Contrato pre-doctoral en Ciencia y Tecnolog铆a de Materiales

Se ofrece 1 plaza predoctoral en Ciencia y Tecnolog铆a de Materiales a tiempo completo financiado por el programa de Ayudas para contratos pre-doctorales para la formaci贸n de doctores 2020 del Ministerio de Ciencia e Innovaci贸n con enfoque en el estudio de los mecanismos de generaci贸n de contaminantes de nanopart铆culas suspendidas en el aire en interiores, dirigido por la Dra. Marta Castellote y Dr. Rom谩n Nevshupa, del Grupo de Investigaci贸n Interacci贸n sostenible de los Materiales de Construcci贸n con el Medio Ambiente, del Instituto de Ciencias de la Construcci贸n 鈥淓duardo Torroja鈥 del Consejo Superior de Investigaciones Cient铆ficas en Madrid.

El tema de la tesis se enmarca en un proyecto de investigaci贸n I+D+i 鈥淓RIQ鈥 dirigido a investigar nuevos fen贸menos inter- y transdisciplinares como, p.e. triboemis铆on de nanopart铆culas en materiales avanzados funcionalizados con nanopart铆culas y sometidos a distintos procesos incluyendo abrasi贸n, envejecimiento, limpieza, reutilizaci贸n y reciclaje entre otros. M谩s informaci贸n acerca del proyecto de investigaci贸n se puede encontrar al final de este anuncio.

La persona seleccionada se integrar谩 en un grupo multidisciplinar reconocido a nivel nacional e internacional en investigaci贸n b谩sica y aplicada en el 谩rea de materiales avanzados de la construcci贸n e interacci贸n sostenible con el medio ambiente (Investigador Principal: Dra. Marta Castellote).

Los candidatos/as (licenciado/a en ciencia de materiales, f铆sica, qu铆mica o similar) deben tener un buen expediente acad茅mico y ser elegible como candidato en el Programa.

Las personas interesadas deben estar altamente motivadas para la investigaci贸n y capacidad de trabajar en equipo.

Todos los que est茅n interesados/as deben enviar su solicitud antes del 27 de octubre de 2020 a trav茅s del portal del Ministerio de Ciencia e Innovaci贸n.

Abstract of the Project ERIQ. Ref. PID2019-111063RB-I00

RIESGOS EMERGENTES EN CALIDAD DE AMBIENTE INTERIOR: HACIA EDIFICIOS MAS SALUDABLES

The projects endeavours to tackle the problem of low quality of indoor air due to contamination by airborne particles of micro- and nanometre size, in air-tight energy efficient buildings and dwellings. The Project focuses on one of the key challenges faced by human society 鈥 Health and Well-being, and is closely related with the key challenge of Safe, Sustainable and Clean energy. The energy and emissions savings potential of new construction technologies and advanced materials remains largely untapped due to the fact that some building energy efficiency measures have the potential to degrade indoor environmental quality, especially air quality, and people鈥檚 health.聽 The reductions in air infiltration rates in airtight building envelopes leads to increase indoor air concentrations of indoor-generated air pollutants and to increase associated health risks. However, the information on the indoor sources of airborne particles and the generation rates is lacking that hampers assessment of real exposure of persons to airborne particles as well as development of efficient ventilation and air filtration systems.

The project is aimed at identification and characterization of indoor airborne particle sources related with mechanical interaction between the surfaces (abrasion, rubbing) using a novel method and procedure developed by the researchers of IETCC-CSIC. On the first stage, systematic quantitative data on the rates of airborne particle emission for the most relevant classes of indoor materials will be obtained under standard conditions using laboratory scale tests. The mechanistic study of fine and ultrafine particle emission will be addressed using a multidisciplinary approach considering various chemical and physical processes, which might contribute to particle generation, including mechanical wearing, triboelectric charging, gas discharge and charged particle emission, tribochemical processes such as radical depolymerisation, tribopolymerization, desorption, etc. The key processes and reactions for each class of indoor materials including nanofunctionalized materials (polymer flooring materials, paints, ceramic and composite materials, etc.) will be identified. On the second stage, the rates of airborne particle emission will be studied on laboratory scale under relevant conditions, which are characteristic of service life in indoor applications, in order to quantitatively assess the rates of particle generation and to rank the emission sources in different indoor scenarios (residential, office, school, etc.). Finally, the obtained data will be validated by in situ measurements of the airborne fine particles concentrations in different buildings and dwellings. The emission rates will be estimated using the models of mass balance of particles considering the processes of particle emission, deposition, settling and resuspension.

It is expected that the project results will have significant impact in controlling the indoor air quality providing systematic and quantitative data on the indoor sources of airborne particle emission. This will help to reduce the health risks associated with energy-efficient buildings and overcome the existing barrier on the way to a broader implementation of this technology. The knowledge of the mechanisms of particle emission is also highly demanded for evaluation the health and environmental risks related with the use of nanomaterials that will have an impact in the area of material engineering.