico): la totalidad de los laboratorios la ha cumplimentado para el sonómetro-analizador y el calibrador, cumpliendo con los intervalos de la norma, El 36,4% indica informe de caracterización sobre la directividad de la fuente. (ver Tabla inferior).

Tabla 8.1. Equipamiento utilizado y otros aspectos del desarrollo del ensayo

ZONA 02	200	204	206	212	213	215	219	224	232	286	293
ENTREGA PLANOS POSICION	Si	Si	Incompletos (NO posiciones para TR)	Si	Si	Si	Si	Si	Incompletos (NO posiciones para TR)	Si	Si
CONF. SONOMETRO PARA INCIDENCIA ALEATORIA	Si	Si	No	Si	Si	Si	Si	Si	Si	Si	No
VERIFICACION EQUIPOS: SONÓMETRO	09/05/2022	19.01.2022	26/05/2022	07/10/2021	12/01/2022	06.09.2021	29/10/2021	29/04/2022	07.04.22	24.06.21	01/07/2021
¿SE HA ECUALIZADO LA SEÑAL DE RUIDO EN EMISIÓN?	Si	Si	Si	Si	No	No	Si	Si	No	Si	Si
METODOS DE MEDIDA	Respuesta impulsiva integrada	Respuesta impulsiva integrada	Ruido interrumpido	Respuesta impulsiva integrada	Respuesta impulsiva integrada	Respuesta impulsiva integrada	Respuesta impulsiva integrada	Respuesta impulsiva integrada	Ruido interrumpido	Ruido interrumpido	Ruido interrumpido
FUENTE DE RUIDO	Globos	Globos	Altavoz omnideccio nal	Globo	Globos	Globos	Globos	Glovo	ALTAVOZ OMNIDIREC CIONAL	globos	DODECAED RO
DIRECTIVIDAD DE LA FUENTE: Informe de caracterizacion		16.09.2021		2021-09-30		22.06.2021				26.01.22	Fabricante

8.1. Evidencias Detectadas, por código: ZONA 02

CÓDIGO 206

- Planos: Los planos no indican el posicionamiento para la medida del tiempo de reverberación (en adelante TR) (Desviación al protocolo)
- Incidencia aleatoria: No se configura el sonómetro para incidencia aleatoria (Desviación a la norma).
- **Posicionamiento**: Para <u>la medida de TR</u>, se indica que se han empleado 6 posiciones de micrófono por posición de fuente y en la tabla de posicionamiento se indican que son 3. Aun así, la medida sería correcta.
- **Propuesta Coordinador**: Aviso/llamada de atención al laboratorio.

CÓDIGO 212

- Posicionamiento: Para la medida de TR se indican posiciones de fuente con las coordenadas x-y-z a cero o bien con altura cero (z=0) (Desviación a la norma); además con esta posición de fuente incorrecta tendríamos las repeticiones R1=R4. Se señala además la incoherencia de las coordenadas de la fuente respecto a la representación gráfica en los planos
- **Propuesta Coordinador**: Aviso/llamada de atención al laboratorio.

CÓDIGO 213

- Posicionamiento: Para la medida de TR la configuración de la medida no cumple lo establecido por la norma para el método de la respuesta al impulso. Se utilizan 3 posiciones de fuente-2 posiciones de micrófono-1 caída, en vez de 1 posición de fuente-6 posiciones de micrófono-1 caída (Desviación a la norma).
- **Resultados:** DnT,A no se expresa como un número entero (Desviación al protocolo).
- **Propuesta Coordinador**: Aviso/llamada de atención al laboratorio.

CÓDIGO 219

- Posicionamiento: Para la medida de TR la configuración de la medida no cumple lo establecido por la norma para el método de la respuesta al impulso. Se utiliza 1 posición de fuente-3 posiciones de micrófono-2 caídas, en vez de 1 posición de fuente-6 posiciones de micrófono-1 caída (Desviación a la norma).
- **Propuesta Coordinador**: Aviso/llamada de atención al laboratorio.

CÓDIGO 224

- **Posicionamiento:** Para la <u>medida de TR</u> la configuración de la medida no cumple lo establecido por la norma para el método de la respuesta al impulso. Se utilizan 2 posiciones de fuente-3 posiciones de micrófono-1 caída, en vez de 1 posición de fuente-6 posiciones de micrófono-1 caída (Desviación a la norma).
- **Propuesta Coordinador**: Aviso/llamada de atención al laboratorio

CÓDIGO 232

- Planos: Los planos no indican el posicionamiento para la medida de TR (Desviación al protocolo).
- **Propuesta Coordinador**: Aviso/llamada de atención al laboratorio

CÓDIGO 293

- Incidencia aleatoria: No se configura el sonómetro para incidencia aleatoria (Desviación a la norma).
- **Propuesta Coordinador**: Aviso/llamada de atención al laboratorio

9. EVALUACIÓN GLOBAL

Se recoge en las siguientes tablas la evaluación global de los resultados aportados en los ensayos in situ de ACÚSTICA del EILA AQ22, de todos los laboratorios a nivel de Zona (recinto), tras el Análisis estadístico y evaluación Zscore (que se adjuntan en el Anexo I del presente documento).

Tabla 9.1. Evaluación global a nivel de Zona 02: AISLAMIENTO ACÚSTICO AÉREO ENTRE LOCALES (DnT)

Frecuencias	200	204	206	212	213	215	219	224	232	286	293
nT 100 HZ	S	AB	AB	S	S	S	S	S	S	S	S
125 HZ	S	S	D	S	S	S	S	S	S	S	S
160 HZ	S	S	S	S	S	S	S	S	S	S	S
200 HZ	S	S	S	S	S	S	S	S	S	S	S
250 HZ	AN	S	AN	S	S	S	S	S	S	S	AN
315 HZ	S	S	S	S	S	S	S	S	S	S	S
400 HZ	S	S	S	S	D	S	S	S	S	S	S
500 HZ	D	S	S	S	S	S	S	S	S	S	S
630 HZ	D	S	S	S	S	S	S	S	S	S	S
800 HZ	S	S	S	S	S	S	S	S	S	S	S
1000 HZ	AB	AB	S	S	S	S	S	S	S	S	S
1250 HZ	S	S	S	S	S	S	S	S	S	S	S
1600 HZ	S	S	S	S	S	S	S	S	S	S	S
2000 HZ	S	S	S	S	S	S	S	S	S	S	S
2500 HZ	S	S	S	S	S	S	S	S	S	S	S
3150 HZ	S	S	S	S	S	S	S	S	S	S	S
4000 HZ	S	S	S	S	S	S	S	S	S	S	S
5000 HZ	AB	AB	S	S	S	S	S	S	S	S	S
Expresion unidades con un decimal	NO	SI	SI	SI	SI	NO	SI	SI	SI	SI	SI
Incertidumbre (opcional)	SI	SI	NO	NO (Sí en globales)	NO	SI	SI	SI	SI	NO	SI
№ Verificaciones (minim. Al inicio y al final)	7	5	5	5	5	5	5	10	5	5	5

EVALUACION RESULTAI	EVALUACION RESULTADOS DE PRUEBA DE SERVICIO EN ACUSTICA-EILA AQ22											
Laboratorio		200	204	206	212	213	215	219	224	232	286	293
DnT,w	5R	S	S	S	S	S	S	S	S	S	S	S
Expresion unidades nºentero		SI										

Resultado satisfactorio (S); Resultado dudoso (D); Resultado insatisfactorio (I); Aberrante (AB); Anómalo (AN); Descartado (SD); (--) no participa.

Desviación señalada dudosa por consistencia de Mandel

En base al diagrama de Cajas y bigotes que se adjunta en el informe estadístico, los códigos que recogen las siglas de "AT. LEVE" son atípicos leves. Son valores (máximo o mínimo) que superan la longitud límite de los bigotes (1,5 x Recorrido intercuartil o longitud de la caja (RIC)) y se identificarán individualmente. Si este valor, superase en 3 veces el RIC, sería un valor extremadamente atípico y los códigos serían identificados con las siglas "AT.EXT". Asimismo, en el interior del documento, se recogen evidencias de posibles No Conformidades (NC) para que el órgano competente realice las acciones que considere oportunas.

Zona 02 VALOR ASIGNADO PARA CADA TERCIO DE OCTAVA (descartados valores aberrantes/anómalos)

P	VALOR	DESVIACIÓN ESTANDAR	COEF.VARIACIÓN
Frecuencias	ASIGNADO	(SDL)	COLLIVINGICION
DnT Frecuencia 100 hz	35,17	0,80	2,28%
DnT Frecuencia 125 hz	30,32	0,71	2,33%
DnT Frecuencia 160 hz	34,75	0,58	1,68%
DnT Frecuencia 200 hz	37,62	0,78	2,06%
DnT Frecuencia 250 hz	39,29	0,45	1,14%
DnT Frecuencia 315 hz	39,02	0,56	1,45%
DnT Frecuencia 400 hz	40,61	0,61	1,51%
DnT Frecuencia 500 hz	42,33	0,65	1,53%
DnT Frecuencia 630 hz	43,30	0,39	0,90%
DnT Frecuencia 800 hz	44,84	0,30	0,67%
DnT Frecuencia 1000 hz	47,30	0,34	0,72%
DnT Frecuencia 1250 hz	49,12	0,43	0,88%
DnT Frecuencia 1600 hz	49,42	0,43	0,87%
DnT Frecuencia 2000 hz	49,74	0,38	0,76%
DnT Frecuencia 2500 hz	47,84	0,55	1,14%
DnT Frecuencia 3150 hz	48,65	0,50	1,03%
DnT Frecuencia 4000 hz	51,37	0,47	0,92%
DnT Frecuencia 5000 hz	54,05	0,65	1,20%
DnTw			
AISLAM.ACUSTIC.AEREO	45,38	0,41	0,91%
GLOBAL			
DnTA AISL.ACUSTIC.AEREO (CTE)	44,09	0,45	1,00%

Zona 02 REPETIBILIDAD- REPRODUCIBILIDAD (descartados valores aberrantes/anómalos)

ENSAYOS	REPETIBIL SU VARIA		VARIANZA REPRODUCIBILII INTERLABORATORIOS Y SU VARIANZA		
	Sr ²	r	SL ²	SR ²	R
DnT Frecuencia 100 hz	0,59	2,1	0,52	1,12	2,9
DnT Frecuencia 125 hz	2,41	4,3	0,02	2,42	4,3
DnT Frecuencia 160 hz	1,21	3,0	0,10	1,31	3,2
DnT Frecuencia 200 hz	1,81	3,7	0,24	2,05	4,0
DnT Frecuencia 250 hz	0,28	1,5	0,14	0,43	1,8
DnT Frecuencia 315 hz	0,46	1,9	0,23	0,69	2,3
DnT Frecuencia 400 hz	0,57	2,1	0,26	0,83	2,5
DnT Frecuencia 500 hz	0,48	1,9	0,33	0,80	2,5
DnT Frecuencia 630 hz	0,29	1,5	0,09	0,38	1,7
DnT Frecuencia 800 hz	0,23	1,3	0,05	0,28	1,5
DnT Frecuencia 1000 hz	0,17	1,2	0,08	0,25	1,4
DnT Frecuencia 1250 hz	0,20	1,2	0,15	0,35	1,6
DnT Frecuencia 1600 hz	0,09	0,8	0,17	0,26	1,4
DnT Frecuencia 2000 hz	0,11	0,9	0,12	0,23	1,3
DnT Frecuencia 2500 hz	0,11	0,9	0,28	0,39	1,7
DnT Frecuencia 3150 hz	0,11	0,9	0,23	0,34	1,6
DnT Frecuencia 4000 hz	0,18	1,2	0,19	0,37	1,7
DnT Frecuencia 5000 hz	0,23	1,3	0,38	0,61	2,2
DnTw					
AISLAM.ACUSTIC.AEREO	0,15	1,1	0,14	0,29	1,5
GLOBAL					
DnTA AISL.ACUSTIC.AEREO	0,36	1,7	0,13	0,49	1,9
(CTE)	•	,			

^(*) Aptdo.7.4.5.5 de la norma UNE 82009-2:1999 cuando debido a efectos aleatorios, se obtenga un valor negativo para la varianza interlaboratorios, debería asumirse un valor cero.

10.AGRADECIMIENTOS

Este ejercicio interlaboratorios en el área de ACÚSTICA IN SITU, ha cubierto los objetivos y expectativas previstas, debido fundamentalmente, a la buena predisposición, trabajo, y esfuerzo, de todas las personas y entidades participantes en el mismo, para los cuales, sirva el presente recordatorio, y el más sincero agradecimiento.

COORDINADORES GENERALES

Emilio Meseguer Peña

Victoria de los Ángeles Viedma Peláez

Elvira Salazar Martínez

Joan Teixidó Vidal

Agustí Careta Pons

COORDINADORES AUTONÓMICOS

COORDINALDOREDATOTOMONICO		
Miguel Ángel Santos Amaya	Junta de Andalucía	JUNTA DE ANDALUCIA
Carlos Cuerda Sierra	Junta de Andalucía	JUNTA DE ANDALUCIA
Ana Rico Oliván	Gobierno de Aragón	GOBIERNO DE ARAGON
Esperanza Jarauta Pérez	Gobierno de Aragón	SGOBIERNO DE ARAGON
Juan Carlos Cortina Villar	Principado de Asturias	GOBIERNO DEL PRINCIPADO DE ASTURIAS WWW.qsturiqs.es
Ana Carolina Álvarez Cañete	Principado de Asturias	COBIERNO DEL PRINCIPADO DE ASTURIAS WWW.asturias.es
Yolanda Garví Blázquez	Govern de les Illes Balears	GOVERN ILLES BALEARS
Inmaculada Alcolecha Fuente	Govern de les Illes Balears	GOVERN ILLES BALEARS
Javier Jubera Pérez.	Gobierno de Canarias	Gobierno de Canarias
Enrique Alonso Moreno	Comunidad Autónoma de Cantabria	GOBIERNO DE CANTABRIA

Generalitat de Catalunya

Generalitat

de Catalunya

Generalitat de Catalunya

Generalitat de Catalunya

Junta de Comunidades de Marta Iniesto Alba Castilla – La Mancha Castilla-La Mancha María del Mar Domínguez Sierra Junta de Castilla y León Junta de Pilar Marinero Diez Junta de Castilla y León José Ángel Rena Sánchez Junta de Extremadura JUNTA DE EXTREMADURA **XUNTA** Mª José Paniagua Mateos Xunta de Galicia DE GALICIA Comunidad Autónoma de Gobierno Israel López García de La Rioja La Rioja Comunidad Autónoma de Isabel García Larache Madrid Comunidad Autónoma de Antonio Azcona Sanz Madrid Comunidad Autónoma de María Teresa Elvira Rosado Madrid Comunidad Autónoma de Región de Murcia Teresa Barceló Clemares la Región de Murcia Mª Carmen Mazkiarán López de Gobierno de Navarra Nafarroako Gobernua Goikoetxea Gobierno de Navarra eneralitat valenciana Juan José Palencia Guillén Generalitat Valenciana Elvira Salazar Martínez Gobierno Vasco Alberto Apaolaza Sáez de Viteri Gobierno Vasco Ane Hernández Pérez de Guereñu Gobierno Vasco

ORGANIZACIÓN Y GESTIÓN PROGRAMA ESPECÍFICO EILA ACÚSTICA 2022

RECINTOS CEDIDOS PARA LOS ENSAYOS DE ACÚSTICA:

Laboratorio Control de Calidad en la Edificación de País Vasco Gobierno Vasco

• Centro de Difusión Medioambiental la Cantueña Fuenlabrada (Comunidad de

Madrid)

Zaragoza (Aragón) • IES de la Puebla de Alfindén

Murcia IES "Miguel de Cervantes" • Laboratorio de Vivienda Sevilla

• Laboratorio de Vivienda en el Polígono Juncaril, Albolote (Granada)

IES Antonio Fraguas Santiago Compostela (Galicia)

Cáceres (Extremadura) Demostradores Experimentales EDEA

Sant Just Desvern **Bac Engineering Consultancy Group**

(Cataluña)

Laboratorio de Vivienda Canarias

ELABORACIÓN PROTOCOLOS Y GESTIÓN DE LAS FICHAS. ANÁLISIS ESTADÍSTICO.

- Amelia Romero Fernández
- Victoria de los Ángeles Viedma Peláez
- Fernando Meseguer Serrano

IETCC, Instituto de Ciencias de la Construcción Eduardo Torroja:

LABORATORIOS PARTICIPANTES POR COMUNIDADES AUTÓNOMAS EN EILA 2022:

JUNTA DE ANDALUCIA

1.	Centro De Estudio De Materiales Y Control De Obra S.A. (Cemosa) (Co)	AND-L-003
2.	Centro De Estudio De Materiales Y Control De Obra S.A. (Cemosa) (Ma)	AND-L-018
3.	Laboratorios Cogesur, S.L. (Ca)	AND-L-067
4.	Centro De Estudio De Materiales Y Control De Obra S.A. (Cemosa) (Se)	AND-L-074
5.	Centro De Estudio De Materiales Y Control De Obra S.A. (Cemosa) (Gr)	AND-L-076
6.	Juan Manuel Gonzalez López (Entremedianeras) (Se)	AND-L-134
7.	Elabora, Agencia Para La Calidad En La Construccion, S.L Sevilla (Se)	AND-L-155
8.	Laboratorios De Tecnología Estructural S.L. (Lte) (Ma)	AND-L-210
9.	Belios Acustica, S.L. (Gr)	AND-L-224
10.	Juan Alfonso Calleja Pérez (Se)	AND-L-238
11.	Fco. Javier Ruiz Aviles (Se)	AND-L-239
12.	Acustic Drywall S.L. (Al)	AND-L-252
13.	Jen Ingenieros Asociados, S.L. (Ma)	AND-L-267
14.	Raúl García Guerrero (Ma)	AND-L-268

15. Servicios Acústicos y Energéticos, S.C.A. (Hu)	AND-L-287
16. Francisco Javier Campos Palma (Ma)	AND-L-288

GOBIERNO DE ARAGÓN

Ī	1.	TPF GETINSA-EUROESTUDIOS, SL - Zaragoza	ARA-L-001
ſ	2.	ENSAYA Zaragoza. Laboratorio de Ensayos Técnicos, S.A.	ARA-L-005
ſ	3.	Solitel Proyectos e Ingeniería de Telecomunicaciones, S.L	ARA-L-017

GOBIERNO DE CANARIAS

1. Controles Externos de la Calidad Canarias, SL	CNR-L-003
2. AND Atlante	CNR-L-045
3. Servicio de Laboratorios y Calidad de la Construcción. Consejería de	(oficial)
Obras Públicas y Transportes - Delegación Tenerife	

COMUNIDAD AUTÓNOMA DE CANTABRIA

1. Ingeniería Acústica del Cantábrico 2020 SLU	CTB-L-012
--	-----------

GENERALITAT DE CATALUNYA

1.	Eptisa Enginyeria I Serveis, Sau	CAT-L-002
2.	Applus Norcontrol, Slu	CAT-L-012
3.	Dekra Industrial, SA	CAT-E-015
4.	Centre D'estudis de la Construcció I Anàlisi de Materials, Slu	CAT-L-027
5.	Lostec, Sa	CAT-L-028
6.	Labocat Calidad, Sl	CAT-L-054
7.	Bureau Veritas Inspeccion y Testing, SLU	CAT-L-103
8.	Apling Acústica Insonorización, SL	CAT-L-106
9.	Tpf Getinsa Euroestudios, Sl	CAT-L-109
10.	Bac Engineering Consultancy Group, Sl	CAT-L-114
11.	Eurocontrol, SA	MAD-E-001

JUNTA DE EXTREMADURA

1.	Intromac	EXT-L-007
2.	Elaborex Calidad en la Construcción, S.L:	EXT-L-014
3.	Gestión y Control del Ruido Extremadura	EXT-L-017
4.	SILENTIA Ingeniería Acústica, S.L.	EXT-L-021

XUNTA DE GALICIA

1.	Control y Estudios, SL (CYE)	GAL-L-005
2.	Galaicontrol Arteixo, SL	GAL-L-014
3.	Investigación y Control Lugo SL (INVECO)	GAL-L-016
4.	Applus Norcontrol, SL	GAL-L-018
5.	Galaicontrol Vigo, SL	GAL-L-021

6. IG Calidad	GAL-L-028
7. EPTISA, Servicios de Ingeniería, SL - Delegacio	ón de A Coruña GAL-L-034
8. Enmacosa Consultoría Técnica SA	GAL-L-056

COMUNIDAD AUTÓNOMA DE MADRID

1.	Instituto Técnico de Materiales y Construcciones (INTEMAC)	MAD-L-030
2.	Centro de Estudios de Materiales y Control de Obra S.A (CEMOSA)	MAD-L-036
3.	Ingeniería Acústica García-Calderón S.L. (IAGC)	MAD-L-044
4.	Gabinete de Ingeniería Acústica, SLL	MAD-L-048
5.	Control de Estructuras y Geotecnia SL (CEyGE)	MAD-L-061
6.	Laboratorio De Control De Calidad E Ingeniería, S.L. (LCCI)	MAD-L-064
7.	Control de estructuras y suelos SA (CONES)	MAD-L-065
8.	Laboratorio de Ensayos Acústicos (LABENAC)	MAD-L-073
9.	Bureau Veritas Inspección y Testing S.L.	MAD-L-081
10.	V2 Geotecnia y Control, SL	MAD-L-088
11.	Greenback SLNE	

COMUNIDAD AUTÓNOMA DE LA REGIÓN DE MURCIA

1. Inversiones de Murcia, S.L., laboratorios HORYSU- Delegación de	MUR-L-006		
Cartagena			
2. Massalia Ingenieros SL	MUR-L-019		
3. Asociación Empresarial Investigación Centro Tecnológico de la Construcción Región de Murcia (CTCON)	MUR-L-027		

GOBIERNO DE NAVARRA

1.	Laboratorios ENTECSA SA	NAV-L-001
2.	Laboratorio de Ensayos Navarra SA (LABENSA)	NAV-L-003
3.	ID Ingeniería acústica	NAV-L-012
4.	Teide Ingenieros Consultores, S.L.P.	NAV-L-014
5.	Eurocontrol SA	NAV-L-016

COMUNIDAD VALENCIANA

1. Consulteco, S.L.	VAL-L-013
2. Sonora Telecomunicacions, S.L.P	VAL-L-050
3. C2C Servicios Técnicos de Inspección S.L Delegación de Albaida	VAL-L-058
(Valencia)	
4. Laeco	VAL-L-070

GOBIERNO VASCO

1. EPTISA-CINSA Ingeniería y Calidad, SA - Grupo EP	PVS-L-002
2. SAIO TEGI, SA	PVS-L-004
3. GIKE, SA Control Calidad Edificación	PVS-L-005

4. AAC Centro de Acústica Aplicada SL	PVS-L-024
5. BUREAU VERITAS Inspección y Testing, S.L.U.	PVS-L-029
6. GSA INGENIERÍA ACÚSTICA	PVS-L-031
7. Imatek (Ingurumena Advanced Technologies)	PVS-L-032
8. Laboratorio de Evaluación y Control Del Ruido S.L. (LAECOR)	PVS-L-033

 $ANEXO\ I$ (en documentos aparte: EILA22 DnT. pdf)

ANÁLISIS ESTADÍSTICO Y ZSCORE DE RESULTADOS RECINTO Z02:

1. MEDICIÓN IN SITU DEL AISLAMIENTO ACÚSTICO A RUIDO AÉREO ENTRE LOCALES (DNT)